Questions and Answers

RFP752-18-211976DH
Design & Install Automatic Fire Suppression System Maple Hall

This document is being issued to answer questions that have been submitted as follows:

Questions sent as e-mails from potential proposers

1. During the walk thru site visit the UNT project manager and customer representative indicated that the University is wanting a Cummins Brand natural gas generator. The provided spec sheet from the university does not list Cummins as an approved manufacturer for this project. Will Cummins Brand be approved or do we need to propose one of the approved brands as per the UNT spec sheet?

 In review of the spec (Cummins Brand natural gas generator) it is not mentioned as an approved vendor...It is our experience in the past that this was a preferred. Please confirm this is an acceptable manufacturer for the generator. A representative of UNT Project Management TEAM stated this was preferred

 ANSWER: Cummins is a division of Onan and is acceptable for submittal.

2. After complete review of the dimensions of the “split-line” fire pump called for in the spec. This will not fit in the designated riser room that we are told must also house the back-flow preventer also. We are forced to quote a vertical in-line fire pump.

 This requirement is for fire pumps exposed to the elements, not for one in a boiler room and have climate control.

 This is a “minimum” 12 weeks and is considered a “CUSTOM ORDER” the price for this is going to be much higher...WE believe it is an error in the spec...Please clarify

 ANSWER: An ODP type motor is acceptable for this Project.

Attachments:

- FLOW Test
- Map of Water taps
- Maple Street Test Hydrant and Flow Hydrant
Fire Flow Test Form

<table>
<thead>
<tr>
<th>Hydrodynamic Grade Line</th>
<th>Line Size</th>
<th>Lewisville WTP Flow</th>
<th>Lewisville WTP Press</th>
<th>Ray Roberts WTP Flow</th>
<th>Ray Roberts WTP Press</th>
<th>McKenna EST Elev</th>
<th>Northwest EST Elev</th>
<th>Riney EST Elev</th>
<th>Roselawn EST Elev:</th>
</tr>
</thead>
<tbody>
<tr>
<td>816.88</td>
<td>8</td>
<td>4.5</td>
<td>85.7</td>
<td>8.2</td>
<td>95.8</td>
<td>61.85</td>
<td>19.1</td>
<td>27.64</td>
<td>28.02</td>
</tr>
</tbody>
</table>

Hydrant ID
- **Hydrant 1**: F2404-A20
- **Hydrant 1 Noz 2**: F2404-A21
- **Hydrant 2**: Nozzle Dia: 2.5
- **Hydrant 2 Noz 2**: Nozzle Dia: 0

Test Information
- **Record ID**: 2183
- **Test Hydrant ID**: F2404-A20
- **Tile Number**: Not specified
- **Test Date**: 5/16/2014
- **Test Time**: 02:00 AM/PM
- **AM/PM**: PM
- **Static Pressure**: 48
- **Residual Pressure**: 42
- **Total Flow**: 2041.30 gpm
- **Available Flow @ 20 psi**: 4689.97 gpm
- **Duration**: 15
- **Address**: 1621 Maple

Notes

- Ctrl+Enter for a new line

Fire Flow Test Form

<table>
<thead>
<tr>
<th>Hydrant ID</th>
<th>Nozzle Dia</th>
<th>Coefficient</th>
<th>Pitot Press</th>
<th>Flow (gpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrant 1</td>
<td>F2404-A21</td>
<td>2.5</td>
<td>0.9</td>
<td>37</td>
</tr>
<tr>
<td>Hydrant 1 Noz 2</td>
<td>F2404-A21</td>
<td>2.5</td>
<td>0.9</td>
<td>37</td>
</tr>
<tr>
<td>Hydrant 2</td>
<td>Nozzle Dia: 2.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hydrant 2 Noz 2</td>
<td>Nozzle Dia: 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tested By: DMB