Table of Contents

Division 00 – Procurement and Contracting Requirements

- **000000** Procurement Sections*
- **001100** Advertisement for Proposal
- **002100** Instruction to Proposal
 - Attachment A Qualifications
 - Attachment B General Construction Agreement
 - Attachment C Bonds Form for Proposal
 - Attachment D Hub Subcontracting Form
- **007000** UNTS Uniform General Conditions
- **000101** Project Title Page

Specifications

Division 01 - General Requirements

- **002100** Asbestos Survey
- **014529** Testing Laboratory Services
- **016000** Product Requirements
- **017400** Cleaning and Waste Management
- **012300** Alternates
- **012500** Substitution Procedures
- **017329** Cutting and Patching
- **024119** Selective Demolition
- **042000** Unit Masonry
- **047300** Thin Masonry Veneer
- **055000** Metal Fabrications
- **061053** Miscellaneous Rough Carpentry
- **064116.13** Plastic Laminate Clad Millwork
- **072726** Fluid Applied Membrane Air Barriers
- **073113** Asphalt Shingles
- **076200** Sheet Metal Flashing and Trim
- **076210** Flexible Flashing
- **079200** Joint Sealants
- **079219** Acoustical Joint Sealants
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>081113</td>
<td>HOLLOW METAL FRAMES</td>
</tr>
<tr>
<td>081416</td>
<td>FLUSH WOOD DOORS</td>
</tr>
<tr>
<td>083113</td>
<td>ACCEESS DOORS AND FRAMES</td>
</tr>
<tr>
<td>084113</td>
<td>ALUMINUM-FRAMED STOREFRONTS</td>
</tr>
<tr>
<td>087110</td>
<td>DOOR HARDWARE</td>
</tr>
<tr>
<td>088000</td>
<td>GLAZING</td>
</tr>
<tr>
<td>089119</td>
<td>FIXED LOUVERS</td>
</tr>
<tr>
<td>092216</td>
<td>NON-STRUCTURAL METAL FRAMING</td>
</tr>
<tr>
<td>092900</td>
<td>GYPSUM BOARD</td>
</tr>
<tr>
<td>093013</td>
<td>CERAMIC TILING</td>
</tr>
<tr>
<td>095113</td>
<td>ACOUSTICAL PANEL CEILINGS</td>
</tr>
<tr>
<td>095426</td>
<td>LINEAR WOOD CEILING PANELS</td>
</tr>
<tr>
<td>096513</td>
<td>RESILIENT BASE AND ACCESSORIES</td>
</tr>
<tr>
<td>096519</td>
<td>RESILIENT TILE FLOORING</td>
</tr>
<tr>
<td>097200</td>
<td>WALL COVERINGS</td>
</tr>
<tr>
<td>098116</td>
<td>ACOUSTICAL BLANKET INSULATION</td>
</tr>
<tr>
<td>099123</td>
<td>INTERIOR PAINTING</td>
</tr>
<tr>
<td>101146</td>
<td>VISUAL DISPLAY FABRICS</td>
</tr>
<tr>
<td>101400</td>
<td>SIGNAGE</td>
</tr>
<tr>
<td>102113.19</td>
<td>PLASTIC TOILET COMPARTMENTS</td>
</tr>
<tr>
<td>102600</td>
<td>WALL AND DOOR PROTECTION</td>
</tr>
<tr>
<td>102800</td>
<td>TOILET ACCESSORIES</td>
</tr>
<tr>
<td>104413</td>
<td>FIRE PROTECTION CABINETS</td>
</tr>
<tr>
<td>123623.13</td>
<td>PLASTIC-LAMINATE-CLAD COUNTERTOPS</td>
</tr>
<tr>
<td>123661.16</td>
<td>SOLID SURFACING COUNTERTOPS</td>
</tr>
<tr>
<td>124813</td>
<td>ENTRANCE FLOOR MATS</td>
</tr>
<tr>
<td>142713.13</td>
<td>ELEVATOR CAB REFACING</td>
</tr>
</tbody>
</table>

DIVISION 20 – COMMISSIONING

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>200800</td>
<td>GENERAL COMMISSIONING REQUIREMENTS</td>
</tr>
<tr>
<td>200810</td>
<td>COMMISSIONING OF PLUMBING SYSTEMS</td>
</tr>
<tr>
<td>200820</td>
<td>COMMISSIONING OF HVAC SYSTEMS</td>
</tr>
<tr>
<td>200830</td>
<td>COMMISSIONING OF ELECTRICAL SYSTEMS</td>
</tr>
</tbody>
</table>
DIVISION 21- FIRE PROTECTION

210500 COMMON WORK RESULTS FOR FIRE SUPPRESSION
210517 SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING
210518 ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING
210548 VIBRATION AND SEISMIC CONTROLS FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT
210553 IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT
211000 WATER BASED FIRE SUPPRESSION SYSTEMS
211200 FIRE SUPPRESSION STANDPIPES
213213 ELECTRIC DRIVE VERTICAL TURNBINE FIRE PUMPS
213400 PRESSURE MAINTENANCE PUMPS
213900 CONTROLLERS FOR FIRE PUMP DRIVERS

DIVISION 22- PLUMBING

220513 COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT
220516 EXPANSION FITTINGS AND LOOPS FOR PLUMBING PIPING
220517 SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING
220518 ESCUTCHEONS FOR PLUMBING PIPING
220519 METERS AND GAGES FOR PLUMBING PIPING
220523 GENERAL-DUTY VALVES FOR PLUMBING PIPING
220529 HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT
220548 VIBRATION FOR PLUMBING PIPING AND EQUIPMENT
220553 IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
220716 PLUMBING EQUIPMENT INSULATION
220719 PLUMPING PIPING INSULATION
221116 DOMESTIC WATER PIPING
221119 DOMESTIC WATER PIPING SPECIALTIES
221123 DOMESTIC WATER PUMPS
221316 SANITARY WAST AND VENT PIPING
221319 SANITARY WASTE PIPING SPECIALTIES
221413 STORM DRAINAGE PIPING
221423 STORM DRAINAGE PIPING SPECIALTIES

DIVISION 23- HEATING VENTILATION AND AIR CONDITIONING
230010 BASIC MECHANICAL REQUIREMENTS
230513 COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
230529 HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
230548 VIBRATION CONTROLS FOR HVAC PIPING AND EQUIPMENT
230553 IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
230593 TESTING, ADJUSTING, AND BALANCING FOR HVAC
230713 DUCT INSULATION
230719 HVAC PIPING INSULATION
230900 INSTRUMENTATION AND CONTROL FOR HVAC
231123 FACILITY NATURAL GAS PIPING
232113 HYDRONIC PIPING
232113.13 UNDERGROUND HYDRONIC PIPING
232123 HYDRONIC PUMPS
232300 REFRIGERANT PIPING
232500 HVAC WATER TREATMENT
233113 METAL DUCTS
233300 AIR DUCT ACCESSORIES
233423 HVAC POWER VENTILATORS
233600 AIR TERMINAL UNITS
233713 DIFFUSERS, REGISTERS, AND GRILLES
234100 PARTICULATE AIR FILTRACTION
237313 MODULAR INDOOR CENTRAL STATION AIR HANDLING UNITS
238126 SPLIT-SYSTEM AIR-CONDITIONERS
262923 VARIABLE FREQUENCY MOTORS

DIVISION 23- ELECTRICAL

260000 BASIC ELECTRICAL REQUIREMENTS
260500 BASIC ELECTRICAL MATERIALS AND METHODS
260512 ELECTRICAL TESTING AND LOAD BALANCING
260512.A EMERGENCY GENERATOR TEST FORM
260513 CABLE AND TERMINATIONS (MEDIUM VOLTAGE)
260518 ELECTRICAL CONNECTIONS TO EQUIPMENT
260519 CABLE, WIRE AND CONNECTORS, 600 VOLT
260526 GROUNDING
260529 SECURING AND SUPPORTING METHODS

TABLE OF CONTENTS
Terrill Hall MEP Renovation
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>260533</td>
<td>RACEWAY, CONDUITS AND BOXES</td>
</tr>
<tr>
<td>260553</td>
<td>ELECTRICAL IDENTIFICATION</td>
</tr>
<tr>
<td>260573</td>
<td>SYSTEM COORDINATION AND ANALYSIS</td>
</tr>
<tr>
<td>260936</td>
<td>MODULAR DIMMING CONTROLS</td>
</tr>
<tr>
<td>260943</td>
<td>NETWORK LIGHTING CONTROLS</td>
</tr>
<tr>
<td>261213</td>
<td>PAD MOUNTED TRANSFORMERS (LIQUID FILLED)</td>
</tr>
<tr>
<td>262413</td>
<td>SWITCHBOARDS</td>
</tr>
<tr>
<td>262416</td>
<td>PANELBOARDS</td>
</tr>
<tr>
<td>262726</td>
<td>WIRING DEVICES</td>
</tr>
<tr>
<td>262813</td>
<td>FUSES, 600 VOLT</td>
</tr>
<tr>
<td>262816</td>
<td>ENCLOSED SWITCHES AND CIRCUIT BREAKERS</td>
</tr>
<tr>
<td>262923</td>
<td>INSTALLATION OF VARIABLE FREQUENCY DRIVES</td>
</tr>
<tr>
<td>263213</td>
<td>ENGINE GENERATOR SYSTEMS</td>
</tr>
<tr>
<td>263623</td>
<td>AUTOMATIC TRANSFER SWITCHES</td>
</tr>
<tr>
<td>264100</td>
<td>LIGHTNING PROTECTION SYSTEMS</td>
</tr>
<tr>
<td>265100</td>
<td>INTERIOR LIGHTING</td>
</tr>
</tbody>
</table>

DIVISION 33- UTILITIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>337119</td>
<td>UNDERGROUND DUCTBANKS</td>
</tr>
</tbody>
</table>

DRAWINGS

PHASING

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH 1.01</td>
<td>BASEMENT FLOOR PLAN PHASING</td>
</tr>
<tr>
<td>PH 1.02</td>
<td>FIRST FLOOR PLAN PHASING</td>
</tr>
<tr>
<td>PH 1.03</td>
<td>SECOND FLOOR PLAN PHASING</td>
</tr>
<tr>
<td>PH 1.04</td>
<td>THIRD FLOOR PLAN PHASING</td>
</tr>
</tbody>
</table>

ARCHITECTURAL

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 0.1</td>
<td>ADA / TAS STANDARDS</td>
</tr>
<tr>
<td>A 0.3</td>
<td>WALL TYPES</td>
</tr>
<tr>
<td>A 1.0</td>
<td>BASEMENET FLOOR PLAN</td>
</tr>
<tr>
<td>A 1.1</td>
<td>FLOOR 1 FLOOR PLAN</td>
</tr>
<tr>
<td>A 1.2</td>
<td>FLOOR 2 FLOOR PLAN</td>
</tr>
<tr>
<td>A 1.3</td>
<td>FLOOR 3 FLOOR PLAN</td>
</tr>
<tr>
<td>A 2.1</td>
<td>ENLARGED LOBBY FURNITURE PLAN</td>
</tr>
<tr>
<td>A 3.1A</td>
<td>DEMO, PLANS AND ELEV AT SOUTH ENTRANCE LOBBY</td>
</tr>
<tr>
<td>A 3.1B</td>
<td>DEMO, PLANS AND ELEV AT NORTH LOBBY AND ELEVATOR</td>
</tr>
</tbody>
</table>

TABLE OF CONTENTS

Terrill Hall MEP Renovation
A 3.2 DEMO, PLANS AND ELEV AT FLOOR 1 RESTROOMS
A 3.3 DEMO & FLOOR PLANS AT FL2 & FL3 RESTROOMS
A 3.4 ENLARGED DEMO, PLANS & ELEVS AT RESTROOMS 168 & 263A
A 4.1 FLOOR PLAN - 1 REFLECTED CEILING PLAN
A 4.1A FLOOR PLAN 1 ENLARGED LOBBY ENTRANCE & RESTROOMS RCPS
A 4.2 FLOOR PLAN - 2 REFLECTED CEILING PLAN
A 4.2A FLOOR PLAN 2 ENLARGED LOBBY ENTRANCE & RESTROOMS RCPS
A 4.3 FLOOR PLAN - 3 REFLECTED CEILING PLAN
A 4.3A FLOOR PLAN 3 ENLARGED LOBBY ENTRANCE & RESTROOMS RCPS
A 6.1 WALL SECTIONS
A 6.2 ENLARGED DETAILS
A 7.1 MILLWORK SECTIONS
A 7.2 ELEVATOR ELEVATIONS
A 8.1 DOOR SCHEDULE & FINISH SCHEDULE
A 8.2 ENLARGED FINISH FLOOR PATTERNS

STRUCTURAL

S 001 STRUCTURAL INDEX AND SYMBOLS
S 002 STRUCTURAL NOTES
S 100 LOUVER CHASE PARTIAL PLANS AND SECTIONS

FIRE PROTECTION

FP 001 FIRE PROTECTION SYMBOLS, LEGENDS, DETAILS, AND SPECIFICATIONS
FP 201 FIRE PROTECTION BASEMENT FLOOR PLAN
FP 202 FIRE PROTECTION FIRST FLOOR FLOOR PLAN
FP 203 FIRE PROTECTION SECOND FLOOR FLOOR PLAN
FP 204 FIRE PROTECTION THIRD FLOOR PLAN

MECHANICAL

M 001 MECHANICAL LEGEND, GENERAL NOTES, & SHEET INDEX
M 002 MECHANICAL COMMISSIONING NOTES
M 003 MECHANICAL EQUIPMENT SCHEDULE
M 101 MECHANICAL DEMOLITION BASEMENT PLAN
M 102 MECHANICAL DEMOLITION FIRST FLOOR PLAN
M 103 MECHANICAL DEMOLITION SECOND FLOOR PLAN
M 104 MECHANICAL DEMOLITION THIRD FLOOR PLAN
M 201 MECHANICAL DUCTWORK BASEMENT FLOOR PLAN
M 202 MECHANICAL DUCTWORK FIRST FLOOR PLAN
M 203 MECHANICAL DUCTWORK SECOND FLOOR PLAN
M 204 MECHANICAL DUCTWORK THIRD FLOOR PLAN
M 301 MECHANICAL PIPING BASEMENT FLOOR PLAN
M 302 MECHANICAL PIPING FIRST FLOOR PLAN
PLUMBING

P 001 PLUMBING LEGEND, GENERAL NOTES, & SHEET INDEX
P 003 PLUMBING EQUIPMENT SCHEDULES
P 102 PLUMBING DEMOLITION FIRST FLOOR PLAN
P 103 PLUMBING DEMOLITION SECOND FLOOR PLAN
P 104 PLUMBING DEMOLITION THIRD FLOOR PLAN
P 201 PLUMBING BASEMENT FLOOR PLAN
P 202 PLUMBING FIRST FLOOR PLAN
P 203 PLUMBING SECOND FLOOR PLAN
P 204 PLUMBING THIRD FLOOR PLAN

ELECTRICAL

E 1.01 BASEMENT DEMOLITION ELECTRICAL
E 1.02 FIRST FLOOR PLAN DEMOLITION ELECTRICAL
E 1.03 SECOND FLOOR PLAN DEMOLITION ELECTRICAL
E 1.04 THIRD FLOOR PLAN DEMOLITION ELECTRICAL
E 2.01 BASEMENT LEVEL - LIGHTING
E 2.02 FIRST FLOOR PLAN - LIGHTING
E 2.03 SECOND FLOOR PLAN - LIGHTING
E 2.04 THIRD FLOOR PLAN - LIGHTING
E 2.05 ELECTRICAL LIGHTING CONTROLS
E 3.01 BASEMENT LEVEL - POWER
E 3.02 FIRST FLOOR PLAN - POWER
E 3.03 SECOND FLOOR PLAN - POWER
E 3.04 THIRD FLOOR PLAN - POWER
E 4.01 SCHEMATIC DIAGRAM ELECTRICAL
E 4.02 SCHEMATIC DIAGRAM ELECTRICAL
E 5.01 EXISTING ELECTRICAL SCHEDULES
E 5.02 EXISTING ELECTRICAL SCHEDULES
E 5.03 ELECTRICAL SCHEDULES
E 5.04 ELECTRICAL SCHEDULES
E 5.05 ELECTRICAL SCHEDULES
E 6.01 ELECTRICAL DETAILS
E 6.02 ELECTRICAL DETAILS
University of North Texas System
Terrill Hall MEP Renovation
Proposals Due: August 13, 2020 2:00 PM
Public Opening: August 17, 2020 2:00 PM

In accordance with Education Code 51.783, the University of North Texas System (UNTS), subsequently referred to as Owner, is accepting proposals on behalf of the University of North Texas (UNT) and intends to enter into an agreement with a vendor that specializes in General Construction in accordance with the terms and conditions and requirements set forth in this RFCSP. Sealed proposals for RFCSP752-20-243994DH Terrill Hall MEP Renovation will be received by the Owner at the Business Service Center (BSC), Woodhill Square, 1112 Dallas Drive, Suite 4000, Denton, Texas 76205. A campus map can be found online at http://maps.unt.edu/?code=WHS. Submissions will only be accepted via FedEx or UPS no hand deliveries will be accepted until further notice.

Proposals will be received up to 2:00p.m. CDT on August 13, 2020 HUB Sub-contracting Plans must be received by to 2: 00 p.m. (the same day). CDT on August 13, 2020. Proposals received after the date and hour above stated will not receive consideration. Proposals will then be publicly opened and read aloud promptly at 2:00 p.m. CDT on August 17, 2020. Teams Meeting Join Microsoft Teams Meeting
+1 940-304-2772 United States, Denton (Toll)
Conference ID: 499 815 341# Please contact denise.harpool@untsystem.edu to attend at least one hour prior to the meeting.

**Submissions will only be accepted via FedEx or UPS no hand deliveries will be accepted until further notice.

Project Background

Terrill Hall, built in 1938 as a women's dormitory, is a 3-level building with 57,671 square feet that currently houses the Psychology department, and consists of classrooms, offices, labs, and a psychology clinic, plus a basement for mechanical & electrical equipment, located at 1611 W Mulberry St., Denton, TX 76201. The building was renovated in the install new mechanical and electrical systems in 1986. In 1991, and animal laboratory was built on the 2nd floor, requiring the addition of separate HVAC unit. That animal clinic has since been converted to offices, but the separate HVAC unit remains.

The building is separated mechanically and electrically into north and south regions of service, with the main switchboard and large HVAC units housed in the basement. The building receives chilled water from the main UNT chilled water loop, and heating water from boilers housed in Marquis Hall. Tertiary pumps in the basement of Terrill Hall provide circulation inside the building. There are 3 men's and women's restrooms, 1 each per floor stacked on a central plumbing riser. There is an inside stairway serving the north end of the building, and an exterior stairway serving the south end. A single passenger elevator is located on the south end of the building.

This project will update the MEP systems in the building to last another 25-30 years. The intent is to provide more energy efficient air conditioning and electrical service in keeping with modern practices. The goal is also to bring the building up to current building codes with a new fire suppression system, and architecturally refresh the general use spaces in the building.

Project Description

The successful contractor will demolish and replace existing Air Handling Units in the Basement, and install single duct, series VAV boxes with hot water reheat serving spaces on the floors. A new heating water hydronic system will be installed to serve the VAV boxes. Existing duct risers will be reused. The Air Handling unit on the second floor will be removed, and the spaces served by that unit will be reconnected to the new main AHU serving the north end of the building. A new BAS controls system will be installed, and connected to the Main Campus BAS system. The building transformer will be replaced, and a new Main Switchboard will be installed in a new Electrical room in the basement. New electrical risers will be installed on the north and south ends of the building. Old electrical risers and the old MSB will be demolished and removed. A new generator will be installed. General use spaces in the building with be refreshed architecturally and aesthetically. Restrooms will be upgraded to meet ADA standard. A new
sprinklered Fire Suppression system will be installed on all floors, and a new fire pump provided in a new fire pump room in the basement. After the contract is awarded, the anticipated schedule is for the pre-construction submittal process to be completed in the Fall of 2020. 4-Phased construction should start in January 2021 and be completed by the end of February 2022. The Construction process will be in phases to allow the building to remain occupied during the Construction process.

The successful contractor shall procure material, equipment, and labor for the renovation:

- Replace 2 Air Handling Units (AHU), remove 1 AHU on the 2nd floor, replace some ductwork, and install multiple variable air volume boxes with HW reheat, including a new Heating water hydronic system
- Replace all controls with new digital controls systems
- Replace hydronic pumps
- Install new main switchboard & distribution panel boards
- Install 1 new generator, and new 480V transformer outside
- Install new Sprinkler System and Fire pump
- During construction, the contractor shall provide a dedicated project superintendent
- Provide an ongoing schedule of work
- Provide submittals of materials and equipment used
- Provide as-built documentation and Operating and Maintenance Manuals
- Procure the necessary training for UNT maintenance personnel on equipment and systems installed

Questions

Questions concerning this proposal should be directed to: buyers@untsystem.edu

Denise Harpool
Senior Buyer, Procurement
Business Services Center
University of North Texas System

All questions must be received no later than 2:00 p.m. CDT on July 28, 2020. All questions and answers will be posted to the website by 5:00 p.m. CDT on August 04, 2020.

The Owner may in its sole discretion respond in writing to questions concerning this Proposal. Only the Owner’s responses made by formal written Addendum to this Proposal shall be binding and shall be posted on the UNT System website located at http://www.untsystem.edu/bids. Oral or other written interpretations or clarifications shall be without legal effect.

Pre-Proposal Meeting and Site Visit

The Project site is available for inspection by prospective proposers after a pre-proposal meeting on July 22, 2020 at 2:00 p.m. by Teams Meeting:

Join Microsoft Teams Meeting
+1 940-304-2772 United States, Denton (Toll)
Conference ID: 846 861 37# Please e-mail denise.harpool@untsystem.edu to attend this meeting at least one hour prior to the meeting.

There will be tours of the building on July 23 and 24, 2020 from 8 a.m. to 2 p.m. scheduled by appointment only with Scott Harris scott.harris@unt.edu. Due to the current COVID restrictions tours will be limited to 4 persons at a time. All contractors/vendors must wear a face covering at all times while in the building and on the UNT campus. As will all UNT/UNT System employees, per State and University requirements.

Bid Documents

Proposers may obtain or access plans, specifications, and addenda for this project through the following sources:

Online - Proposers can view bid documents at Electronic State Business Daily (http://esbd.cpa.state.tx.us/) or at the UNT System website (http://www.untsystem.edu/bids).

Plan Rooms with bid documents on file include: McGraw-Hill Construction Plan Center (Irving), ABC Plan Room (Irving), DFW Minority (Dallas), AGC TEXO and iSqFt Plan Room (Dallas). Contact information for the plan rooms can be found at http://www.untsystem.edu/unt-plan-rooms.
Historically Underutilized Business (HUB)

In accordance with Texas Government Code 2161, RFCSP for contracts with an expected value of $100,000 or more will require HUB Subcontracting Plan. All subcontracted work whether identified by the Owner or not, are required to be identified in the HUB Subcontracting Plan. The Plan should reflect all subcontracting opportunities to be utilized in this project and can be found online at http://www.window.state.tx.us/procurement/prog/hub/hub-forms/hub-sbcont-plan--allfms.pdf. Complete, print, sign and submit the HUB Subcontracting Plan form with the proposal response.

Only RFCSP responses with approved HUB Subcontracting Plans will be opened. Please return the HUB Subcontracting Plan in a clearly marked envelope, separate from your RFCSP response on August 13, 2020 before 2:00 p.m. CDT. Only one (1) hard copy of the HUB plan is required (separate from) your response. Submissions will only be accepted via FedEx or UPS no hand deliveries will be accepted until further notice.

Questions regarding the completion of the HUB Subcontracting Plan should be directed to Greg Obar at 940-369-5647.

The Owner is not bound to accept the lowest priced offer if that offer is not in its best interest, as determined by the Owner. The Owner reserves the right to: (a) enter into agreements or other contractual arrangements for all or any portion of the Scope of Work set forth in this Proposal with one or more respondents; (b) reject any and all offers and re-solicit offers; or (c) reject any and all offers and temporarily or permanently abandon this procurement, if deemed to be in the best interest of the Owner.

END OF SECTION
University of North Texas System (UNTS), subsequently referred to as the Owner and on behalf of the University of North Texas (UNT), is accepting sealed proposals from contractors for a General Construction project, pursuant to Sec. 51.783, Texas Education Code, in accordance with the terms and conditions and requirements set forth in this Request for Competitive Sealed Proposal (RFCSP).

1. **PRE-PROPOSAL MEETING:**

 A pre-proposal meeting will be conducted to answer any questions regarding the scope of the project and the submission of the HUB Subcontracting Plan. Attendance is not mandatory but highly recommended. The pre-proposal meeting will be held via Teams:

 July 22, 2020 at 2:00 p.m.
 University of North Texas System
 Via Teams Meeting – [Join Microsoft Teams Meeting](+1 940-304-2772 United States, Denton (Toll)]
 Conference ID: 846 861 37#
 Please e-mail denise.harpool@untsystem.edu to attend this meeting at least one hour prior to the meeting.

 There will be tours of the building on **July 23 and 24, 2020** from 8 a.m. to 2 p.m. scheduled by appointment only with Scott Harris scott.harris@unt.edu. Due to the current COVID restrictions tours will be limited to 4 persons at a time. All contractors/vendors must wear a face covering at all times while in the building and on the UNT campus. As will all UNT/UNT System employees, per State and University requirements.

2. **PROJECT PROPOSED SCHEDULE**

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 14, 2020</td>
<td>Issue RFCSP</td>
</tr>
<tr>
<td>July 22, 2020</td>
<td>Pre-Proposals Conference 2:00 p.m.</td>
</tr>
<tr>
<td>July 23/24, 2020</td>
<td>Tour Terrill Hall Building by appointment only</td>
</tr>
<tr>
<td>July 28, 2020</td>
<td>Deadline for Submission of Questions 2:00 p.m.</td>
</tr>
<tr>
<td>August 04, 2020</td>
<td>Responses to Questions Post on Website 5:00 p.m.</td>
</tr>
<tr>
<td>August 13, 2020</td>
<td>Deadline for Submission of Proposal 2:00 p.m.</td>
</tr>
<tr>
<td>August 13, 2020</td>
<td>Deadline for Submission of HUB HSP 2:00 p.m.</td>
</tr>
<tr>
<td>August 17, 2020</td>
<td>Public Opening 2:00 p.m.</td>
</tr>
<tr>
<td>September 2020</td>
<td>Formal Contract Award Notification</td>
</tr>
</tbody>
</table>

3. **GENERAL REQUIREMENTS**

 3.1 Pricing

 Your proposal must include all labor, material, equipment and services necessary to complete the work required by the construction documents. Pricing reflects the full Scope of Work defined herein; inclusive of all associated cost for delivery, labor, insurance, taxes, overhead and profit, or as otherwise defined, as appropriate. The Contractor shall base their base proposal price on the set of 100 percent Construction Documents and Specification. Contractor must complete Division 00, Section 004100, *Proposal Form*.

 3.2 Unit Prices

 Respondents must price per unit shown. Unit prices shall govern in the event of extension errors. Respondents must give unit prices for each item to be purchased. Respondents may respond with less than the total number of items. An “All or None” response by Respondent may be rejected at the option of the Owner. Quote F.O.B destination, freight prepaid and allowed. Otherwise, specify exact delivery cost and terms.
3.3 Schedule

Time is of the essence in the performance of the Contractor’s duties. It is critical that a realistic expedited schedule is provided.

3.4 Purchasing Items

A. Catalogs, brand names or manufacturer’s references are descriptive only, and indicate type and quality desired. Responses on brands of like nature and quality will be considered if response specifies such. If responding on other than referenced, response should show manufacturer, brand or trade name, and other description of product offered. If other than brand(s) specified is offered, illustrations and a complete description of product offered are requested to be made part of the response. Failure to take exception to specifications or reference data will require respondent to furnish specified brand names, numbers, etc.

B. Unless otherwise specified, items offered shall be new and unused.

C. In addition, all electrical items must meet all applicable state and federal standards and regulations, and bear the appropriate listing such as ANSI, FCC, NEMA, NTRL, and OSHA standards.

D. Samples, when requested, must be furnished free of expense to the Owner. If not destroyed in examination, they will be returned to Respondent, on request, at Respondent’s expense. Each sample should be marked with Respondent’s name, address, and requisition number. Do not enclose in or attach offer to sample.

E. Manufacturer’s standard warranty shall apply unless otherwise stated in the Response.

F. Catalogs, brand names or manufacturer’s references are descriptive only, and indicate type and quality desired. Responses on brands of like nature and quality will be considered if response specifies such. If responding on other than referenced, response should show manufacturer, brand or trade name, and other description of product offered. If other than brand(s) specified is offered, illustrations and a complete description of product offered are requested to be made part of the response. Failure to take exception to specifications or reference data will require respondent to furnish specified brand names, numbers, etc.

G. Unless otherwise specified, items offered shall be new and unused.

H. In addition, all electrical items must meet all applicable state and federal standards and regulations, and bear the appropriate listing such as ANSI, FCC, NEMA, NTRL, and OSHA standards.

I. Samples, when requested, must be furnished free of expense to the Owner. If not destroyed in examination, they will be returned to Respondent, on request, at Respondent’s expense. Each sample should be marked with Respondent’s name, address, and requisition number. Do not enclose in or attach offer to sample.

J. Catalogs, brand names or manufacturer’s references are descriptive only, and indicate type and quality desired. Responses on brands of like nature and quality will be considered if response specifies such. If responding on other than referenced, response should show manufacturer, brand or trade name, and other description of product offered. If other than brand(s) specified is offered, illustrations and a complete description of product offered are requested to be made part of the response. Failure to take exception to specifications or reference data will require respondent to furnish specified brand names, numbers, etc.

K. Unless otherwise specified, items offered shall be new and unused.

L. In addition, all electrical items must meet all applicable state and federal standards and regulations, and bear the appropriate listing such as ANSI, FCC, NEMA, NTRL, and OSHA standards.

M. Catalogs, brand names or manufacturer’s references are descriptive only, and indicate type and quality desired. Responses on brands of like nature and quality will be considered if response specifies such. If responding on other than referenced, response should show manufacturer, brand or trade name, and other description of product offered. If other than brand(s) specified is offered,
illustrations and a complete description of product offered are requested to be made part of the response. Failure to take exception to specifications or reference data will require respondent to furnish specified brand names, numbers, etc.

N. Catalogs, brand names or manufacturer's references are descriptive only, and indicate type and quality desired. Responses on brands of like nature and quality will be considered if response specifies such. If responding on other than referenced, response should show manufacturer, brand or trade name, and other description of product offered. If other than brand(s) specified is offered, illustrations and a complete description of product offered are requested to be made part of the response. Failure to take exception to specifications or reference data will require respondent to furnish specified brand names, numbers, etc.

O. Unless otherwise specified, items offered shall be new and unused.

P. In addition, all electrical items must meet all applicable state and federal standards and regulations, and bear the appropriate listing such as ANSI, FCC, NEMA, NTRL, and OSHA standards.

Q. Samples, when requested, must be furnished free of expense to the Owner. If not destroyed in examination, they will be returned to Respondent, on request, at Respondent's expense. Each sample should be marked with Respondent's name, address, and requisition number. Do not enclose in or attach offer to sample.

R. Manufacturer's standard warranty shall apply unless otherwise stated in the Response.

S. Delivery
 i. Show number of days required to place material at the Owner's designated location under normal conditions. Failure to state delivery time obligates respondent to deliver in fourteen (14) calendar days. Unrealistic delivery promises may cause offer to be disregarded.
 ii. If delay is foreseen, respondent shall give written notice to the Owner. Vendor must keep the Owner advised at all times of status of order. Default in promised delivery (without accepted reasons) or failure to meet specifications authorizes the Owner to purchase supplies elsewhere and charge full increase, if any, in cost and handling to defaulting vendor.
 iii. No substitutions permitted without written approval of UNTS Business Service Center Purchasing.
 iv. Delivery shall be made during normal working hours only, unless prior approval has been obtained from the Owner.

T. Inspection and Tests

All goods will be subject to inspection and test by the Owner. Authorized Owner personnel shall have access to supplier's place of business for the purpose of inspecting merchandise. Tests shall be performed on samples submitted with the response or on samples taken from regular shipment. All costs shall be borne by the respondent in the event products tested fail to meet or exceed all conditions and requirements in this Solicitation. Goods delivered and rejected in whole or in part may, at the Owner's option, be returned to Respondent or held for disposition at Respondent's expense. Latent defects may result in revocation of acceptance.

3.5 Eligible Respondents

Only individual firms or formal joint ventures may apply. Two (2) firms may not apply jointly unless they have formed a joint venture. Any associates will be disqualified. (This does not preclude a respondent from having consultants.)

4. SUBMISSION OF PROPOSALS

4.1 Submit a total of two (2) complete copies of the entire response. Please submit one (1) unbound paper copy plus one (1) copy on labeled CD or virus free flash or thumb drive. An original signature must appear on the Proposal Form (Division 00, Section 004100). *Submissions will only be accepted via FedEx or UPS no hand deliveries will be accepted until further notice.

A. The materials submitted must be enclosed in a sealed envelope, box, or container; the package must show clearly the proposal deadline; the RFCSP name must be clearly visible; and name and the return address of the Contractor must be clearly visible.
NOTE: Show the RFCSP name and submittal date in the lower left-hand corner of your sealed proposal envelope (box/container).

B. Late proposals will not be considered under any circumstances.

C. The Owner reserves the right to accept late proposals; however, proposals received after opening time will not be accepted.

D. Facsimile (“FAX”) or emailed proposals are not acceptable.

The Proposal must be submitted no later than 2:00 p.m. CDT, August 13, 2020. Proposals received after the date and hour previously stated will not receive consideration. (HUB HSP due no later than 2:00 p.m. CDT August 13, 2020 the same day)

Submissions will only be accepted via FedEx or UPS no hand deliveries will be accepted until further notice.

TO: Denise Harpool
Senior Buyer
University of North Texas System
Business Service Center
Woodhill Square
1112 Dallas Drive, Suite 4000
Denton, Texas 76205

Proposals will be received until the date and time established for receipt, then opened. The names of the respondents who submitted proposals will be made public. A public opening shall be held on August 17, 2020 promptly at 2:00 p.m. Via Teams meeting –

Join Microsoft Teams Meeting
+1 940-304-2772 United States, Denton (Toll)
Conference ID: 499 815 341# Please e-mail denise.harpool@untsystem.edu to attend this meeting at least one hour prior to the meeting.

4.1 After proposals are received in response hereto, and notice of intent to award a contract is made, the successful Contractor will be required to enter into a contract in the form of the Owner’s standard General Construction/Demolition Agreement.

Any questions or concerns regarding this Request for Proposals shall be directed to:
Denise Harpool
Senior Buyer, Procurement
University of North Texas System

Please submit solicitation questions to:
buyers@untsystem.edu

All questions must be received no later than July 28, 2020 at 2:00 p.m. All questions and answers will be posted to the website by 5:00 pm August 04, 2020.

The Owner specifically requests that Respondents restrict all contact and questions regarding this RFCSP to the above-named individual except as provided in 4.2 above.

Responses to inquiries which directly affect an interpretation or change to this RFCSP will be issued electronically by addendum (amendment) and posted at http://www.untsystem.edu/bids and http://esbd.cpa.state.tx.us/. All such addenda issued by the Owner prior to the time that proposals are received shall be considered part of the RFCSP, and the Respondent shall be required to consider and acknowledge receipt of such on the proposal form. Contractors are responsible for obtaining any addenda posted on the websites listed above.
Only those inquiries the Owner replies to which are made by formal written addenda shall be binding. Oral and other interpretations or clarifications will be without legal effect. The Respondent must acknowledge all addenda in Division 00, Section 004100, Proposal Form.

4.2 Compliance with Law

Contractor is aware of, is fully informed about, and in full compliance with its obligations under existing applicable law and regulations, including Title VI of the Civil Rights Act of 1964, as amended (42 USC 2000(D)), Executive Order 11246, as amended (41 CFR 60-1 and 60-2), Vietnam Era Veterans Readjustment Act of 1974, as amended (41 CFR 60-250), Rehabilitation Act of 1973, as amended (41 CFR 60-741), Age Discrimination Act of 1975 (42 USC 6101 et seq.), Non-segregated Facilities (41 CFR 60-1), Omnibus Budget Reconciliation Provision, Section 952, Fair Labor Standards Act of 1938, Sections 6, 7, and 12, as amended, Immigration Reform and Control Act of 1986, and Utilization of Small Business Concerns and Small Business Concerns Owned and Controlled by Socially and Economically Disadvantaged Individuals (PL 96-507), the Americans with Disabilities Act of 1990 (42 USC 12101 et seq.), the Civil Rights Act of 1991, and all other laws and regulations and executive orders as are applicable.

4.3 University’s Right to Audit

At any time during the term of any Contract resulting from this solicitation and for a period of four (4) years thereafter, the Owner or a duly-authorized audit representative of the Owner or the State of Texas, at its expense and at reasonable times, reserves the right to audit Contractor’s records and books relevant to all services provided under this Contract. In the event such an audit by the Owner reveals any errors/overpayments by the Owner, Contractor shall refund the Owner the full amount of such overpayments within thirty (30) days of such audit findings, or the Owner, at its option, reserves the right to deduct such amounts owing the Owner from any payments due Contractor.

4.4 Access to Documents

To the extent applicable to this procurement, in accordance with Public Law 99-499 under TEFRA, Contractor agrees to allow, during and for a period of not less than four (4) years after the Contract term, access to this Contract and its books, documents, and records; and contracts between Contractor and its subcontractors or related organizations, including books, documents and records relating to same, by the Comptroller General of the United States, the U.S. Department of Health and Human Services, and their duly authorized representatives.

4.5 Insurance and Bonds

The Contractor shall provide and maintain insurance, performance bond, and payment bond has required, the minimum insurance coverage and bonding requirements are stated in Division 00, Section 007000, UGC.

4.6 Other Benefits

It is understood and agreed that no benefits, payments or considerations received by Contractor for the performance of services associated with and pertinent to the resultant Agreement shall accrue, directly, or indirectly, to any employees, elected or appointed officers or representatives, or any other person identified as agents of, or who are, by definition, an employee of the State.

4.7 Non-Disclosure

Contractor and Owner acknowledge that they or their employees may, in the performance of the resultant Contract, come into the possession of proprietary or confidential information owned by or in the possession of the other. Neither party shall use any such information for its own benefit or make such information available to any person, firm, corporation, or other organization, regardless of whether directly or indirectly affiliated with Contractor or Owner, unless (i) required by law, (ii) required by order of any court or tribunal, (iii) such disclosure is necessary for the assertion of a right, or defense of an assertion of a right, by one party against the other party hereto, or (iv) such information has been acquired from other sources.
4.8 Publicity

Contractor agrees that it shall not publicize this potential Contract or disclose, confirm or deny any details thereof to third parties or use any photographs or video recordings of the Owner’s employees or use the Owner’s name in connection with any sales promotion or publicity event without prior written approval.

4.9 Assignment

The potential agreement with Contractor resulting from this RFCSP is a personal service contract for the services of Contractor, and Contractor's interest in such agreement, duties thereunder and/or fees due thereunder may not be assigned or delegated to a third party without the Owner's prior written consent. The benefits and burdens of such agreement are, however, assignable by the Owner.

4.10 Assignment of Overcharge Claims

Contractor hereby assigns to the Owner any and all claims for overcharges associated with the Contract arising under the antitrust laws of the United States, 15 U.S.C.A., Sec. 1 et seq. (1973), or arising under the antitrust laws of the State of Texas, Texas Business and Commerce Code Annotated, Sec. 15.01, et seq. (1967).

4.11 Patent and Copyright

Contractor shall pay for any royalties, license fees, copyrights or trade and service marks required to perform the services required by any resulting Contract.

4.12 Texas Public Information Act

The Owner considers all information, documentation and other materials requested to be submitted in response to this solicitation to be of a non-confidential and/or non-proprietary nature and therefore shall be subject to public disclosure under the Texas Public Information Act (Texas Government Code, Chapter 552.001, et seq.) after a contract is awarded.

Respondents are hereby notified that the Owner strictly adheres to all statutes, court decisions, and opinions of the Texas Attorney General regarding the disclosure of RFP information.

4.13 Freedom of Access and Use of Facilities

Contractor's employees shall have reasonable and free access to use only those facilities of the Owner that are necessary to perform services under a resulting Contract and shall have no right of access to any other facilities of the Owner.

4.14 Observance of University Rules and Regulations

Contractor agrees that at all times its employees will observe and comply with all regulations of the facilities, including but not limited to, no smoking, parking and security regulations.

4.15 Section Headings

All section headings are for convenience of reference only and are not intended to define or limit the scope of any provisions of this RFCSP.

4.16 Governing Law

A. This RFCSP, and any resulting Contract, agreement or purchase order shall be construed and governed by the laws of the State of Texas.

B. The parties understand and agree that any purchase order/contract may be subject to the Health Insurance Portability and Accountability Act of 1996 (HIPAA), the administrative regulations and/or guidance which have been issued or may in the future be issued pursuant to HIPAA, including, but not limited to, the Department of Health and Human Services regulations on privacy and security, and Texas state laws pertaining to medical privacy (collectively, “Privacy Laws”). Vendor agrees to comply with all Privacy Laws that are applicable to this purchase order/contract and to negotiate in good faith to execute any amendment to this purchase order/contract that is required for the terms of this purchase order/contract to comply with applicable Privacy Laws. In the event the parties are unable to agree on the terms of an amendment pursuant to this paragraph
within thirty (30) days of the date the amendment request is delivered by one party to the other, this order may be terminated by either party upon written notice to the other party.

C. **Important Notice:** Any purchase order may be funded wholly or partially with federal funds subject to the American Recovery and Reinvestment Act of 2009 (ARRA). The vendor shall comply with all applicable provisions of ARRA, which may include, but are not limited to, the provision of Division A, Titles XV and XVI (e.g., audit provisions, whistleblower protection, and preferences for American products).

D. **Federal Funds:** All procurements of supplies, equipment, and services utilizing Federal Funds (e.g., Federal Grant or Contract) shall be made in accordance with all applicable federal rules and regulations: Federal Acquisition Regulations (FAR), Federal Office of Management and Budget (OMB) Educational Institutions, even if part of a State or local government follow: OMB A-21 for cost principles, A-110 for administrative requirements, and A-133 for audit requirements. All procurement requirements contained in the above referenced circulars are incorporated herein by reference. By signing this solicitation document, vendor certifies that vendor is in compliance with OMB A-110 and that vendor is not on the Debarred Bidders List.

4.17 **Owner’s Special Conditions**

The Owner requires full compliance with Division 00 and Division 01 Specifications, Contract and General Requirements. The documents shall be a part of this RFCSP and the Contract.

4.18 **Prevailing Wage Schedule, University of North Texas System**

Prevailing wage schedule shall in accordance with Texas Government Code, Chapter 2258. The hourly wage rate for work over forty (40) hours a week and work on legal holidays shall be not less than one and one-half (1.5) times the hourly rates.

Respondents shall base their proposals on rates they expect to pay. The Owner will not consider claims for extra payment to the Contractor on account of payment of wages higher than those required by Texas Government Code, Chapter 2258.

4.19 Pursuant to Section 231.006 of the Family Code, response must include names and social security numbers of each person with at least 25 percent ownership of the business entity submitting the response. Vendors that have pre-registered this information on the Texas Comptroller of Public Accounts Centralized Master Bidders List (CMBL) have satisfied this requirement. If not pre-registered, list the name and social security numbers for each person. Otherwise, this information must be provided prior to contract award.

4.20 **Note to Vendors:** Any terms and conditions attached to any response will not be considered unless specifically referred to on the Solicitation and may result in disqualification of the response.

A. **Dispute Resolution:** Chapter 2260 of the Texas Government Code establishes a dispute resolution process for contracts involving goods, services, and certain types of projects. If Chapter 2260 applies to this Purchase Order, then the statutory dispute resolution process must be used by the vendor to attempt to resolve all of its disputes arising under this Purchase Order.

B. **Excess Obligations Prohibited:** The Texas Constitution (Article XVI, Section 10) prohibits obligators beyond the current appropriations, which the Owner applies annually. Any purchase order may be canceled at any time without penalty if legislative and/or Owner funds are not appropriated for goods or services obligated on any purchase order beyond the current fiscal year (September 1 through August 31 of any given year.)

C. **Cancellation:** Items or orders may be canceled without the consent of the vendor due to failure to fulfill their contractual obligations. If cancellation is requested by the Owner for some other reason through no fault of the vendor, the vendor will be contacted. The Owner reserves the right to cancel this contract upon thirty (30) days written notice to the Contractor. The Contractor must request and secure in writing the approval of the Purchasing Department to be released from this contract or any portion thereof should conditions unforeseeable occur.

D. **Miscellaneous:** The laws of the State of Texas shall prevail, including the Public Information Act. Any Order is not confidential. All transactions associated with this Order may be subject to audit.
5. EVALUATION

5.1 The successful offer will be the offer that is submitted in response to this Proposal by the Submittal Deadline and is the most advantageous to the Owner in the Owner's sole discretion. Offers will be evaluated by an evaluation committee that will include employees of the Owner and other persons invited by the Owner to participate. The evaluation of offers and the selection of the Successful Offer will be based on the information provided to the Owner by the respondent in response to the Specifications section of this Proposal. Consideration may also be given to any additional information and comments if such information or comments increase the benefits to the Owner. The successful respondent will be required to enter into a contract acceptable to the Owner.

The evaluation committee will determine if Best and Final Offers are necessary. Award of a contract may be made without Best and Final Offers. The Owner may, at its discretion, elect to have Respondents provide oral presentations and respond to inquiries from the evaluation committee related to their Proposals. A request for a Best and Final Offer is at the sole discretion of the Owner and will be extended in writing.

In evaluating Proposals to determine the best value for the State, the Owner may consider information related to past contract performance of a Respondent including, but not limited to, Texas Comptroller of Public Account’s Vendor Performance Tracking System.

5.2 Evaluation Criteria

Proposals will be opened publicly to identify the names of the proposers and their respective proposed agreement amounts. Other contents of the Proposals will be afforded security sufficient to preclude disclosure of the contents prior to award. Proposals will be evaluated by the Owner. The criteria for evaluation, Best Value determination using Education Code 51.783 and selection of the successful proposer for this award, will be based upon the equally weighted factors listed below:

A. Proposed agreement amount listed on Proposal form.
B. Proposed number of calendar days indicated on Proposal form.
C. The qualifications and experience of the proposer’s key personnel and subcontractors committed to the project. Specifically, phased projects and occupied buildings.
D. Proposer’s current workload and availability of personnel and equipment
E. The quality of references from owners and architects for similar projects completed by the proposer within the last five (5) years.
F. The proposer’s proposed project schedule and the demonstrated ability to have met expedited schedules on similar projects.
G. The responsibility and reputation of the proposer, including claims and litigation experiences.
H. The proposer’s safety record.
I. The sufficiency of the proposer’s financial resources.
J. Quality and completeness of RFCSP submittal

6. AWARD PROCESS

6.1 After the opening of the offers and upon completion of the initial review and evaluation of the offers submitted, selected respondents may be invited to participate in oral presentations. The selection of the Successful Offer may be made by the Owner on the basis of the offers initially submitted, without discussion, clarification or modification. In the alternative, selection of the Successful Offer may be made by the Owner on the basis of negotiation with any of the respondents. At the Owner’s sole option and discretion, it may discuss and negotiate all elements of the offers submitted by selected respondents within a specified competitive range. For purposes of negotiation, a competitive range of acceptable or potentially acceptable offers may be established comprising the highest-rated offers. The Owner will provide each respondent within the competitive range with an equal opportunity for discussion and revision of its offer. The Owner will not disclose any information derived from the offers submitted by competing respondents in conducting such discussions. Further action on offers not included within the competitive range will be deferred pending the selection of the Successful Offer; however, the Owner reserves the right to include additional offers in the competitive range if deemed to be in its best interest.
After the submission of offers but before final selection of the Successful Offer is made, the Owner may permit a respondent to revise its offer in order to obtain the respondent's best final offer. The Owner is not bound to accept the lowest-priced offer if that offer is not in its best interest, as determined by the Owner.

The Owner reserves the right to: (a) enter into agreements or other contractual arrangements for all or any portion of the Scope of Work set forth in this Proposal with one or more respondents; (b) reject any and all offers and re-solicit offers; or (c) reject any and all offers and temporarily or permanently abandon this procurement, if deemed to be in the best interest of the Owner.

6.2 Respondent’s Acceptance of Evaluation Methodology

Submission of an offer by a respondent indicates: (1) the respondent’s acceptance of the Selection Process, the Evaluation of Criteria for selection, and all other requirements and specifications set forth in this Proposal; and (2) the respondent’s recognition that some subjective judgments must be made by the Owner during this Proposal process.

6.3 Contract

A. A response to this Solicitation is an offer to contract based upon the terms, conditions and specifications contained herein. Responses do not become contracts until a UNTS Agreement is issued and accepted. The contract shall be governed, construed, and interpreted under the laws of the State of Texas as the same may be amended from time to time. The Education Code 51.9335 shall be considered in making an award when specified. Venue for any suit filed against UNTS shall be subject to the mandatory venue statute set forth in §105.151 of the Texas Education Code.

i. An award is made to the Vendor submitting the lowest and/or best value response conforming to this specification. To determine the lowest and/or best value response, in addition to price, BEST VALUE may be considered.

ii. DEBTS TO THE STATE: Any party indebted to the State of Texas or any party who is more than thirty (30) days delinquent for Child Support is not entitled to payment on this purchase order or any accompanying contract.

iii. If a “best offer” vendor shows not to be in “good standing,” this agency may reject the response and award to the next best response.

iv. The Owner reserves the right to award the entire contract to a single Vendor or to award different components to different Vendors, whichever the Owner, at its sole discretion, determines to be in its overall best interest, as solely determined by the responsible parties of the Owner.

B. Respondent understands that acceptance of funds under this contract acts as acceptance of the authority of the State Auditor’s Office, or any successor agency, to conduct an audit or investigation in connection with those funds. Respondent further agrees to cooperate fully with the State Auditor’s Office or its successor in the conduct of the audit or investigation, including providing all records requested. Respondent will ensure that this clause concerning the authority to audit funds received indirectly by subcontractors through proposer and the requirement to cooperate is included in any subcontract it awards.

6.4 Response Results: It is not the policy of the Owner to furnish results over the telephone. Bid tabulations may be requested at http://bsc.untsystem.edu/content/bid-inquiry.

6.5 Historically Underutilized Businesses (HUB)

A. If Owner elects to award the future Construction Phase Services to the Construction Manager, the proposed contract is expected to exceed $100,000.00. A Good Faith Effort Program in the form of a HUB Subcontracting Plan (HSP) is a mandatory condition precedent to the award of any such extension of the contract. The HSP will become a part of the General Construction Agreement. Refer to Division 00, Section 006000, Project Forms herein for HSP Forms.

B. Centralized Master Bidders List (CMBL): The Owner utilizes the Texas Comptroller of Public Accounts CMBL for HUB. The CMBL is located at http://www.window.state.tx.us/procurement/. Non-HUB respondents are identified from various sources including the CMBL.
C. Questions regarding completing the HSP should be directed to Greg Obar, HUB Program UNT System, at 940-369-5647. Additional information can also be found at the Texas Comptroller for the Public Accounts website at: http://www.window.state.tx.us/procurement/prog/hub/hub-forms/.

FAILURE TO MEET HUB REQUIREMENTS MAY RESULT IN THE TERMINATION OF THE CONTRACT.

END OF SECTION
Proposal of: ___________________________________
(Company Name)

The University of North Texas System (UNTS), on behalf of the University of North Texas (UNT), subsequently referred to as the Owner, is accepting sealed proposals and intends to enter into an agreement with a General Construction contractor in accordance with the terms, conditions and requirements set forth in this Request for Competitive Sealed Proposal (RFCSP). This RFCSP provides sufficient information for interested parties to prepare and submit proposals for consideration by the Owner.

UNTS is accepting sealed proposals no later than 2:00p.m. CDT on August 13, 2020. Proposals received after the date and hour previously stated will not receive consideration. The HUB Sub-Contracting Plan is due no later than 2:00p.m. CDT on August 13, 2020 the same day. Failure to submit the HUB plan will disqualify your proposal.

The scope of work of this RFCSP is General Construction for Terrill Hall MEP Renovation. A set of the one hundred percent (100%) Construction Documents and Specifications have been included for use in preparation of the proposal. A sample copy of the agreement has been included (Division 00, Section 005200, Agreement Forms) for review.

RESPONDENTS ARE CAUTIONED TO READ THE INFORMATION CONTAINED OR REFERRED TO IN THIS RFCSP CAREFULLY AND TO SUBMIT A COMPLETE RESPONSE TO ALL REQUIREMENTS AND QUESTIONS AS DIRECTED.

Submissions will only be accepted via FedEx or UPS no hand deliveries will be accepted until further notice.

TO: Denise Harpool
Senior Buyer, Procurement UNTS
Business Service Center
Woodhill Square
1112 Dallas Drive, Suite 4000
Denton, Texas 76205

BASE BID

Pursuant to and in compliance with the Contract Documents and any attachments thereto, including the Advertisement for Competitive Sealed Proposal and Instruction for Proposal, the Proposer hereby certifies that it has carefully examined the Contract Document entitled:

Terrill Hall MEP Renovation
Prepared by: TLC Engineering Solutions

and the conditions affecting the Work, and being familiar with the site; and having made the necessary examinations, proposes to furnish all labor, materials, equipment, and services necessary to complete the Work in strict accordance with the Contract Documents for the above referenced project for the following sum (Not including bond cost), which is hereby designated as the Base Bid:

$
ALTERNATE BIDS

1. No Alternates at this time

PAYMENT TERMS

UNT shall be billed in accordance with Chapter 2251 of the Texas Government Code and payment shall be made no later than thirty (30) days following the later of (i) delivery of the goods or completion of the services and (ii) delivery of an invoice to Customer; and (c) interest, if any, on past due payments shall accrue and be paid in accordance with Chapter 2251 of the Texas Government Code. Payee must be in good standing, not indebted to the State of Texas, and current on all taxes owed to the State of Texas for payment to occur. Payment Applications and any required supporting documents must be presented to: University of North Texas System Facilities; 1155 Union Circle #311040, Denton, Texas 76203-5017.

a. Payment on any contract will be withheld from Respondent if Respondent is determined to be more than thirty (30) days delinquent for Child Support.

b. Successful Respondent shall be responsible for referencing the purchase order number(s) resulting from this proposal on any invoice(s), packing list(s), correspondence, etc. Invoicing must correlate to prices quoted either on a unit, hourly, etc. basis.

c. DISQUALIFICATION: Response is subject to disqualification if Respondent provides revisions and/or exclusions to the terms and conditions listed in this solicitation that the Owner is limited by law from accepting (i.e. offers with the laws of a State other than Texas), requirements for prepayment not defined in or allowed for in this Solicitation, limitations on remedies, any revision to stated terms and conditions of the Solicitation, etc.

d. Respondent agrees that any payments due under this contract may be applied towards any debt, including but not limited to delinquent taxes and child support that is owed to the State of Texas.

SALES TAX

Purchases made for the Owner’s use are exempt from the State Sales tax and Federal Excise tax. Do not include tax in response. Excise Tax Exemption Certificates are available upon request.

INSURANCE

The Contractor shall provide and maintain, until the work covered in this Contract is completed and accepted by the Owner, the minimum insurance coverage as stated in Division 00, Section 007000, UGC.

TIME OF COMPLETION

Consecutive Calendar Days needed to complete project: _____________________________ calendar days.

LIQUIDATED DAMAGES

Liquidated damages will be in accordance with Division 00, Section 007000, UGC.

BOND

In accordance with Texas Government Code 2253, a Payment Bond is required for all public works agreements over $25,000.00 and a Performance Bond for all public works agreements over $100,000.00. It is estimated that this agreement will be over $100,000.00, so a Payment and Performance Bond is required. Please provide the amount as a total bond cost. The Owner will pay bonding costs to the awarded vendor as a pass through amount with proper documentation provided along with an invoice.

Payment and Performance Bond cost: $ __
ADDENDA

Receipt is hereby acknowledged of the following addenda to this RFCSP. (Initial, if applicable)

No. 1: _____ No. 2: _____ No. 3: _____ No. 4: _____ No. 5: _____ No. 6: _____

An incomplete proposal or one having additional information or other modifications inscribed thereon, may be cause for rejections of the entire proposal. This proposal is valid and will be honored for a period of one hundred eighty (180) days following the proposal opening.

QUALIFICATIONS

Refer to Attachment A of this document. Qualifications must be submitted on the enclosed form and no other document will be accepted. Not providing qualifications on the provided form will be cause for disqualification.

An incomplete proposal or one having additional information or other modifications inscribed thereon, may be cause for rejections of the entire proposal. This proposal is valid and will be honored for a period of one hundred eighty (180) days following the proposal opening.

THIS SECTION MUST BE COMPLETED, SIGNED, AND RETURNED WITH RESPONDENT’S PROPOSAL.
FAILURE TO SIGN AND RETURN THIS SECTION WILL RESULT IN DISQUALIFICATION OF YOUR FIRM.

1. By signature hereon, Respondent offers and agrees to furnish the products and/or services in compliance with all terms, conditions, requirements set forth per the RFCSP documents and contained herein.

2. By signature hereon, Respondent affirms that it has not given, nor intends to give at any time hereafter, any economic opportunity, future employment, gift, loan, gratuity, special discount, trip, favor or service to a public servant in connection with the submitted proposal. Failure to sign hereon, or signing with a false statement, shall void the submitted proposal or any resulting contracts, and the Respondent shall be removed from all proposal lists at this Agency.

3. By signature hereon, a corporate Respondent certifies that it is not currently delinquent in the payment of any Franchise Taxes due under Chapter 171, Texas Tax Code, or that the corporation is exempt from the payment of such taxes, or that the corporation is an out-of-state corporation that is not subject to the Texas Franchise Tax, whichever is applicable. A false certification shall be deemed a material breach of contract and, at UNTS’s option, may result in cancellation of any resulting contract or purchase order.

4. By signature hereon, the Respondent hereby certifies that neither the Respondent nor the firm, corporation, partnership or institution represented by the Respondent, or anyone acting for such firm, corporation, or institution has violated the antitrust laws of this state, codified in Section 15.01, et. seq., Texas Business and Commerce Code, or the Federal antitrust laws, nor communicated directly or indirectly the proposal made to any competitor or any other person engaged in such line of business.

5. By signature hereon, Respondent certifies that all statements and information prepared and submitted in response to this solicitation are current, complete and accurate.

6. By signature hereon, Respondent certifies that the individual signing this document and the documents made part of the RFP is authorized to sign such documents on behalf of the company and to bind the company under any contract which may result from the submission of this proposal. Unsigned responses will not be considered under any circumstances.

7. By signature hereon, Respondent certifies that if a Texas address is shown as the address of the Respondent, Respondent qualifies as a Texas Resident Respondent as defined in Texas Administrative Code (TAC) Title 34. In the case of a tie, the award will be made in accordance with TAC, Title 34, amended. Check below preference claimed under TAC, Title 34, amended:
Supplies, materials, or equipment produced in Texas/offered by Texas bidders
Agricultural products produced or grown in Texas
Agricultural products and services offered by Texas bidders
USA produced supplies, materials, or equipment
Products of persons with mental or physical disabilities
Recycled, remanufactured, or environmentally sensitive products, including recycled steel products
Energy efficient products
Rubberized asphalt paving material
Recycled motor oil and lubricants
Products produced at facilities located on formerly contaminated property
Products and services from economically depressed or blighted areas
Vendors that meet or exceed air quality standards

Consistent and continued tie Responses could cause rejection of offers by UNTS and/or investigation for antitrust violations.

8. By signature hereon, Respondent certifies it is a small business and/or minority/female owned business as defined by the State of Texas. Check status below:
- Historically Underutilized Business
- Small Business (House Bill 366, 64th Legislature)
- Minority/Female Owned Business (House Bill 2626, 73rd Legislature)
- Certified by Texas Department of Commerce
- Status not claimed

9. By signature hereon, Respondent certifies as follows:

"Under Section 231.006, Texas Family Code, the vendor or applicant certifies that the individual or business entity named in this contract, bid, or application is not ineligible to receive the specified grant, loan, or payment and acknowledges that this contract may be terminated and payment may be withheld if this certification is inaccurate."

"Under Section 2155.004, Texas Government Code, the vendor or applicant certifies that the individual or business entity named in this bid or contract is not ineligible to receive the specified contract and acknowledges that this contract may be terminated and payment withheld if this certification is inaccurate."

10. By signature hereon, Respondent certifies that no relationship, whether by relative, business associate, capital funding agreement or by any other such kinship, exist between Respondent and an employee of any UNTS component, or Respondent has not been an employee of any UNTS component within the immediate twelve (12) months prior to RFP response. All such disclosures will be subject to administrative review and approval prior to UNTS entering into any contract with Respondent.

11. Respondent certifies that they are in compliance with Section 669.003 of the Texas Government Code, relating to contracting with the executive head of a State agency. If Section 669.003 applies, respondent will complete the following information in order for the response to be evaluated:

Name of former Executive: ______________________________
Name of State Agency: ______________________________
Date of separation from State agency: ______________________________
Position with Respondent: ______________________________ Date of employment with Respondent: ______________________________

12. By signature hereon, Respondent affirms that no compensation has been received for participation in the preparation of the specifications for this RFCSP. (ref. Section 2155.004, Texas Government Code).

13. Respondent represents and warrants that all articles and services quoted in response to this RFCSP meet or exceed the safety standards established and promulgated under the Federal Occupational Safety and Health Law (Public Law 91-596) and its regulations in effect or proposed as of the date of this solicitation.
14. **Suspension, Debarment, and Terrorism:** Respondent further certifies that the Respondent and its principals are eligible to participate in this transaction and have not been subjected to suspension, debarment, or similar ineligibility determined by any federal, state or local governmental entity and that Respondent is in compliance with the State of Texas statutes and rules relating to procurement and that Respondent is not listed on the federal government’s terrorism watch list as described in Executive Order 13224. Entities ineligible for federal procurement are listed at http://www.epis.gov.

15. By signature hereon, Respondent signifies his compliance with all federal laws and regulations pertaining to Equal Employment Opportunities and Affirmative Action.

16. By signature hereon, Respondent will comply with and agree to use e-Verify in accordance with State of Texas Executive Order RP-80 throughout this project as appropriate.

17. Respondent affirmatively states that it does not boycott Israel, pursuant to Texas Gov’t Code, Section 2270.002. Additionally, Respondent shall not engage in a boycott of Israel during the term of this Agreement.

18. Respondents should give Payee ID Number, full firm name, and address of Respondent below in the space provided. The Payee ID Number is the taxpayer number assigned and used by the Texas Comptroller of Public Accounts. If this number is not known, complete the Federal Employer’s Identification Number.

Complete the following:

- **Payee ID No.** ________________
- **FEI No.** ________________
- **State of Incorporation:** ________________
- **Charter No.** ________________
- **Company Information:** ________________
- **Submitted by:** ________________
- **(Company Name)** ________________
- **(Authorized Signature)** ________________
- **(Street Address Line 1)** ________________
- **(Printed Name/Title)** ________________
- **(Street Address Line 2)** ________________
- **(Date)** ________________
- **(City, State, Zip Code)** ________________
- **(Telephone Number)** ________________
- **(Facsimile Number)** ________________
- **(Email address)** ________________
ATTACHMENT A

QUALIFICATIONS
RFCSP752-20-243994DH
TERRILL HALL MEP RENOVATION

ITEMS 1 THROUGH 6 TO BE SUBMITTED WITH PROPOSAL

Proposer’s Name: ___

Address: ___

City, State, Zip: ___

Telephone No.: ___________________________ Fax No. _______________________

State Comptroller Vendor Identification Number: ___________________________

1. GENERAL
 A. Qualification information submitted shall be applicable only to the company entity or branch that will
 perform this Work.
 B. Attach your Project Organization Chart and resumes of individuals who would be assigned to this
 project.
 C. Proposed construction schedule (Bar chart acceptable).

2. HISTORY
 A. □Corporation □Partnership □Sole Proprietorship □Joint Venture
 State of Incorporation: __________________________
 B. In continuous business since: ________________
 Remarks (if required):
 __
 __
 __
 C. Corporate Officers, Partners or Owners of Organization:
 Name Branch Manager Telephone Number
 __
 __
 __
 __
 D. Check box(es) corresponding to the nature of your business:
 □ Large Business (100 or more employees)
□ Small Business (fewer than 100 employees)
□ HUB Business
□ Other (Define) __________________________

E. Has your organization ever defaulted or failed to complete any work awarded?
□ Yes □ No
If yes, stipulate where and why: __

F. Has your organization ever paid liquidated damages or a penalty for failure to complete a contract on time?
□ Yes □ No
If yes, stipulate where and why: __

3. EXPERIENCE
A. Normally performs ____________ % of the work with own forces. List trades below:

B. Propose to perform ____________ % of the work for project with own forces. List trades below:

C. Total number and dollar amount of contracts currently in progress:
Number $__________________________

D. Largest contract currently in-process: _________________________________
 Anticipated date of completion: _________________________________

E. Volume of work completed over last 5 years: (Through 12/31)
 Year $__________________________
 ______ $__________________________
 ______ $__________________________
 ______ $__________________________
 ______ $__________________________
 ______ $__________________________
F. Has your organization had any claims and/or litigations in the last 5 years?

__

__

__

G. If yes, list project name, date or project, owner, owner’s contact person with telephone number and summary explanation.

__

__

__

4. SAFETY PROGRAM

A. List your organization’s Workers Compensation Experience Modification Rate (EMR) for the last three years, as obtained from your insurance agent.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>EMR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Complete matrix for the three past years, as obtained from OSHA N. 200 Log:

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of injuries and illness</th>
<th>Number of lost time accidents</th>
<th>Number of recordable cases</th>
<th>Number of fatalities</th>
<th>Total Injury & illness rate from OSHA 300 log</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please provide your SIC Code ________________

C. Are regular project safety meetings held for Field Supervisor(s)?

☐ Yes ☐ No

If yes, frequency:

☐ Weekly ☐ Bi-monthly ☐ Monthly ☐ As Needed

D. Are project safety inspections conducted? ☐ Yes ☐ No

If yes, who performs inspection? How often?

__

E. Does organization have a written safety program? ☐ Yes ☐ No
F. Does your organization have a safety orientation program for new employees? ☐Yes ☐No
For employees promoted to Field Supervisors? ☐Yes ☐No
If yes, does your Supervisor Safety Program include instructions on the following:

- Safety work practices ☐Yes ☐No
- Tool box safety meetings ☐Yes ☐No
- First aid procedures ☐Yes ☐No
- Accident investigation ☐Yes ☐No
- Fire protection ☐Yes ☐No
- New worker’s orientation ☐Yes ☐No

5. FINANCIAL

A. Attach an audited Financial Statement, including a profit and loss statement and other supporting schedules. If the last audited statement is over 12 months old, include the most current unaudited statement.

B. Surety Company: ________________________________
 Agent: __
 Name of Contact: ___________________ Telephone No. __________

C. Bonding Capacity: ________________________________
 Limit per project: ________________________________
 Unencumbered bonding capacity: ____________________________

D. Trade References (Additional references may be included as attached sheets.)
 i. Organization: ________________________________
 Agent: __
 Name of Contract: ___________________ Telephone No. __________
 ii. Organization: ________________________________
 Agent: __
 Name of Contract: ___________________ Telephone No. __________
 iii. Organization: ________________________________
 Agent: __
 Name of Contract: ___________________ Telephone No. __________
 iv. Organization: ________________________________
 Agent: __
 Name of Contract: ___________________ Telephone No. __________

E. Bank Reference (Additional references may be included as attached sheets.)
 i. Organization: ________________________________
6. **CSP WRITTEN NARRATIVE RESPONSE**

Please provide a written proposal (maximum 15 pages) which should include the following information:

A. List all major projects of your organization has in-progress.
 - Name of the project (no project photos)
 - Location
 - Contract amount
 - Percent complete
 - Project completion date

B. List three (3) major projects of similar scope your organization has completed in the last five (5) years and include the following information:
 - Name of the project
 - Location
 - Maximum of 3 project photos
 - Brief project description
 - Contract amount
 - Current percent complete
 - Anticipated or actual project completion date
 - Original completion date vs. anticipated/actual completion date
 - Owner reference contact with address and telephone number
 - Architect reference contact with address and telephone number

C. List key team members proposed for the project and include the following information for each KEY team member:
 - Name, title and role
 - Resume
 - Number of years experience
 - Number of years experience in that role
 - Amount of time committed to the project
GENERAL CONSTRUCTION AGREEMENT
GENERAL CONSTRUCTION AGREEMENT
(For Use with Competitive Sealed Proposals)

This Agreement is made and entered into by and between University of North Texas {System or Institution Name} (“Owner”), and by {Firm Name} (“Contractor”), duly authorized by the laws of the State of Texas to act as contractor for construction, rehabilitation, alteration, or repair services. The capitalized term “Party” refers to either Owner or Contractor individually and the term “Parties” refers to Owner and Contractor collectively. The effective date (“Effective Date”) of this Agreement shall be the date of last signature by the parties hereto.

ARTICLE 1
PROJECT

1.1 Owner does hereby engage Contractor and Contractor does hereby agree to provide all labor, materials, equipment, and services necessary to complete the Work, all of which shall be provided in full accord with and reasonably inferable from the Contract Documents to construct the {Project Name} (“Project”), on the {Campus}, to be completed in accordance with the requirements herein, and generally described as follows:

{General Description of the Project}

1.2 Contractor has overall responsibility for and shall furnish all materials, equipment, tools, and labor as necessary or reasonably inferable to complete the Work, or any phase of the Work, in accordance with Owner’s requirements and the terms of the Contract Documents.

ARTICLE 2
CONTRACT DOCUMENTS

2.1 Owner, through its Design Professional, shall provide all architectural and engineering design services necessary for the completion of the Work. The Drawings, Specifications, and addenda have been prepared for Owner by {Architect/Engineer} (“Design Professional”).

2.2 The Contract Documents consist of:

2.2.1 This Agreement and all exhibits and attachments listed, contained or referenced in this Agreement;

2.2.2 The Uniform General Conditions for Construction and Design Contracts for the University of North Texas System (“Uniform General Conditions” or “UGC”);

2.2.3 Supplementary General Conditions or Special Conditions, if any;

2.2.4 Owner’s Specifications;

2.2.5 All Addenda issued prior to the Effective Date of this Agreement;

2.2.6 All Change Orders issued after the Effective Date of this Agreement;

2.2.7 The Drawings, Specifications, details and other documents developed by Design Professional to describe the Project and accepted by Owner;

2.2.8 The Drawings and Specifications developed or prepared by Owner’s other consultants, if any, and accepted by Owner; and
2.2.9 The Historically Underutilized Business (HUB) subcontracting plan submitted or amended by Contractor and approved by Owner for this Project.

2.3 The Contract Documents form the entire and integrated Contract between Owner and Contractor and supersede all prior negotiations, representations or agreements, written or oral.

2.4 To the extent the terms of this Agreement conflict with the Uniform General Conditions and/or the Supplemental Conditions, the terms of this Agreement will control.

2.5 If there is an irreconcilable conflict between or among the various documents that make up the Contract Documents, the interpretation that provides for the higher quality of material and/or workmanship will prevail over all other interpretations.

ARTICLE 3
DEFINITIONS

3.1 Terms, words, and phrases used in the Contract Documents shall have the meanings given in the Uniform General Conditions.

3.2 The following terms, words, and phrases used in the Contract Documents shall have the following meanings, and if more specific than the definition given in the Uniform General Condition, the more specific given in this Agreement shall control.

3.2.1 “Baseline Schedule” means the initial time schedule prepared by Contractor for Owner’s information and acceptance that conveys Contractor’s and Subcontractors’ activities (including coordination and review activities required in the Contract Documents to be performed by the Design Professional and Owner), durations, and sequence of work related to the entire Project to the extent required by the Contract Documents. The schedule shall clearly demonstrate the longest path of activities, critical activities durations, and necessary predecessor conditions that drive the end date of the schedule. The accepted Construction Baseline Schedule shall not change.

3.2.2 “Design Professional” means licensed professionals, or firms employing such licensed professionals, engaged by Owner as independent architects or engineers for design of all or a portion of the Project and to prepare Drawings and Specifications for the construction of the Project. More than one such professional or firm may be employed by Owner, and all such professionals or firms, regardless of number, are referred to in the singular herein.

3.2.3 “Longest Path” means the sequence of directly related activities that comprise the longest continuous chain of activities from the start of the first activity to the finish of the last activity. Each activity in the Longest Path is critical and directly related in that it prevents its successor from being scheduled earlier than it is. For this Project, “Longest Path” shall also include Ten Percent (10%) Total Float and Weather Days.

3.2.4 “Subcontractor” means a person or entity who has an agreement with Contractor to perform any portion of the Work. The term Subcontractor does not include the Design Professional or any person or entity hired directly by Owner.

3.2.5 “Total Float” shall refer to the number of days all activities on the Longest Path can be delayed without delaying the Substantial Completion Date.

3.2.6 “Work” means the provision of all services, labor, materials, supplies, and equipment that are required of Contractor to complete the Project in strict accordance with the requirements of the Agreement and the Construction Documents. Work includes, but is not limited to, the construction services, additional work required by Change Orders, and any other work reasonably inferable from the Construction Documents. The term
“reasonably inferable” takes into consideration the understanding of the parties that some details necessary for completion of the Work may not be shown on the Drawings or included in the Specifications, but they are a requirement of the Work if they are a usual and customary component of the Work or otherwise necessary for complete installation and operation of the Work.

3.2.7 "Work Progress Schedule" ("WPS") means the continually updated time schedule prepared by Contractor that coordinates and integrates activities of the Project, including Contractor’s services, Design Professional’s services, the work of other consultants, suppliers, and Owner’s activities with the anticipated construction schedules for other contractors. The WPS accurately indicates all necessary and appropriate revisions including a longest path impact analysis, as required by the conditions of the Work and the Project while maintaining a concise comparison to the Baseline Schedule.

ARTICLE 4
CONTRACTOR'S RESPONSIBILITIES

4.1 Contractor's responsibilities include but are not limited to supervision, furnishing labor, materials, equipment, employment of and responsibility for subcontractors, payment of taxes where applicable, patent fees, royalties, approval fees, license fees, permit fees, filing fees, registration fees, and other governmental charges.

4.2 Contractor represents that it is an independent contractor and that it is familiar with the type of Work it is undertaking. Contractor shall furnish construction administration and management services and use Contractor's diligent efforts to perform the Work in an expeditious manner consistent with the Contract Documents. Contractor will cause all persons connected with Contractor directly in charge of the Work to be duly registered and/or licensed under all applicable laws.

4.3 Neither Contractor nor any of its agents or employees shall act on behalf of or in the name of Owner except as provided in this Agreement or unless authorized in writing by Owner's Representative.

4.4 Contractor shall be responsible for the supervision and coordination of the Work, including the construction means, methods, techniques, sequences, procedures, safety provisions, precautions, and programs utilized, unless the Contract Documents give other specific instructions. In such case, Contractor shall not be liable to Owner for damages resulting from compliance with such instructions unless Contractor recognized and failed to timely report to Owner any error, inconsistency, omission, or unsafe practice that it discovered in the specified construction means, methods, techniques, sequences, procedures, safety provisions, precautions, or programs.

4.5 Contractor shall perform Work only within locations allowed by the Contract Documents, applicable laws and regulations, and applicable permits. Laws and regulations include federal, state, and local laws, ordinances, codes, rules, and regulations applicable to the Work with which the Constructor must comply that are enacted as of the Agreement date.

4.6 Owner may perform work at the site directly or by others. Contractor and Owner shall coordinate the activities of all forces at the site and agree upon fair and reasonable schedules and operational procedures for site activities.

4.7 Contractor shall: (a) proceed with the Work in a manner that does not hinder, delay, or interfere with the work of Owner or others or cause the work of Owner or others to become defective; (b) afford Owner or others reasonable access for introduction and storage of their materials and equipment and performance of their activities; and (c) coordinate Contractor's Work with the work of Owner and others.
4.8 Before proceeding with any portion of the Work affected by the construction or operations of Owner or others, Contractor shall give Owner written notification within forty-eight (48) hours of any defects Contractor discovers in Owner’s or other’s performance or work, which will prevent the proper execution of the Work. Contractor’s obligations in this subsection do not create a responsibility for the performance or work of Owner or others, but are for the purpose of facilitating the Work. If Contractor does not notify Owner of defects interfering with the performance of the Work, Contractor acknowledges that the performance or work of Owner or others is not defective and is acceptable for the proper execution of the Work. Following receipt of written notice from Contractor of defects, Owner shall promptly inform Contractor what action, if any, Contractor shall take with regard to the defects.

4.9 Prior to commencing the Work, Contractor shall examine and compare the Drawings and Specifications with information furnished by Owner that are Contract Documents, relevant field measurements made by Contractor, and any visible conditions at the site affecting the Work. During the visit to the site, Contractor shall inspect the existing facilities, systems and conditions to ensure an accurate understanding of the existing conditions as required.

4.10 Should Contractor discover any discrepancies, errors, omissions, or inconsistencies in the Contract Documents, Contractor shall report them to Owner within forty-eight (48) hours of discovery. It is recognized, however, that Contractor is not acting in the capacity of a licensed design professional, and that Contractor’s examination is to facilitate construction and does not create an affirmative responsibility to detect discrepancies, errors, omissions, or inconsistencies or to ascertain compliance with applicable laws and regulations, including building codes. Following receipt of written notice from Contractor of defects, Owner shall promptly inform Contractor what action, if any, Contractor shall take with regard to the defects.

4.10.1 Contractor shall have no liability for discrepancies, errors, omissions, or inconsistencies discovered under this section unless Contractor fails to promptly report a discovered or apparent discrepancy, error, omission, or inconsistency to Owner. This does not relieve Contractor of responsibility for its own discrepancies, errors, inconsistencies, or omissions.

4.11 Contractor shall provide competent supervision for the performance of the Work. Before commencing the Work, Contractor shall notify Owner in writing of the name and qualifications of its proposed superintendent(s) and project manager, so Owner may review the individual's qualifications. If, for reasonable cause, Owner refuses to approve the individual, or withdraws its approval after giving it, Contractor shall name a different superintendent or project manager for Owner's review. Any disapproved superintendent shall not perform in that capacity thereafter at the site. Contractor’s superintendent(s) and project manager shall possess full authority to receive instructions from Owner and to act on those instructions. If Contractor changes its superintendent(s) or project manager or their authority, Contractor shall immediately notify Owner in writing.

4.12 Contractor shall be responsible to Owner for acts or omissions of parties or entities performing portions of the Work for or on behalf of Contractor or any of its Subcontractors.

4.13 Contractor shall permit only qualified persons to perform the Work. Contractor shall enforce safety procedures, strict discipline, and good order among persons performing the Work.

4.14 Contractor shall submit to Owner and the Design Professional all shop drawings, samples, product data, and similar submittals required by the Contract Documents for review and approval. Submittals shall be submitted in accordance with the Uniform General Conditions. Contractor shall be responsible for the accuracy and conformity of its submittals to the Contract Documents requirements.
4.15 Contractor acknowledges that it has visited, or has had the opportunity to visit, the site to visually inspect the general and local conditions of the facilities, systems and conditions to ensure an accurate understanding of the existing conditions which could affect the Work.

4.16 The Work shall be executed in accordance with the Contract Documents and Contractor agrees that (a) it will use its best efforts to perform the Work in a good and workmanlike manner and in accordance with the highest standards of Contractor’s profession or business, and (b) all the Work to be performed will be of the quality that prevails among similar businesses of superior knowledge and skill engaged in providing similar services. All materials used in the Work shall be furnished in sufficient quantities to facilitate the proper and expeditious execution of the Work.

4.17 If the Work includes installation of materials or equipment furnished by Owner or others, it shall be the responsibility of Contractor to examine the items so provided and thereupon handle, store, and install the items, unless otherwise provided in the Contract Documents, with such skill as to provide a satisfactory and proper installation. Loss or damage due to acts or omissions of Contractor shall be the responsibility of Contractor and may be deducted from any amounts due or to become due Contractor. Any defects discovered in such materials or equipment shall be reported at once to Owner. Following receipt of written notice from Contractor of defects, Owner shall promptly inform Contractor what action, if any, Contractor shall take with regard to the defects.

4.18 Contractor shall have overall responsibility for safety precautions and programs in the performance of the Work. However, such obligation does not relieve Subcontractors of their responsibility for the safety of persons or property in the performance of their work or for compliance with applicable laws and regulations.

4.18.1 Contractor shall seek to avoid injury, loss, or damage to persons or property by taking reasonable steps to protect: (a) its employees and other persons at the site; (b) materials and equipment stored at onsite or offsite locations for use in the Work; and (c) property located at the site and adjacent to Work areas, whether or not the property is part of the site.

4.18.2 Contractor’s site safety representative shall have a duty to prevent accidents. The safety representative shall perform their duty in accordance with the Uniform General Conditions.

4.18.3 If Owner deems any part of the Work or site unsafe, Owner, without assuming responsibility for Contractor’s safety program, may require Contractor to stop performance of the Work or take corrective measures satisfactory to Owner, or both. If Contractor does not adopt corrective measures, Owner may perform them and deduct their cost from the Contract Price. If Owner determines that a particular person does not follow safety procedures, or is unfit or unskilled for the assigned Work, Contractor shall immediately reassign the person upon receipt of Owner’s written notice to do so. Contractor agrees to make no claim for damages, for an increase in the Contract Price or for a change in the Contract Time based on Contractor’s compliance with Owner’s reasonable request.

4.19 If the conditions encountered at the site are: (a) subsurface or other physical conditions materially different from those indicated in the Contract Documents; or (b) unusual and unknown physical conditions materially different from conditions ordinarily encountered and generally recognized as inherent in Work provided for in the Contract Documents, then Contractor shall stop affected Work after the condition is first observed and give written notice of the condition to Owner and the Design Professional within forty-eight (48) hours.

4.20 Contractor shall regularly remove debris and waste materials at the site resulting from the Work. Prior to discontinuing Work in an area, Contractor shall clean the area and remove all rubbish and its construction equipment, tools, machinery, waste, and surplus materials. Contractor shall minimize and confine dust and debris resulting from construction activities. At the completion of
the Work, Contractor shall remove from the site all construction equipment, tools, surplus materials, waste materials, and debris.

4.20.1 If Contractor fails to commence compliance with cleanup duties within two (2) Business Days after written notification from Owner of non-compliance, Owner may implement appropriate cleanup measures without further notice and shall deduct the reasonable costs from any amounts due or to become due Contractor in the next payment period.

4.21 Contractor shall facilitate the access of Owner, Design Professional, and others to Work in progress.

4.22 Contractor shall comply with all applicable laws and regulations at its own costs. Contractor shall be liable to Owner for all loss, cost, or expense attributable to any acts or omissions by Contractor, its employees, subcontractors, and agents for failure to comply with applicable laws and regulations, including fines, penalties, or corrective measures.

4.23 Contractor warrants that all materials and equipment shall be new unless otherwise specified, of good quality, in conformance with the Contract Documents, and free from defective workmanship and materials. Contractor shall furnish satisfactory evidence of the quality and type of materials and equipment furnished. Contractor further warrants that the Work shall be free from material defects not intrinsic in the design or materials required in the Contract Documents. Contractor's warranty shall commence on the Date of Substantial Completion of the Work.

4.23.1 Contractor shall obtain from its Subcontractors and Material Suppliers any special or extended warranties required by the Contract Documents. Contractor's liability for such warranties shall be limited to a one-year period. After that period, Contractor shall provide reasonable assistance to Owner in enforcing the obligations of Subcontractors or Material Suppliers for such extended warranties.

4.23.2 If, prior to Substantial Completion and within one year after the date of Substantial Completion of the Work, any Work not complying with the contract requirements (Defective Work) is found, Owner shall promptly notify Contractor in writing. Unless Owner provides written acceptance of the condition, Contractor shall promptly correct the Defective Work at its own cost and time and bear the expense of additional Work required for correction of any Defective Work for which it is responsible.

4.23.3 With respect to any portion of Work first performed after Substantial Completion, the one-year period shall be extended by the period between Substantial Completion and the actual performance of the later Work. Correction periods shall not be extended by corrective work performed by Contractor.

4.23.4 If Contractor fails to correct Defective Work within a reasonable time after receipt of written notice from Owner prior to final payment, Owner may correct it in accordance with Owner's right to carry out the Work. In such case, an appropriate Change Order shall be issued deducting the cost of correcting the Defective Work from payments then or thereafter due Contractor. If payments then or thereafter due Contractor are not sufficient to cover such amounts, Contractor shall pay the difference to Owner.

4.23.5 If Contractor's correction or removal of Defective Work causes damage to or destroys other completed or partially completed Work or existing buildings, Contractor shall be responsible for the cost of correcting the destroyed or damaged property.

ARTICLE 5
SUBCONTRACTS

5.1 With the prior written approval of Owner, Contractor may subcontract such services as Contractor deems necessary to meet its obligations under this Agreement. Subcontractors shall be qualified
and experienced in the type of work they will be performing. Owner shall have the right to reject any subcontractor but such right shall not relieve the responsibility of Contractor for his work and the work of the subcontractors. Contractor expressly assumes such responsibility and liability.

5.2 Contractor shall be responsible for the management of the Subcontractors in the performance of the Work.

5.3 If this Agreement is terminated, each subcontract agreement shall be assigned by Contractor to Owner, subject to the prior rights of any surety, provided that: (a) this Agreement is terminated by Owner pursuant to Section 11.1; and (b) Owner accepts such assignment, after termination by notifying the Subcontractor and Contractor in writing, and assumes all rights and obligations of Contractor pursuant to each subcontract agreement.

5.4 Contractor agrees to bind every Subcontractor and material supplier (and require every Subcontractor to so bind its sub-subcontractors and material suppliers) to all provisions of this Agreement as they apply to the Subcontractors’ or material Suppliers’ portions of the Work.

5.5 Contractor shall comply with the HUB Program as define by Tex. Gov’t Code, Chapter 2161. Failure to comply with the HUB Program may constitute a material breach of this Contract as determined by Owner's sole discretion.

5.6 Contractor agrees to comply with the established HUB Subcontracting Approach and shall make no changes to the HUB Subcontracting Approach without the prior written approval of Owner. Construction Manager will work with the Business Support Services HUB Coordinator to develop the HUB Subcontracting Plan (HSP). Further details concerning the HSP are located within the Uniform General Conditions.

ARTICLE 6
OWNER’S RESPONSIBILITIES

6.1 Owner shall provide Contractor with reasonable access to the site to assist Contractor in its performance of all tasks reasonably necessary for the completion of Work.

6.2 Owner hereby expressly reserves the right from time to time to designate by notice to Contractor one or more representatives to act partially or wholly for Owner in connection with the performance of Owner’s obligations hereunder. Contractor shall act only upon instructions from such representatives unless otherwise specifically notified to the contrary.

6.3 Owner’s representative shall: (a) be fully acquainted with the Project, Work, and site; (b) agree to furnish the information and Work required of Owner in a timely manner; and (c) have the authority to bind Owner (to the extent of their authority) in all matters requiring Owner's approval or authorization. If Owner changes its representative, Owner shall promptly notify Contractor in writing.

6.4 Owner will furnish the site plan to document existing conditions to the extent requested by Contractor and as reasonably necessary for the completion of Contractor’s Work.

6.5 Owner shall examine, or cause its representative(s) to examine documents submitted by Contractor and render decisions pertaining thereto promptly or within a reasonable time to avoid unreasonable delay in the progress of Contractor’s Work. Review and approval of a document by Owner shall not waive the contractual responsibility or liability of Contractor.

6.6 Owner shall furnish information required as expeditiously as necessary for the orderly progress of Contractor’s Work.

6.7 Except for those permits and fees related to the Work which are the responsibility of Contractor, Owner shall secure and pay for all other permits, approvals, easements, assessments, and fees
required for the development, construction, use or occupancy of permanent structures or for permanent changes in existing facilities, including the building permit.

ARTICLE 7
SCHEDULE, COMMENCEMENT, AND COMPLETION

7.1 Owner shall provide a Notice to Proceed in which a date for commencement of the Work to be performed shall be stated. Contractor shall achieve Substantial Completion of the work no later than {Written Number} ({#}) calendar days from the date of the Notice to Proceed, subject to extension only by approved Change Orders. Final Completion, including correction of deficiencies, shall be achieved no later than thirty (30) calendar days from the date of the Substantial Completion. Contractor understands that the Substantial Completion and Final Completion dates shall not be extended regardless of weather, strikes, or for any other reason unless Change Orders so approve. The time set forth for completion of the Work is an essential element of this Agreement.

7.1.1 Time is of the essence for this Agreement and the Contract Documents.

7.1.2 Unless instructed by Owner in writing, Contractor shall not knowingly commence the Work before the effective date of insurance to be provided by Contractor.

7.2 Schedule.

7.2.1 Contractor shall submit for review and approval a Baseline Schedule to Owner and Design Professional when submitting the response to Request for Competitive Sealed Proposal (RFCSP). The Baseline Schedule shall indicate the dates for starting and completing the various aspects required to complete the work and shall utilize the Longest Path Method with fully editable logic. The schedule shall include mobilization, procurement, installation, testing, inspection, delivery of Close-out Documents, and acceptance of all Work. This Baseline Schedule shall become the comparison to the actual conditions throughout the Contract duration and become a part of the Work Progress Schedule (WPS).

7.2.1.1 A Baseline Schedule that does not have at least the minimum amount of Total Float at submission will result in the Contractor forfeiting all claims to WPS extensions and/or delays as a result of contract changes and/or excusable delays as described in the UGCs.

7.2.1.2 In accordance with the UGCs, the WPS shall include at least ten percent (10%) Total Float and weather days from the effective date of Notice to Proceed for Construction Services to Substantial Completion Date.

7.2.1.3 Total Float shall not be shown as a single activity, but rather the results of the relationship between the early and late finish dates or early and late start dates of each Activity. The allocation of project float shall be determined by the Project Team as conditions warrant.

7.2.2 As construction proceeds, Contractor shall update and submit the WPS with the Owner, Architect, and Contractor (OAC) meeting minutes. The WPS is to indicate detailed listing for all activity sequences, durations, or milestone dates for activities of the Project, including, without limitation:

7.2.2.1 commencement, milestones, and completion dates for bidding/proposals phase, construction phase, and project stages;

7.2.2.2 times of commencement and completion, duration, and allocation of labor and materials for each Subcontractor;
7.2.2.3 Other detailed schedule activities as directed by Owner including, but not limited to, Owner-managed work under separate contracts such as equipment, furniture and furnishings, telephones, project security, property protection, life-safety systems, integration with central campus monitoring systems, information and instructional technology, data-transmission systems, and computer technology systems;

7.2.2.4 a recommended schedule for Owner’s purchase of materials and equipment requiring long lead-time procurement, delivery dates of products requiring long lead time procurement, and methods to expedite and coordinate delivery of long lead-time procurements including coordination of the Schedule;

7.2.2.5 Owner’s occupancy requirements and estimated date of Substantial Completion of the Project;

7.2.2.6 potential and actual variances between scheduled and probable completion dates;

7.2.2.7 review of schedules for Work not started or incomplete and recommendation to Owner of adjustments in the schedules to conform to the probable completion dates;

7.2.2.8 summary reports to Owner of each schedule update and documentation of all changes in construction schedules; and

7.2.2.9 Evaluation of Subcontractor’s personnel, equipment, and availability of supplies and materials, with respect to each Subcontractor’s ability to meet the Schedule and Recommendation to Owner when any subcontract requirements are not met, or appear unlikely to be met.

7.2.3 During OAC meeting, Contractor shall review progress since last meeting with the Owner and Design Professional; determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor’s WPS; determine how construction behind schedule will be expedited; secure commitments from parties involved to do so; discuss whether schedule revisions are required to ensure the current and subsequent activities will be completed within the Contract Time; and review WPS for next period.

7.2.4 In addition to attending regularly scheduled OAC Project progress meetings, Contractor shall schedule, direct and attend interim progress meetings (i.e., commissioning meetings, coordination meetings, pre-installation meetings) with other members of the Project Team as required to maintain Project progress. Contractor shall record and distribute the minutes of each meeting to each Project Team member. The minutes shall identify critical activities that require action and the dates by which each activity must be completed.

7.2.5 If WPS updates indicate the Longest Path contained in prior WPS will not be met, Contractor shall notify the Owner in writing within forty-eight (48) hours and make recommendations to Owner. Should the item be critical in nature, Contractor shall have a follow-up discussion with Owner.

7.2.6 Contractor concurrently with making revisions to schedule shall prepare tabulated reports showing the following:

7.2.6.1 Identification of activities that have changed
7.2.7 Contractor shall provide the necessary Longest Path schedule control with a goal to attain the Substantial Completion Date of the Project, so that Owner can occupy and utilize the entire Project facilities on such date as well as a Punch List and Final Completion date;

7.2.7.1 Punch List and Final Completion: The Longest Path schedule control shall include not more than thirty (30) days or an agreed to timeframe approved by Owner for punch list and final completion.

7.2.8 Contractor shall coordinate preparation of the Schedule of Values with preparation of WPS.

7.2.9 Contractor shall create and maintain the WPS in a format acceptable to Owner (the license and training for which shall be at Contractor’s sole expense).

7.2.10 Contractor shall notify Owner within forty-eight (48) hours should a periodic update to the WPS indicates the Work is fourteen (14) or more calendar days behind the current approved WPS. Contractor shall submit a separate recovery schedule indicating means by which Contractor intends to regain compliance with the WPS and indicate changes to working hours, working days, crew sizes, and equipment required for compliance, and date by which recovery will be accomplished.

7.2.10.1 Owner’s Notice Not to Accelerate to Contractor shall not be considered acceleration by Owner and Owner shall not be responsible for any increased costs incurred by Contractor.

7.2.11 Contractor shall refer to the Uniform General Conditions for schedule extension and delay processes.

7.2.12 Owner may determine the sequence in which the Work shall be performed, provided it does not unreasonably interfere with the WPS. Owner may require Contractor to make reasonable changes in the sequence at any time during the performance of the Work in order to facilitate the performance of work by Owner or others. To the extent such changes increase Contractor’s costs or time, the Contract Price and Contract Time shall be equitably adjusted.

ARTICLE 8

COMPENSATION AND PAYMENT

8.1 In full consideration of Contractor’s performance of the Work and services under this Agreement, Owner shall pay to Contractor, subject to additions and deductions provided herein, the sum of {Amount} and No/100 Dollars ({$#.00}), in periodic progress payments as hereinafter provided.

The Contract Sum is the total of the following:
Base Bid \(\$\text{Amount} \)
Alternate 1 - \(\$\text{Amount} \)
Alternate 2 - \(\$\text{Amount} \)
Alternate 3 - \(\$\text{Amount} \)
Payments and Performance Bonds \(\$\text{Amount} \)

TOTAL \(\$\text{Amount} \)

8.1 On a monthly basis and subject to procedures set forth in the Uniform General Conditions, Contractor shall submit an Application for Payment, in accordance with Division 01 Specifications. Supporting documentation should include, without limitation: a certified statement as to the Work completed and current schedule of values; a project-to-date job cost report and a current period job cost report; a breakdown of materials and labor; supporting subcontractor invoices and sworn statements and waivers of lien for all amounts paid to Contractor for materials, labor, equipment, and other costs; and copies of third-party invoices, receipts, and other third-party supporting documentation.

8.2 Based on the Application for Payment, Owner shall make a periodic progress payment to Contractor for the cost of labor, materials, and equipment incurred by Contractor in relation to the Work during the previous month, except that the percentage of the total amount paid shall not exceed the percentage amount of the Work that has been completed as determined in the reasonable judgment of Owner. Upon verification of costs incurred and percentage of Work completed, Owner will make payment to Contractor within thirty (30) working days or will notify Contractor of any objection to the invoiced amount.

8.3 Owner shall have the right to withhold from payments due Contractor such sums as are necessary to protect Owner against any loss or damage which may result from negligence by Contractor or failure of Contractor to perform Contractor's obligations under this Agreement and as set forth in the Uniform General Conditions.

8.4 The final request for payment shall not be made until Contractor delivers to Owner a complete release of all liens arising out of this Agreement and an affidavit that so far as Contractor has knowledge or information, the release includes and covers all materials and Work over which Contractor has control for which a lien could be filed, but Contractor may, if any agent or consultant refuses to furnish a release in full, furnish a bond satisfactory to Owner to indemnify Owner against any lien. If any lien remains unsatisfied after all payments are made, Contractor shall refund to Owner all moneys Owner may be compelled to pay in discharging such lien, including all costs and reasonable attorneys' fees, and Owner shall have all remedies at law and in equity.

8.5 In addition to the procedures contained in the Uniform General Conditions, Owner shall have no obligation to make Final Payment until a final accounting of the Work has been submitted by Contractor and has been verified by Owner or Owner's representatives. The aggregate total of payments to Contractor shall not exceed the total of the actual Work as verified by Owner or Owner's representative from Contractor's final accounting, as certified for payment in accordance with the Agreement. If payments made to Contractor exceed that which is due and owing pursuant to this Article, then Contractor shall promptly refund such excess to Owner.

8.6 Nothing contained herein shall require Owner to pay Contractor an aggregate amount exceeding the Agreement or to make payment if in Owner's belief the cost to complete the Work would exceed the Agreement less previous payments to Contractor. Any provision to the contrary notwithstanding, Owner shall not be obligated to make any payment (whether a periodic progress payment or Final Payment) to Contractor hereunder if any one or more of the following conditions precedent exist:
8.6.1 Contractor is in breach or default under this Agreement;

8.6.2 Any part of such payment is attributable to services which are not performed in accordance with this Agreement; provided, however, such payment shall be made as to the part thereof attributable to services which were performed in accordance with this Agreement;

8.6.3 Contractor has failed to make payments promptly to consultants or other third parties used in connection with the services for which Owner has made payment to Contractor;

8.6.4 If Owner, in its good faith judgment, determines that the portion of the compensation then remaining unpaid will not be sufficient to complete the services in accordance with this Agreement, no additional payments will be due Contractor hereunder unless and until Contractor, at Contractor's sole cost, performs a sufficient portion of the remaining services so that such portion of the compensation then remaining unpaid is determined by Owner to be sufficient to so complete the then remaining services; or

8.6.5 To the extent Liquidated Damages or actual damages are imposed by Owner for failure of Contractor to complete the Work within the Contract Time.

8.7 No partial payment made hereunder shall be, or shall be construed to be, final acceptance or approval of that part of the services to which such partial payment relates, or a release of Contractor of any Contractor's obligations hereunder or liabilities with respect to such services.

8.8 Contractor shall promptly pay all bills validly due and owing for labor and material performed and furnished by others in connection with the performance of the construction of the Work.

8.9 Owner shall have the right to verify and audit the details set forth in Contractor's billings, certificates, accountings, cost data, and statements, either before or after payment therefore, by: (a) inspecting the books and records of Contractor during normal business hours; (b) examining any reports with respect to this Project; (c) interviewing Contractor's business employees; (d) visiting the Project site; and (e) other reasonable action.

8.10 The acceptance by Contractor or Contractor's successors of Final Payment under this Agreement, shall constitute a full and complete release of Owner from any and all claims, demands, and causes of action whatsoever which Contractor or Contractor's successors have or may have against Owner under the provisions of this Agreement except those previously made in writing and identified by Contractor as unsettled at the time of the final request for payment.

8.11 Owner shall be billed in accordance with Chapter 2251 of the Texas Government Code and interest, if any, on past due payments shall accrue and be paid in accordance with Chapter 2251 of the Texas Government Code.

8.12 All invoices submitted for payment must include a HUB Progress Assessment Report (PAR). The PAR should document compliance with the HUB Plan.

ARTICLE 9
BONDS

9.1 Prior to commencing work, Contractor shall provide performance and payment bonds in accordance with the requirements set forth in the Uniform General Conditions. The penal sum of the payment and performance bonds shall be for 100% of the Contract Sum. Any increase in the Contract Price shall require a rider to the Bonds increasing penal sums accordingly. Contractor shall endeavor to keep its surety advised of changes potentially impacting the Contract Time and Contract Price. Owner will pay Contractor the bonding costs as a pass through amount not to exceed {Amount} ($#).00 with proper documentation provided along with an Application for Payment. No retainage is to be withheld with respect to the cost of the required bonds.
9.2 Contractor shall not cause or allow any of its bonds to be canceled nor permit any lapse during the term of this Agreement.

ARTICLE 10
INDEMNITY AND INSURANCE

10.1 Contractor covenants and agrees to FULLY INDEMNIFY and HOLD HARMLESS Owner and its component institutions, the UNTS Board of Regents, elected and appointed officials, directors, officers, employees, agents, representatives, and volunteers, individually or collectively, from and against any and all costs, claims, liens, damages, losses, expenses, fees, fines, penalties, proceedings, actions, demands, causes of action, liability, and suits of any kind and nature, including but not limited to, personal or bodily injury, death, or property damage, made upon Owner directly or indirectly arising out of, resulting from, or related to Contractor's activities under the Contract, including any acts or omissions of Contractor, or any director, officer, employee, agent, representative, consultant, or Subcontractor of Contractor, and their respective directors, officers, employees, agents, and representatives while in the exercise of performance of the rights or duties under the Contract. The indemnity provided for in this paragraph does not apply to any liability resulting from the negligence of Owner or separate contractors in instances where such negligence causes personal injury, death, or property damage. IN THE EVENT CONTRACTOR AND OWNER ARE FOUND JOINTLY LIABLE BY A COURT OF COMPETENT JURISDICTION, LIABILITY WILL BE APPORTIONED COMPARATIVELY IN ACCORDANCE WITH THE LAWS OF THE STATE OF TEXAS, WITHOUT WAIVING ANY GOVERNMENTAL IMMUNITY AVAILABLE TO THE STATE UNDER TEXAS LAW AND WITHOUT WAIVING ANY DEFENSES OF THE PARTIES UNDER TEXAS LAW.

10.1.1 The provisions of this indemnification are solely for the benefit of the parties hereto and not intended to create or grant any rights, contractual or otherwise, to any other person or entity.

10.1.2 Contractor shall promptly advise Owner in writing of any claim or demand against Owner or against Contractor known to Contractor related to or arising out of Contractor’s activities under this Contract.

10.2 Insurance.

10.2.1 Contractor shall not commence work under the Agreement until it has obtained all insurance required in accordance with this Agreement and the Uniform General Conditions and until such insurance has been reviewed and approved in writing by Owner. Approval of the insurance by Owner shall not relieve nor decrease the liability of Contractor hereunder. Prior to commencing any of Work Contractor shall provide evidence as required by this Article that demonstrates coverage for Employer’s Liability, Workers’ Compensation, Commercial General Liability, and Automobile Liability as set forth in the Uniform General Conditions are in full force and effect. Prior to commencing any construction work, Builder’s Risk as set forth in the Uniform General Conditions shall be in full force and effect and shall be increased as necessary for each separate bid package, phase, or Stage of construction prior to the commencement of construction for that package, phase, or Stage. No retainage is to be withheld with respect to the cost of the required insurance.

Owner shall obtain builder’s risk insurance coverage for the Project. In the event of an insured loss caused by the action or inaction of Contractor, or by any subcontractor or sub-subcontractor, or by anyone directly or indirectly employed by any of them, or by anyone for whose acts any of them may be liable, Contractor shall be responsible for, and reimburse to Owner, any applicable deductible under the builder’s risk insurance
policy, which may be up to $25,000. Any costs associated with Contractor's responsibility for the applicable deductible shall not be considered cost of Work.

10.2.2 Contractor shall include Owner, [Campus if different from Owner] and the Board of Regents of the University of North Texas System as loss payees and Additional Insured's on General Liability and Business Automobile Liability. The Commercial General Liability, Business Automobile Liability, and Worker's Compensation policies shall include a waiver of subrogation in favor of Owner.

10.2.3 Insurance policies required under this Article shall contain a provision that the insurance company must give Owner written notice transmitted in writing: (a) thirty (30) calendar days before coverage is non-renewed by the insurance company and (b) within ten (10) business days after cancellation of coverage by the insurance company. Prior to start of Services and upon renewal or replacement of the insurance policies, Contractor shall furnish Owner with certificates of insurance until one year after acceptance of the Services. If any insurance policy required under this Article is not to be immediately replaced without lapse in coverage when it expires, exhausts its limits, or is to be cancelled, Contractor will give Owner written notice within forty-eight (48) hours upon actual or constructive knowledge of such condition.

10.2.4 Owner reserves the right to review the insurance requirements set forth in this Article during the effective period of the Agreement and to make reasonable adjustments to the insurance coverage and their limits when deemed necessary and prudent by Owner based upon changes in statutory law, court decisions, or the claims history of the industry as well as Contractor.

10.2.5 Owner shall be entitled, upon request, and without expense, to receive copies of the policies, all endorsements thereto and documentation to support costs and may make any reasonable requests for deletion, or revision or modification of particular policy terms, conditions, limitations, exclusions and costs, except where policy provisions are established by law or regulation binding upon either of the Parties or the underwriter of any of such policies. Any price credits determined in the insurance review will be refundable to Owner. Actual losses not covered by insurance as required by this Article shall be paid by the Contractor.

10.2.6 Contractor shall not cause or allow any of its insurance to be canceled nor permit any lapse during the term of the Agreement or as required in the Agreement.

ARTICLE 11
TERMINATION AND SUSPENSION

11.1 With or without cause, Owner reserves and has the right to terminate this Agreement or to cancel, suspend or abandon execution of all or any Services in connection with this Agreement at any time upon written notice to Contractor. Contractor may terminate this Agreement upon seven (7) days written notice to Owner only if Owner substantially fails to perform its obligations under Article 6 of this Agreement or fails to timely pay Contractor as required under Article 8, and after adequate written notice is delivered to Owner and Owner has failed to take action within thirty (30) days in order to begin to correct the problem.

11.1.1 In the event of termination, cancellation, suspension, or abandonment that is not the fault of Contractor, Owner shall pay to Contractor as full payment for all services performed and all expenses incurred under this Agreement, the appropriate portion of Contract Sum due under Article 8 as shall have become payable because of the progress in the Work as the services actually rendered hereunder by Contractor bear to the total services necessary.
11.1.2 In ascertaining the services actually rendered hereunder up to the date of termination, cancellation, suspension, or abandonment of this Agreement, consideration shall be given to both completed work and work in progress, to complete and incomplete Drawings, and to other related documents, whether delivered to Owner or in possession of Contractor.

11.1.3 For any said sum paid under this Article, Contractor agrees to accept same in full settlement of all claims for services rendered under this Agreement.

11.2 If, upon payment of the amount required to be paid under this Article following the termination of this Agreement, Owner thereafter should determine to complete the original project or, substantially, the same project without major change in scope; Owner, for such purposes, shall have the right of utilization of any and all original tracings, Drawings, calculations, design analysis, Specifications, estimates, related data, and other documents including Construction Documents, prepared under this Agreement by Contractor who shall make them available to Owner upon request, with compensation to Contractor limited to actual reproduction costs. Owner agrees to credit Contractor with such authorship as may be due to him but is not required to renew this Agreement.

11.3 Upon request at the termination, cancellation, suspension, or abandonment of this Agreement, Contractor agrees to furnish to Owner copies of the latest documents prepared by Contractor for the Project.

11.4 A termination, cancellation, suspension, or abandonment under this Article shall not relieve Contractor or any of its employees of liability for violations of this Agreement, or any willful, negligent or accidental act or omission of Contractor. In the event of a termination under this Article, Contractor hereby consents to employment by Owner of a substitute contractor to complete the services under this Agreement, with the substitute contractor having all rights and privileges of the original contractor of the Project.

ARTICLE 12
MISCELLANEOUS

12.1 Assignment. The terms and conditions of this Agreement shall be binding upon the Parties, their partners, successors, permitted assigns, and legal representatives. This Agreement is a service contract for the services of Contractor, and Contractor’s interest in this Agreement, duties hereunder and/or fees due hereunder may not be assigned or delegated to a third party. The benefits and burdens of this Agreement are, however, assignable by Owner to a component or affiliate of Owner or a branch or agency of the State of Texas.

12.2 Death or Incapacity. If Contractor transacts business as an individual, his death or incapacity shall automatically terminate this Agreement as of the date of such event, and neither he nor his estate shall have any further right to perform hereunder; and Owner shall pay him or his estate the compensation payable under the Agreement for any services rendered prior to such termination. If Contractor is a firm comprised of more than one principal and any one of the members thereof dies or becomes incapacitated and the other members continue to render the services covered herein, Owner will make payments to those continuing as though there had been no such death or incapacity, and Owner will not be obliged to take any account of the person who died or became incapacitated or to make any payment to such person or his estate. This provision shall apply in the event of progressive or simultaneous occasions of death or incapacity among any group of persons named as Contractor; and if death or incapacity befalls the last one of such group before this Agreement is fully performed, then the rights shall be as if there had been only one Contractor. In any event, notice of the death or incapacity of any principal shall be given to Owner by any surviving principal within a reasonable time.

12.3 Irreparable Injury. It is acknowledged and agreed that Contractor’s services to Owner are unique, which gives a peculiar value to Owner and for the loss of which Owner cannot be reasonably or
adequately compensated in damages; accordingly, Contractor acknowledges and agrees that a breach by Contractor of the provisions hereof will cause Owner irreparable injury and damage. Contractor, therefore, expressly agrees that Owner shall be entitled to injunctive and/or other equitable relief in any court of competent jurisdiction to prevent or otherwise restrain a breach of this Agreement, but only if Owner is not in breach of this Agreement.

12.4 Certifications.

12.4.1 Pursuant to Texas Family Code, Section 231.006, Contractor certifies that it is not ineligible to receive the award of or payments under this Agreement and acknowledges that this Agreement may be terminated and payment may be withheld if this certification is inaccurate.

12.4.2 Pursuant to Texas Government Code, Section 2155.004, Contractor certifies that the business entity named in this Agreement is not ineligible to receive the award of or payments under this Agreement and acknowledges that this Agreement may be terminated and payment withheld if this certification is inaccurate.

12.4.3 If a corporate or limited liability company, Contractor certifies that it is not currently delinquent in the payment of any Franchise Taxes due under Texas Tax Code, Chapter 171, or that the corporation or limited liability company is exempt from the payment of such taxes, or that the corporation or limited liability company is an out-of-state corporation or limited liability company that is not subject to the Texas Franchise Tax, whichever is applicable.

12.4.4 Pursuant to Texas Government Code Sections 2107.008 and 2252.903, Contractor agrees that any payments owing to Contractor under this Agreement may be applied directly toward any debt or delinquency that Contractor owes the State of Texas or any agency of the State of Texas regardless of when it arises, until such debt or delinquency is paid in full.

12.4.5 Pursuant to Texas Government Code Chapter 2252, Subchapter F, Contractor certifies that it is not engaged in business with Iran, Sudan, or a foreign terrorist organization. Contractor acknowledges this Agreement may be terminated if this certification is inaccurate.

12.4.6 Pursuant to Texas Government Code Sections 2252.201-2252.205, Contractor certifies that it is in compliance with the requirement that any iron or steel product produced through a manufacturing process and used in the Project is produced in the United States.

12.4.7 To the extent required by Texas Government Code Chapter 2270, Contractor certifies that it does not currently boycott Israel and will not boycott Israel during the Term of this Agreement. Contractor acknowledges this Agreement may be terminated and payment withheld if this certification is inaccurate.

12.4.8 By signature hereon, Contractor certifies that no member of the Board of Regents of the University of North Texas System, or executive officers, including component institutions, has a financial interest, directly or indirectly, in the transaction that is the subject of this Agreement.

12.5 Business Ethics. During the performance of Contractor’s contract responsibilities, Contractor agrees to maintain business ethics standards aimed at avoiding any impropriety or conflict of interest with Owner’s best interests. Neither Contractor nor its employees, agents, representatives, or subcontractors will assist or cause Owner to violate Owner’s Conflicts of Interest Policy or applicable state ethics laws or rules.
12.6 **Illegal Dumping.** Contractor shall ensure that it and all of its subcontractors and assigns prevent illegal dumping of litter in accordance with Title 5, Texas Health and Safety Code, Chapter 365.

12.7 **Asbestos Containing Materials.**

12.7.1 Contractor shall provide a notarized certification to Owner that all equipment and materials used in fulfillment of its Contract responsibilities are non-Asbestos Containing Building Materials (ACBM) no later than Contractor’s application for Final Payment as required by the Uniform General Conditions.

12.7.2 All materials used in this Project shall be certified as non-ACBM. Contractor shall take whatever measures it deems necessary to insure that all employees, suppliers, fabricators, material men, subcontractors, or their assigns, comply with the following acts:

12.7.2.1 Asbestos Hazard Emergency Response Act (AHERA—40 CFR 763, Subpart E)

12.7.2.2 National Emission Standards for Hazardous Air Pollutants (NESHAP—EPA 40 CFR 61, Subpart M, National Emission Standard for Asbestos)

12.7.2.3 Texas Asbestos Health Protection Rules (TAHRP—Tex. Admin. Code Title 25, Part 1, Ch. 295, Subchapter C, Asbestos Health Protection)

12.8 **Records.** Records of Contractor’s costs, reimbursable expenses pertaining to the Project and payments shall be kept on a generally recognized accounting basis and shall be made available to Owner or its authorized representative during business hours for audit or other purposes as determined by Owner. Such records shall be maintained by Contractor and shall be available to Owner or his authorized representative for a period of at least five (5) years after the provision of Contractor’s Services.

12.9 **Notices.** All notices, consents, approvals, demands, requests or other communications provided for or permitted to be given under any of the provisions of this Agreement shall be in writing and shall be deemed to have been duly given or served when delivered by hand delivery or when deposited in the U.S. Mail by registered or certified mail, return receipt requested, postage prepaid, and addressed as follows:

If to Owner:
{Name}
{Title}
University of North Texas {System or Institution Name}
1155 Union Circle #311040
Denton, Texas 76203-5017

If to Contractor:
{Contact Name}
{Firm Name}
{Street Address}
{City, State Zip}

or to such other person or address as may be given in writing by either party to the other in accordance with the aforesaid.

12.10 **Independent Contractor.** Contractor recognizes that it is engaged as an independent contractor and acknowledges that Owner will have no responsibility to provide transportation, insurance or other fringe benefits normally associated with employee status. Contractor, in accordance with its status as an independent contractor, covenants and agrees that it shall conduct itself consistent with such status, that it will neither hold itself out as nor claim to be an officer, partner, employee or agent of Owner by reason hereof, and that it will not by reason hereof make any claim, demand or application to or for any right or privilege applicable to an officer, partner, employee or agent of Owner, including, but not limited to, unemployment insurance benefits, social security coverage or
retirement benefits. Contractor hereby agrees to make its own arrangements for any of such benefits as it may desire and agrees that it is responsible for all income taxes required by applicable law.

12.11 **Loss of Funding.** Performance by Owner under the Agreement may be dependent upon the appropriation and allotment of funds by the Texas State Legislature (the “Legislature”) and/or allocation of funds by the Board of Regents of The University of North Texas System (the “Board”). If the Legislature fails to appropriate or allot the necessary funds, or the Board fails to allocate the necessary funds, then Owner shall issue written notice to Contractor and Owner may terminate the Agreement. Contractor acknowledges that appropriation, allotment, and allocation of funds are beyond the control of Owner.

12.12 **Confidentiality.** All information owned, possessed or used by Owner which is communicated to, learned, developed or otherwise acquired by Contractor in the performance of services for Owner, which is not generally known to the public, shall be confidential and Contractor shall not, beginning on the date of first association or communication between Owner and Contractor and continuing through the term of this Agreement and any time thereafter, disclose, communicate or divulge, or permit disclosure, communication or divulgence, to another or use for Contractor’s own benefit or the benefit of another, any such confidential information, unless required by law. Except when defined as part of the Work, Contractor shall not make any press releases, public statements, or advertisement referring to the Project or the engagement of Contractor as an independent contractor of Owner in connection with the Project, or release any information relative to the Project for publications, advertisement or any other purpose without the prior written approval of Owner. Contractor shall obtain assurances similar to those contained in this subparagraph from persons, and subcontractors retained by Contractor. Contractor acknowledges and agrees that a breach by Contractor of the provisions hereof will cause Owner irreparable injury and damage. Contractor, therefore, expressly agrees that Owner shall be entitled to injunctive and/or other equitable relief in any court of competent jurisdiction to prevent or otherwise restrain a breach of this Agreement.

12.13 **Open Records.** Owner shall release information to the extent required by the Texas Public Information Act and other applicable law. If required, Contractor shall make public information available to Owner in an electronic format. The requirements of Subchapter J, Chapter 552, Government Code, may apply to this Agreement and Contractor agrees that the Agreement can be terminated if Contractor knowingly or intentionally fails to comply with a requirement of that subchapter.

12.14 **Governing Law and Venue.** This Agreement and all of the rights and obligations of the parties hereto and all of the terms and conditions hereof shall be construed, interpreted and applied in accordance with and governed by and enforced under the laws of the State of Texas and venue shall be as provided in Texas Education Code Section 105.151 for any legal proceeding pertaining to this Agreement.

12.15 **Waivers.** No delay or omission by either of the parties hereto in exercising any right or power accruing upon the non-compliance or failure of performance by the other party hereto of any of the provisions of this Agreement shall impair any such right or power or be construed to be a waiver thereof. A waiver by either of the parties hereto of any of the covenants, conditions or agreements hereof to be performed by the other party hereto shall not be construed to be a waiver of any subsequent breach thereof or of any other covenant, condition or agreement herein contained.

12.16 **Severability.** Should any term or provision of this Agreement be held invalid or unenforceable in any respect, the remaining terms and provisions shall not be affected and this Agreement shall be construed as if the invalid or unenforceable term or provision had never been included.
IN WITNESS WHEREOF the parties hereto have executed this Agreement in the day and year first above written.

OWNER:
UNIVERSITY OF NORTH TEXAS
{SYSTEM OR INSTITUTION NAME}

By: ________________________________
(signed)

[Authorized Signatory Name]
[Authorized Signatory Title]

Date: ______________________________

CONTRACTOR:

{FIRM NAME}

By: ________________________________
(signed)

Date: ______________________________

Street/PO Box

City, State, ZIP

Telephone

State of TX Vendor ID Number
EXHIBIT A
SPECIFICATIONS, DRAWINGS, AND ADDENDA

SPECIFICATIONS
As listed in project manual titled [Title], prepared by [Professional], issued for construction on [Date].

DRAWINGS
Entitled [Title], as prepared by [Professional], issued for construction on [Date], consisting of the following pages:

<table>
<thead>
<tr>
<th>Sheet Number</th>
<th>Title</th>
</tr>
</thead>
</table>

ADDENDA

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
</table>
PAYMENT BOND

STATE OF TEXAS §
COUNTY OF §

KNOW ALL MEN BY THESE PRESENT: That we, ______________________, as Principal, and ______________________, as Surety, are hereby held and firmly bound unto the University of North Texas System, as Obligee, in the sum of Dollars ($___________) for payment whereof the said Principal and Surety bind themselves, their heirs, executors, administrators, and successors, jointly and severally, by the terms and conditions herein.

The conditions of this obligation are such that whereas the Principal entered into a certain contract with the Obligee, as an entity of the State of Texas, dated the ___ day of ___, 200_ (“Contract”), which is hereto attached and made a part hereof for all purposes, for the purpose of ____________________________.

NOW THEREFORE, the condition of this obligation is such that this Payment Bond shall remain in full force and effect unless and until 120 days after Principal has faithfully performed the Contract in accordance with the Contract documents and Principal has executed a copy of the attached Payment Affidavit and provided it to Obligee.

In the event that the Principal fails to promptly pay when due any amount owed to persons who have supplied labor, materials, or supplies used in Principal’s performance of the said Contract, the Surety will, upon receipt of notice from the Obligee or a claim in the form required by law, satisfy all undisputed balances due, and make arrangements satisfactory to the interested parties to resolve all amounts disputed in good faith, but in no event shall the liability of the Surety for the Principal’s failure to promptly pay for labor, materials, or supplies exceed the amount of this bond.

The Surety agrees to pay to the Obligee upon demand all loss and expense, including attorney’s fees, incurred by the Obligee by reason of or on account of any breach of this obligation by the Principal or the Surety.

Provided further, that this bond is made and entered into for the protection of all parties supplying labor or materials in the prosecution of the work provided for in the said Contract, and all such parties shall have a direct right of action under this bond as provided in Chapter 2253 of the Texas Government Code. If any legal action is filed upon this bond, venue shall lie in Denton County, Texas.

The liabilities, rights, limitations and remedies concerning this Bond shall be determined in accordance with the provisions of Chapter 2253 of the Texas Government Code, pursuant to which this bond is executed.

IN WITNESS WHEREOF, the above parties have executed this instrument under their several seals this ___ day of ___ in the year 20___, the name and seal of each party being hereto affixed, and duly signed by its undersigned representative pursuant to authority of its governing body.

CONSTRUCTION MANAGER-AT-RISK

(Firm Name)

(Area)

(Signature)

(City, State, Zip)

(Typed Name and Title)

(Telephone)

(Texas Vendor ID No.)
PERFORMANCE BOND

Surety Bond No.

STATE OF TEXAS §
COUNTY OF §

LET IT BE KNOWN BY THIS INSTRUMENT: That we, __________________________, as Principal, and __________________________ a corporation duly authorized to do business in the State of Texas, as Surety, are hereby held and firmly bound unto the University of North Texas System, as Obligee, in the sum of __________________________ Dollars ($____________) for payment whereof the said Principal and Surety bind themselves, their heirs, executors, administrators, and successors, jointly and severally, by the terms and conditions herein.

The conditions of this obligation are such that whereas the Principal entered into a certain contract with the Obligee, as an entity of the State of Texas, dated the ______ day of _____, 20 (“Contract”), which is hereto attached and made a part hereof for all purposes, for the purpose of __________________________.

NOW THEREFORE, the condition of this obligation is such that this Performance Bond shall remain in full force and effect unless and until the Principal has faithfully performed the Contract in accordance with the Plans, Specifications and Contract documents. Further, under the terms of this Performance Bond, Principal shall fully indemnify and save harmless the Obligee from all cost and damage which the Obligee may suffer by reason of Principal’s default or failure to perform and shall fully reimburse and repay the Obligee all outlay and expense which the Obligee may incur in making good any such default.

In the event that the Principal’s failure as defined by the Contract Documents, to faithfully perform the Contract, Surety will within fifteen (15) days of determination of default, assume full responsibility for completion of said Contract and become entitled to payment of the balance of the Contract amount. Conditioned upon the Surety’s faithful performance of its obligations, the liability of the Surety for the Principal’s default shall not exceed the penalty of this Bond.

The Surety agrees to pay to the Obligee upon demand all loss and expense, including attorney’s fees, incurred by the Obligee by reason of or on account of any breach of this obligation by the Principal or the Surety.

Provided further, that the Surety, for value received, hereby stipulates and agrees that no change, extension of time, alteration or addition to the terms of the said Contract, or to the work to be performed thereunder, or the Specifications accompanying the same, shall in anyway affect its obligation on this Bond, and it does hereby waive notice of any such change, extension of time, alteration or addition, to the terms of the said Contract or to the work or to the Specifications.

Provided further, that if any legal action be filed upon this Bond, venue shall lie in Denton County, Texas.

The liabilities, rights, limitations and remedies concerning this Bond shall be determined in accordance with the provisions of Chapter 2253 of the Texas Government Code, pursuant to which this Bond is executed.
IN WITNESS WHEREOF, the above parties have executed this instrument under their several seals this ______ day of __________ in the year 20____, the name and corporate seal of each corporate party being hereto affixed, and these present duly signed by its undersigned representative pursuant to authority of its governing body.

ATTEST:

(Signature)

(Typed Name and Title)

(SEAL)

ATTEST:

(Signature)

(Typed Name and Title)

(SEAL)

Surety's Texas Local Recording Agent or Resident Agent:

(Signature)

(Typed Name)

(License No.)

(File No)

(Address)

(City, State, Zip)

(Telephone)

Surety's Home Office Agent or Servicing Agent:

(Name)

(Title)

(Address)

(City, State, Zip)

(Telephone)
HUB Subcontracting Plan (HSP)

In accordance with Texas Gov't Code §2161.252, the contracting agency has determined that subcontracting opportunities are probable under this contract. Therefore, all respondents, including State of Texas certified Historically Underutilized Businesses (HUBs) must complete and submit this State of Texas HUB Subcontracting Plan (HSP) with their response to the bid requisition (solicitation).

NOTE: Responses that do not include a completed HSP shall be rejected pursuant to Texas Gov't Code §2161.252(b).

The HUB Program promotes equal business opportunities for economically disadvantaged persons to contract with the State of Texas in accordance with the goals specified in the 2009 State of Texas Disparity Study. The statewide HUB goals defined in 34 Texas Administrative Code (TAC) §20.284 are:

- 11.2 percent for heavy construction other than building contracts,
- 21.1 percent for all building construction, including general contractors and operative builders' contracts,
- 32.9 percent for all special trade construction contracts,
- 23.7 percent for professional services contracts,
- 26.0 percent for all other services contracts, and
- 21.1 percent for commodities contracts.

--- Agency Special Instructions/Additional Requirements ---

In accordance with 34 TAC §20.285(6)(l)(3)(b), a respondent (prime contractor) may demonstrate good faith effort to utilize Texas certified HUBs for its subcontracting opportunities if the total value of the respondent's subcontracts with Texas certified HUBs meets or exceeds the statewide HUB goal or the agency specific HUB goal, whichever is higher. When a respondent uses this method to demonstrate good faith effort, the respondent must identify the HUBs with which it will subcontract. If using existing contracts with Texas certified HUBs to satisfy this requirement, only the aggregate percentage of the contracts expected to be subcontracted to HUBs with which the respondent does not have a continuous contract in place for more than five (5) years shall qualify for meeting the HUB goal. This limitation is designed to encourage vendor rotation as recommended by the 2009 Texas Disparity Study.

SECTION 1: RESPONDENT AND REQUISITION INFORMATION

a. Respondent (Company) Name: ____________________________
 State of Texas VID #: ____________________________
 Point of Contact: ____________________________
 Phone #: ____________________________
 E-mail Address: ____________________________
 Fax #: ____________________________

b. Is your company a State of Texas certified HUB? □ Yes □ No

 Bid Open Date: (mm/dd/yyyy)

c. Requisition #: ____________________________
SECTION 2: RESPONDENT'S SUBCONTRACTING INTENTIONS

After dividing the contract work into reasonable lots or portions to the extent consistent with prudent industry practices, and taking into consideration the scope of work to be performed under the proposed contract, including all potential subcontracting opportunities, the respondent must determine what portions of work, including contracted staffing, goods and services will be subcontracted. Note: In accordance with 34 TAC §20.202, a "Subcontractor" means a person who contracts with a prime contractor to work, to supply commodities, or to contribute toward completing work for a governmental entity.

a. Check the appropriate box (Yes or No) that identifies your subcontracting intentions:
 - Yes, I will be subcontracting portions of the contract. (If Yes, complete Item b of this SECTION and continue to Item c of this SECTION.)
 - No, I will not be subcontracting any portion of the contract, and I will be fulfilling the entire contract with my own resources, including employees, goods and services. (If No, continue to SECTION 3 and SECTION 4.)

b. List all the portions of work (subcontracting opportunities) you will subcontract. Also, based on the total value of the contract, identify the percentages of the contract you expect to award to Texas certified HUBs, and the percentage of the contract you expect to award to vendors that are not a Texas certified HUB (i.e., Non-HUB).

<table>
<thead>
<tr>
<th>Item #</th>
<th>Subcontracting Opportunity Description</th>
<th>HUBs</th>
<th>Non-HUBs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percentage of the contract expected to be subcontracted to HUBs with which you do not have a continuous contract in place for more than five (5) years.</td>
<td>Percentage of the contract expected to be subcontracted to HUBs with which you have a continuous contract in place for more than five (5) years.</td>
<td>Percentage of the contract expected to be subcontracted to non-HUBs.</td>
</tr>
<tr>
<td>1</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>2</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>3</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>4</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>5</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>6</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>7</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>8</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>9</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>10</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>11</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>12</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>13</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>14</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>15</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

Aggregate percentages of the contract expected to be subcontracted:

(Continued)

(Note: If you have more than fifteen subcontracting opportunities, a continuation sheet is available online at https://www.comptroller.texas.gov/purchasing/vendorhub/forms.php).

c. Check the appropriate box (Yes or No) that indicates whether you will be using only Texas certified HUBs to perform all of the subcontracting opportunities you listed in SECTION 2, Item b.
 - Yes (If Yes, continue to SECTION 4 and complete an "HSP Good Faith Effort - Method A (Attachment A)" for each of the subcontracting opportunities you listed.)
 - No (If No, continue to Item d, of this SECTION.)

d. Check the appropriate box (Yes or No) that indicates whether the aggregate expected percentage of the contract you will subcontract with Texas certified HUBs with which you do not have a continuous contract in place with for more than five (5) years, meets or exceeds the HUB goal the contracting agency identified on page 1 in the "Agency Special Instructions/Additional Requirements."
 - Yes (If Yes, continue to SECTION 4 and complete an "HSP Good Faith Effort - Method A (Attachment A)" for each of the subcontracting opportunities you listed.)
 - No (If No, continue to SECTION 4 and complete an "HSP Good Faith Effort - Method B (Attachment B)" for each of the subcontracting opportunities you listed.)

*Continuous Contract: Any existing written agreement (including any renewals that are exercised) between a prime contractor and a HUB vendor, where the HUB vendor provides the prime contractor with goods or service under the same contract for a specified period of time. The frequency the HUB vendor is utilized or paid during the term of the contract is not relevant to whether the contract is considered continuous. Two or more contracts that run concurrently or overlap one another for different periods of time are considered by CPA to be individual contracts rather than renewals or extensions to the original contract. In such situations the prime contractor and HUB vendor are entering (have entered) into "new" contracts.
SECTION 2: RESPONDENT's SUBCONTRACTING INTENTIONS (CONTINUATION SHEET)

This page can be used as a continuation sheet to the HSP Form’s page 2, Section 2, Item b. Continue listing the portions of work (subcontracting opportunities) you will subcontract. Also, based on the total value of the contract, identify the percentages of the contract you expect to award to Texas certified HUBs, and the percentage of the contract you expect to award to vendors that are not a Texas certified HUB (i.e., Non-HUB).

<table>
<thead>
<tr>
<th>Item #</th>
<th>Subcontracting Opportunity Description</th>
<th>HUBs</th>
<th>Non-HUBs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percentage of the contract expected to be subcontracted to HUBs with which you do not have a continuous contract in place for more than five (5) years.</td>
<td>Percentage of the contract expected to be subcontracted to HUBs with which you have a continuous contract in place for more than five (5) years.</td>
<td>Percentage of the contract expected to be subcontracted to non-HUBs.</td>
</tr>
<tr>
<td>16</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>17</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>18</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>19</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>20</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>21</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>22</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>23</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>24</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>25</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>26</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>27</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>28</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>29</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>30</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>31</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>32</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>33</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>34</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>35</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>36</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>37</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>38</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>39</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>40</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>41</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>42</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>43</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

Aggregate percentages of the contract expected to be subcontracted: % % %

*Continuous Contract: Any existing written agreement (including any renewals that are exercised) between a prime contractor and a HUB vendor, where the HUB vendor provides the prime contractor with goods or service under the same contract for a specified period of time. The frequency the HUB vendor is utilized or paid during the term of the contract is not relevant to whether the contract is considered continuous. Two or more contracts that run concurrently or overlap one another for different periods of time are considered by CPA to be individual contracts rather than renewals or extensions to the original contract. In such situations the prime contractor and HUB vendor are entering (have entered) into “new” contracts.
SECTION 3: SELF PERFORMING JUSTIFICATION (If you responded “No” to SECTION 2, Item a, you must complete this SECTION and continue to SECTION 4.) If you responded “No” to SECTION 2, Item a, in the space provided below explain how your company will perform the entire contract with its own employees, supplies, materials and/or equipment.

SECTION 4: AFFIRMATION
As evidenced by my signature below, I affirm that I am an authorized representative of the respondent listed in SECTION 1, and that the information and supporting documentation submitted with the HSP is true and correct. Respondent understands and agrees that, if awarded any portion of the requisition:

- The respondent will provide notice as soon as practical to all the subcontractors (HUBs and Non-HUBs) of their selection as a subcontractor for the awarded contract. The notice must specify at a minimum the contracting agency’s name and its point of contact for the contract, the contract award number, the subcontracting opportunity they (the subcontractor) will perform, the approximate dollar value of the subcontracting opportunity and the expected percentage of the total contract that the subcontracting opportunity represents. A copy of the notice required by this section must also be provided to the contracting agency’s point of contact for the contract no later than ten (10) working days after the contract is awarded.

- The respondent must submit monthly compliance reports (Prime Contractor Progress Assessment Report – PAR) to the contracting agency, verifying its compliance with the HSP, including the use of and expenditures made to its subcontractors (HUBs and Non-HUBs). (The PAR is available at https://www.comptroller.texas.gov/purchasing/docs/hub-forms/ProgressAssessmentReportForm.xls).

- The respondent must seek approval from the contracting agency prior to making any modifications to its HSP, including the hiring of additional or different subcontractors and the termination of a subcontractor the respondent identified in its HSP. If the HSP is modified without the contracting agency’s prior approval, respondent may be subject to any and all enforcement remedies available under the contract or otherwise available by law, up to and including debarment from all state contracting.

- The respondent must, upon request, allow the contracting agency to perform on-site reviews of the company’s headquarters and/or work-site where services are being performed and must provide documentation regarding staffing and other resources.

<table>
<thead>
<tr>
<th>Signature</th>
<th>Printed Name</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reminder:
- If you responded “Yes” to SECTION 2, Items c or d, you must complete an “HSP Good Faith Effort - Method A (Attachment A)” for each of the subcontracting opportunities you listed in SECTION 2, Item b.

- If you responded “No” SECTION 2, Items c and d, you must complete an “HSP Good Faith Effort - Method B (Attachment B)” for each of the subcontracting opportunities you listed in SECTION 2, Item b.
HSP Good Faith Effort - Method A (Attachment A)

Enter your company's name here: ____________________________ Requisition #: ____________________________

IMPORTANT: If you responded "Yes" to SECTION 2, Items c or d of the completed HSP form, you must submit a completed "HSP Good Faith Effort - Method A (Attachment A)" for each of the subcontracting opportunities you listed in SECTION 2, Item b of the completed HSP form. You may photo-copy this page or download the form at https://www.comptroller.texas.gov/purchasing/docs/hub-forms/hub-sbcontract-plan-gfe-achm-a.pdf

SECTION A-1: SUBCONTRACTING OPPORTUNITY

Enter the item number and description of the subcontracting opportunity you listed in SECTION 2, Item b, of the completed HSP form for which you are completing the attachment.

Item Number: ______ Description: ____________________________

SECTION A-2: SUBCONTRACTOR SELECTION

List the subcontractor(s) you selected to perform the subcontracting opportunity you listed above in SECTION A-1. Also identify whether they are a Texas certified HUB and their Texas Vendor Identification (VID) Number or federal Employer Identification Number (EIN), the approximate dollar value of the work to be subcontracted, and the expected percentage of work to be subcontracted. When searching for Texas certified HUBs and verifying their HUB status, ensure that you use the State of Texas' Centralized Master Bidders List (CMBL) - Historically Underutilized Business (HUB) Directory Search located at http://mytax.cpa.state.tx.us/tnasssearch/index.jsp. HUB status code "A" signifies that the company is a Texas certified HUB.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Texas certified HUB</th>
<th>Texas VID or federal EIN</th>
<th>Approximate Dollar Amount</th>
<th>Expected Percentage of Contract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ - Yes □ - No</td>
<td>$</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ - Yes □ - No</td>
<td>$</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ - Yes □ - No</td>
<td>$</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ - Yes □ - No</td>
<td>$</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ - Yes □ - No</td>
<td>$</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ - Yes □ - No</td>
<td>$</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ - Yes □ - No</td>
<td>$</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ - Yes □ - No</td>
<td>$</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ - Yes □ - No</td>
<td>$</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ - Yes □ - No</td>
<td>$</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ - Yes □ - No</td>
<td>$</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

REMINDER: As specified in SECTION 4 of the completed HSP form, if you (respondent) are awarded any portion of the requisition, you are required to provide notice as soon as practical to all the subcontractors (HUBs and Non-HUBs) of their selection as a subcontractor. The notice must specify at a minimum the contracting agency's name and its point of contact for the contract, the contract award number, the subcontracting opportunity they (the subcontractor) will perform, the approximate dollar value of the subcontracting opportunity and the expected percentage of the total contract that the subcontracting opportunity represents. A copy of the notice required by this section must also be provided to the contracting agency's point of contact for the contract no later than ten (10) working days after the contract is awarded.

HSP Good Faith Effort - Method B (Attachment B)

Enter your company's name here: ____________________________ Requisition #: ____________________________

IMPORTANT: If you responded "No" to SECTION 2, Items c and d of the completed HSP form, you must submit a completed "HSP Good Faith Effort - Method B (Attachment B)" for each of the subcontracting opportunities you listed in SECTION 2, Item b of the completed HSP form. You may photocopy this page or download the form at https://www.comptroller.texas.gov/purchasing/docs/hub-forms/hub-sbcomt-plan-gfe-acm-b.pdf.

SECTION B-1: SUBCONTRACTING OPPORTUNITY

Enter the item number and description of the subcontracting opportunity you listed in SECTION 2, Item b, of the completed HSP form for which you are completing the attachment.

Item Number: _____ Description: __

SECTION B-2: MENTOR PROTEGE PROGRAM

If respondent is participating as a Mentor in a State of Texas Mentor Protege Program, submitting its Protege (Protege must be a State of Texas certified HUB) as a subcontractor to perform the subcontracting opportunity listed in SECTION B-4, constitutes a good faith effort to subcontract with a Texas certified HUB towards that specific portion of work.

Check the appropriate box (Yes or No) that indicates whether you will be subcontracting the portion of work you listed in SECTION B-1 to your Protege.

☐ - Yes (If Yes, continue to SECTION B-4.)
☐ - No / Not Applicable (If No or Not Applicable, continue to SECTION B-3 and SECTION B-4.)

SECTION B-3: NOTIFICATION OF SUBCONTRACTING OPPORTUNITY

When completing this section you MUST comply with Items a, b, c and d, thereby demonstrating your Good Faith Effort of having notified Texas certified HUBs and trade organizations or development centers about the subcontracting opportunity you listed in SECTION B-1. Your notice should include the scope of work, information regarding the location to review plans and specifications, bonding and insurance requirements, required qualifications, and identify a contact person.

When sending notice of your subcontracting opportunity, you are encouraged to use the attached HUB Subcontracting Opportunity Notice form, which is also available online at https://www.comptroller.texas.gov/purchasing/docs/hub-forms/HUBSubcontractingOpportunityNotificationForm.pdf.

Retain supporting documentation (i.e., certified letter, fax, e-mail) demonstrating evidence of your good faith effort to notify the Texas certified HUBs and trade organizations or development centers. Also, be mindful that a working day is considered a normal business day of a state agency, not including weekends, federal or state holidays, or days the agency is declared closed by its executive officer. The initial day the subcontracting opportunity notice is sent/provided to the HUBs and to the trade organizations or development centers is considered to be "day zero" and does not count as one of the seven (7) working days.

a. Provide written notification of the subcontracting opportunity you listed in SECTION B-1, to three (3) or more Texas certified HUBs. Unless the contracting agency specified a different time period, you must allow the HUBs at least seven (7) working days to respond to the notice prior to you submitting your bid response to the contracting agency. When searching for Texas certified HUBs and verifying their HUB status, ensure that you use the State of Texas' Centralized Master Bidders List (CMBL) - Historically Underutilized Business (HUB) Directory Search located at http://myops.cpa.state.tx.us/fss/search/index.jsp. HUB status code "A" signifies that the company is a Texas certified HUB.

b. List the three (3) Texas certified HUBs you notified regarding the subcontracting opportunity you listed in SECTION B-1. Include the company's Texas Vendor Identification (VID) Number, the date you sent notice to that company, and indicate whether it was responsive or non-responsive to your subcontracting opportunity notice.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Texas VID (Do not enter Social Security Numbers)</th>
<th>Date Notice Sent (mm/dd/yyyy)</th>
<th>Did the HUB Respond?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- No</td>
</tr>
</tbody>
</table>

c. Provide written notification of the subcontracting opportunity you listed in SECTION B-1 to two (2) or more trade organizations or development centers in Texas to assist in identifying potential HUBs by disseminating the subcontracting opportunity to their members/participants. Unless the contracting agency specified a different time period, you must provide your subcontracting opportunity notice to trade organizations or development centers at least seven (7) working days prior to submitting your bid response to the contracting agency. A list of trade organizations and development centers that have expressed an interest in receiving notices of subcontracting opportunities is available on the Statewide HUB Program's webpage at https://www.comptroller.texas.gov/purchasing/vendor/hub/resources.php.

d. List two (2) trade organizations or development centers you notified regarding the subcontracting opportunity you listed in SECTION B-1. Include the date when you sent notice to it and indicate if it accepted or rejected your notice.

<table>
<thead>
<tr>
<th>Trade Organizations or Development Centers</th>
<th>Date Notice Sent (mm/dd/yyyy)</th>
<th>Was the Notice Accepted?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>- Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- No</td>
</tr>
</tbody>
</table>

Page 1 of 2

(Attachment B)
HSP Good Faith Effort - Method B (Attachment B) Cont.

Enter your company's name here: ___________________________ Requisition #: ___________________________

SECTION B-4: SUBCONTRACTOR SELECTION

Enter the item number and description of the subcontracting opportunity you listed in **SECTION 2, Item b.** of the completed HSP form for which you are completing the attachment.

a. Enter the item number and description of the subcontracting opportunity for which you are completing this Attachment B continuation page.

 Item Number: _______ Description: ___________________________

b. List the subcontractor(s) you selected to perform the subcontracting opportunity you listed in **SECTION B-1.** Also identify whether they are a Texas certified HUB and their Texas Vendor Identification (VID) Number or federal Employer Identification Number (EIN), the approximate dollar value of the work to be subcontracted, and the expected percentage of work to be subcontracted. When searching for Texas certified HUBs and verifying their HUB status, ensure that you use the State of Texas’ Centralized Master Bidders List (CMBL) - Historically Underutilized Business (HUB) Directory Search located at http://myopia.cpa.state.tx.us/tpasscombine/search/index.jsp. HUB status code "A" signifies that the company is a Texas certified HUB.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Texas certified HUB</th>
<th>Texas VID or federal EIN</th>
<th>Approximate Dollar Amount</th>
<th>Expected Percentage of Contract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐ - Yes ☐ - No</td>
<td></td>
<td>$</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>☐ - Yes ☐ - No</td>
<td></td>
<td>$</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>☐ - Yes ☐ - No</td>
<td></td>
<td>$</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>☐ - Yes ☐ - No</td>
<td></td>
<td>$</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>☐ - Yes ☐ - No</td>
<td></td>
<td>$</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>☐ - Yes ☐ - No</td>
<td></td>
<td>$</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>☐ - Yes ☐ - No</td>
<td></td>
<td>$</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>☐ - Yes ☐ - No</td>
<td></td>
<td>$</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>☐ - Yes ☐ - No</td>
<td></td>
<td>$</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>☐ - Yes ☐ - No</td>
<td></td>
<td>$</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>☐ - Yes ☐ - No</td>
<td></td>
<td>$</td>
<td>%</td>
</tr>
</tbody>
</table>

If any of the subcontractors you have selected to perform the subcontracting opportunity you listed in **SECTION B-1** is not a Texas certified HUB, provide written justification for your selection process (attach additional page if necessary):

REMEMBER: As specified in **SECTION 4** of the completed HSP form, if you (respondent) are awarded any portion of the requisition, you are required to provide notice as soon as practical to all the subcontractors (HUBs and Non-HUBs) of their selection as a subcontractor. The notice must specify at a minimum the contracting agency’s name and its point of contact for the contract, the contract award number, the subcontracting opportunity it (the subcontractor) will perform, the approximate dollar value of the subcontracting opportunity and the expected percentage of the total contract that the subcontracting opportunity represents. A copy of the notice required by this section must also be provided to the contracting agency’s point of contact for the contract no later than ten (10) working days after the contract is awarded.
HUB Subcontracting Opportunity Notification Form

In accordance with Texas Gov't Code, Chapter 2161, each state agency that considers entering into a contract with an expected value of $100,000 or more shall, before the agency solicits bids, proposals, offers, or other applicable expressions of interest, determine whether subcontracting opportunities are probable under the contract. The state agency I have identified below in Section A has determined that subcontracting opportunities are probable under the requisition to which my company will be responding.

34 Texas Administrative Code, §20.285 requires all respondents (prime contractors) bidding on the contract to provide notice of each of their subcontracting opportunities to at least three (3) Texas certified HUBs (who work within the respective industry applicable to the subcontracting opportunity), and allow the HUBs at least seven (7) working days to respond to the notice prior to the respondent submitting its bid response to the contracting agency. In addition, at least seven (7) working days prior to submitting its bid response to the contracting agency, the respondent must provide notice of each of its subcontracting opportunities to two (2) or more trade organizations or development centers (in Texas) that serves members of groups (i.e., Asian Pacific American, Black American, Hispanic American, Native American, Woman, Service Disabled Veteran) identified in Texas Administrative Code §20.282(19)(C).

We respectfully request that vendors interested in bidding on the subcontracting opportunity scope of work identified in Section C, Item 2, reply no later than the date and time identified in Section C, Item 1. Submit your response to the point-of-contact referenced in Section A.

SECTION A: PRIME CONTRACTOR'S INFORMATION

<table>
<thead>
<tr>
<th>Company Name:</th>
<th>State of Texas VID #:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-of-Contact:</td>
<td>Phone #:</td>
</tr>
<tr>
<td>E-mail Address:</td>
<td>Fax #:</td>
</tr>
</tbody>
</table>

SECTION B: CONTRACTING STATE AGENCY AND REQUISITION INFORMATION

<table>
<thead>
<tr>
<th>Agency Name:</th>
<th>Phone #:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-of-Contact:</td>
<td>Bid Open Date:</td>
</tr>
<tr>
<td>Requisition #:</td>
<td>(mm/dd/yyyy)</td>
</tr>
</tbody>
</table>

SECTION C: SUBCONTRACTING OPPORTUNITY RESPONSE DUE DATE, DESCRIPTION, REQUIREMENTS AND RELATED INFORMATION

1. Potential Subcontractor's Bid Response Due Date:

 If you would like for our company to consider your company's bid for the subcontracting opportunity identified below in Item 2, we must receive your bid response no later than _____ on _____.

 Central Time Date (mm/dd/yyyy)

 In accordance with 34 TAC §20.285, each notice of subcontracting opportunity shall be provided to at least three (3) Texas certified HUBs, and allow the HUBs at least seven (7) working days to respond to the notice prior to submitting our bid response to the contracting agency. In addition, at least seven (7) working days prior to us submitting our bid response to the contracting agency, we must provide notice of each of our subcontracting opportunities to two (2) or more trade organizations or development centers (in Texas) that serves members of groups (i.e., Asian Pacific American, Black American, Hispanic American, Native American, Woman, Service Disabled Veteran) identified in Texas Administrative Code, §20.282(19)(C).

 (A working day is considered a normal business day of a state agency, not including weekends, federal or state holidays, or days the agency is declared closed by its executive officer. The initial day the subcontracting opportunity notice is sent/provided to the HUBs and to the trade organizations or development centers is considered to be "day zero" and does not count as one of the seven (7) working days.)

2. Subcontracting Opportunity Scope of Work:

3. Required Qualifications:

 - [] Not Applicable

4. Bonding/Insurance Requirements:

 - [] Not Applicable

5. Location to review plans/specifications:

 - [] Not Applicable
TABLE OF CONTENTS

ARTICLE 1. DEFINITIONS ... 1

ARTICLE 2. WAGE RATES AND OTHER LAWS GOVERNING CONSTRUCTION 6
 2.1 Environmental Regulations .. 6
 2.2 Wage Rates .. 7
 2.2.1 Notification to Workers .. 7
 2.2.2 Penalty for Violation .. 8
 2.2.3 Complaints of Violations ... 8
 2.3 Licensing of Trades ... 9
 2.4 Royalties, Patents, and Copyrights .. 9
 2.5 State Sales and Use Taxes .. 9
 2.6 Antiquities ... 9
 2.7 Franchise Tax Status .. 9
 2.8 Conflicts of Interest ... 10

ARTICLE 3. GENERAL RESPONSIBILITIES OF OWNER .. 10
 3.1 Preconstruction Conference .. 10
 3.2 OCM .. 10
 3.2.1 Point of Contact .. 10
 3.2.2 Directives .. 10
 3.3 Owner Supplied Materials and Information .. 10
 3.3.1 Surveys .. 10
 3.3.2 Drawings and Specifications .. 10
 3.3.3 Other Information .. 10
 3.4 Availability of Lands ... 10
 3.5 Limitation on Owner’s Duties .. 11
 3.5.1 No Control .. 11
 3.5.2 No Contravention of Design Professional .. 11

ARTICLE 4. GENERAL RESPONSIBILITIES OF DESIGN PROFESSIONAL 11
 4.1 Role of Design Professional .. 11
 4.2 Site Visits .. 11
 4.3 Inspections .. 11
 4.4 Clarifications and Interpretations .. 11
 4.5 Limitations on Design Professional Authority .. 12

ARTICLE 5. GENERAL RESPONSIBILITIES OF CONTRACTOR .. 12
 5.1 Contractor’s General Responsibilities ... 12
 5.2 Project Administration ... 12
 5.2.1 Contractor’s Management Personnel ... 12
 5.2.2 Labor .. 13
 5.2.3 Services, Materials, and Equipment .. 13
 5.2.4 No Substitutions without Approval ... 13
 5.3 Owner Equipment or Material ... 13
 5.4 Non-Compliant Work ... 13
 5.5 Subcontractors .. 13
 5.5.1 Contract Documents .. 13
ARTICLE 6. HISTORICALLY UNDERUTILIZED BUSINESS (HUB) SUBCONTRACTING PLAN .. 16
6.1 General Description .. 16
6.1.1 Good Faith Effort .. 16
6.2 Compliance with Approved HUB Subcontracting Plan .. 16
6.3 Failure to Demonstrate Good-Faith Effort ... 17
ARTICLE 7. BONDS .. 17
7.1 Construction Bonds .. 17
7.2 Bond Requirements .. 17
7.2.1 Performance Bonds .. 17
7.2.2 Payment Bonds ... 17
7.2.3 When Bonds Are Due .. 17
7.2.4 Power of Attorney .. 17
7.3 Bond Indemnification .. 18
7.3.1 Furnishing Bond Information .. 18
7.3.2 Claims on Payment Bonds ... 18
7.4 Payment of Claims when Payment Bond is Not Required .. 18
7.5 Sureties ... 18
7.6 Bond and Cost .. 18
ARTICLE 8. INDEMNITY AND INSURANCE .. 19
8.1 Indemnification of Owner .. 19
8.1.1 No Third-Party Beneficiaries .. 19
8.1.2 Notice ... 19
8.2 Insurance Requirements ... 19
8.2.1 Period of Coverage ... 20
8.2.2 Certificates ... 20
8.2.3 Failure to Provide Certificates ... 20
8.2.4 Contractor’s Liability ... 20
8.2.5 Insurance Limits ... 20
8.2.6 Insurers ... 20
8.3 Insurance Coverage Required .. 20
8.3.1 Workers’ Compensation Insurance ... 20
8.3.2 Commercial General Liability Insurance .. 20
8.3.3 Asbestos Abatement Liability Insurance ... 21
8.3.4 Comprehensive Automobile Liability Insurance ... 21
8.3.5 All-Risk Builder’s Risk Insurance ... 22
8.3.6 “Umbrella” Liability Insurance ... 22
8.4 Policy Requirements ... 23
ARTICLE 9. CONSTRUCTION DOCUMENTS, COORDINATION DOCUMENTS, AND RECORD DOCUMENTS

9.1 Drawings and Specifications ... 24
9.1.1 Copies Furnished ... 24
9.1.2 Ownership of Drawings and Specifications 24
9.2 Interrelation of Documents .. 24
9.3 Resolution of Conflicts in Documents ... 24
9.4 Contractor’s Duty to Review Contract Documents 24
9.5 Discrepancies and Omissions in Drawings and Specifications 24
9.5.1 Design-Build Firm .. 25
9.5.2 Construction Manager-at-Risk Examination and Reporting 25
9.5.3 Other Limitations .. 25
9.6 No Warranty or Representation by Owner ... 25
9.7 Requirements for Record Documents .. 25
9.7.1 Contractor shall: ... 25
9.7.2 Design Professional shall: ... 26

ARTICLE 10. CONSTRUCTION SAFETY .. 26

10.1 General ... 26
10.2 Notices .. 27
10.2.1 Utilities and Adjacent Properties .. 27
10.2.2 MSDS ... 27
10.3 Emergencies .. 27
10.3.1 On Call Response .. 27
10.3.2 Notice .. 27
10.3.3 Owner Remedy .. 27
10.4 Injuries ... 27
10.4.1 Documentation ... 27
10.4.2 Incident Report .. 27
10.5 Environmental Safety .. 28
10.5.1 Subcontractors .. 28
10.5.2 Owner ... 28
10.6 Trenching Plan .. 28

ARTICLE 11. QUALITY CONTROL .. 28

11.1 Materials & Workmanship ... 28
11.2 Testing ... 29
11.2.1 Owner .. 29
11.2.2 Contractor shall provide the following testing: 29
11.2.3 Standards .. 29
11.2.4 Non-Compliance (Test Results) .. 29
11.2.5 Notice of Testing .. 30
11.2.6 Test Samples .. 30
11.2.7 Covering Up Work ... 30
11.3 Submittals ... 30
11.3.1 Contractor’s Submittals ... 30
11.3.2 Review of Submittals ... 30
11.3.3 Correction and Resubmission .. 31
11.3.4 Limits on Shop Drawing Review ... 31
ARTICLE 14. CHANGES ... 44
14.1 Change Orders ... 44
14.1.1 Owner Ordered Changes .. 45
14.1.2 Corrections .. 45
14.2 Unit Prices .. 45
14.3 Claims for Additional Costs ... 45
14.3.1 Claim with no Requested Change 45
14.3.2 Miscellaneous Claims .. 46
14.3.3 Failure to Notify .. 46
14.4 Minor Changes ... 46
14.5 Concealed Site Conditions ... 46
14.6 Extension of Time ... 46
14.7 Administration of Change Order Requests 47
14.7.1 Procedures .. 47
14.7.2 Routine Changes .. 47
14.7.3 Documentation ... 47
14.7.4 Emergencies .. 47
14.7.5 Coordination with Schedule of Values 47
14.8 Pricing Change Order Work ... 47
14.8.1 Self-Performance ... 48
14.8.2 Overhead and Profit ... 48
14.8.3 Subcontractor Performed .. 48
14.8.4 Subcontractor Coordination .. 48
14.8.5 GMP Limitation .. 48
14.8.6 Net Amount ... 48
14.9 Construction Change Directive (CCD) 48
14.10 Audit of Changes .. 48

ARTICLE 15. PROJECT COMPLETION AND ACCEPTANCE 49
15.1 Closing Inspections ... 49
15.1.1 Purpose of Inspection .. 49
15.1.2 Annotation .. 49
15.1.3 Substantial Completion Inspection 49
15.1.4 Final Inspection .. 50
15.1.5 Additional Inspections ... 50
15.1.6 Phased Completion ... 51
15.2 Owner’s Right of Occupancy .. 51
15.3 Acceptance and Payment .. 51
15.3.1 Request for Final Payment .. 51
15.3.2 Final Payment Documentation 52
15.3.3 Design Professional Approval 52
ARTICLE 16. WARRANTY AND GUARANTEE ... 53
16.1 Contractor’s General Warranty and Guarantee ... 53
16.1.1 Warranty Period ... 53
16.1.2 Limits on Warranty ... 53
16.1.3 Events Not Affecting Warranty ... 54
16.2 Separate Warranties ... 54
16.2.1 Assumption .. 54
16.2.2 Assignment .. 54
16.3 Correction of Defects ... 54
16.4 Certification of No Asbestos Containing Materials or Work 55

ARTICLE 17. SUSPENSION AND TERMINATION ... 55
17.1 Suspension of Work for Cause ... 55
17.1.1 Cease Work .. 55
17.1.2 Investigation .. 55
17.1.3 Outcome .. 55
17.1.4 Time ... 56
17.2 Suspension of Work for Owner’s Convenience ... 56
17.3 Termination by Owner for Cause ... 56
17.3.1 Cause .. 56
17.3.2 No Waiver ... 56
17.3.3 Notice .. 57
17.3.4 Cure ... 57
17.3.5 Failure to Cure ... 57
17.3.6 Conversion to Termination for Convenience ... 57
17.4 Termination for Convenience of Owner ... 57
17.4.1 Notice .. 58
17.4.2 Contractor Action ... 58
17.4.3 Contractor Remedy .. 58
17.5 Termination by Contractor ... 58
17.6 Settlement on Termination .. 58

ARTICLE 18. DISPUTE RESOLUTION .. 59
18.1 Contracts Less Than $250,000 .. 59
18.2 Contracts $250,000 or Greater .. 59
18.2.1 Mediation .. 59
18.3 Owner Retained Rights ... 60
18.4 No Waiver .. 60
18.5 No Attorney’s Fees .. 60
18.6 Interest ... 60

ARTICLE 19. MISCELLANEOUS ... 60
19.1 Right to Audit .. 60
19.2 Supplementary or Special Conditions .. 61
19.2.1 Supplementary Conditions .. 61
19.2.2 Special Conditions ... 61
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3</td>
<td>Federally Funded Projects</td>
<td>61</td>
</tr>
<tr>
<td>19.4</td>
<td>Internet-based Project Management Systems</td>
<td>61</td>
</tr>
<tr>
<td>19.4.1</td>
<td>Accessibility and Administration</td>
<td>61</td>
</tr>
<tr>
<td>19.4.2</td>
<td>Training</td>
<td>62</td>
</tr>
<tr>
<td>19.5</td>
<td>Computation of Time</td>
<td>62</td>
</tr>
<tr>
<td>19.6</td>
<td>Survival of Obligations</td>
<td>62</td>
</tr>
<tr>
<td>19.7</td>
<td>No Waiver of Performance</td>
<td>62</td>
</tr>
<tr>
<td>19.8</td>
<td>Governing Law and Venue</td>
<td>62</td>
</tr>
<tr>
<td>19.9</td>
<td>Captions and Catch Lines</td>
<td>62</td>
</tr>
<tr>
<td>19.10</td>
<td>Independent Contractor Status</td>
<td>62</td>
</tr>
<tr>
<td>19.11</td>
<td>No Third-Party Beneficiaries</td>
<td>62</td>
</tr>
<tr>
<td>19.12</td>
<td>Child Support Obligor</td>
<td>62</td>
</tr>
<tr>
<td>19.13</td>
<td>Buy America Requirements for Iron and Steel Used in Construction</td>
<td>63</td>
</tr>
<tr>
<td>19.14</td>
<td>No Assignment</td>
<td>63</td>
</tr>
<tr>
<td>19.15</td>
<td>Severability</td>
<td>63</td>
</tr>
<tr>
<td>19.16</td>
<td>Parties Bond</td>
<td>63</td>
</tr>
<tr>
<td>19.17</td>
<td>Public Information</td>
<td>63</td>
</tr>
<tr>
<td>19.18</td>
<td>Entire Agreement</td>
<td>63</td>
</tr>
</tbody>
</table>
ARTICLE 1.
DEFINITIONS

Unless the context clearly requires another meaning, the following terms have the meaning assigned herein.

1.1 “Addendum/Addenda” means formally issued written or graphic modification and/or interpretations of the Construction Documents that may add to, delete from, clarify or correct the description and/or scope of the Work. Addenda are issued during the bidding phase of the project.

1.2 “Application for Final Payment” means Contractor’s final invoice for payment that includes any portion of the Work that has been completed for which an invoice has not been submitted, amounts owing to adjustments to the final Contract Sum resulting from approved change orders, and release of remaining Contractor’s retainage.

1.3 “Application for Payment” means Contractor’s monthly partial invoice for payment that includes any portion of the Work that has been completed and performed in accordance with the requirements of the Contract Documents for which an invoice has not been submitted. The Application for Payment must accurately reflect the progress of the Work, be itemized based on the Schedule of Values, bear the notarized signature of Contractor, and not include subcontracted items for which Contractor does not intend to pay.

1.4 “Authority Having Jurisdiction” means a federal, state, local or other regional department, or an individual such as a fire marshal, building official, electrical inspector, utility provider or other individual having statutory authority.

1.5 “Baseline Schedule” means the initial time schedule prepared by Contractor for Owner’s information and acceptance that conveys Contractor’s and Subcontractors’ activities (including coordination and review activities required in the Contract Documents to be performed by Design Professional and Owner), durations, and sequence of work related to the entire Project to the extent required by the Contract Documents. The schedule clearly demonstrates the Longest Path of activities, durations, and necessary predecessor conditions that drive the end date of the schedule. The Baseline Schedule shall not exceed the time limit current under the Contract Documents.

1.6 “Certificate of Final Completion” means the certificate issued by Design Professional that documents, to the best of Design Professional’s knowledge and understanding, Contractor’s
completion of all Contractor’s Punch list items and pre-final Punch list items, final cleanup, and Contractor’s provision of Record Documents, operations and maintenance manuals, and all other closeout documents required by the Contract Documents.

1.7 “Certificate of Substantial Completion” means the certificate executed by the Design Professional, Owner, and Contractor that documents to the best of the Design Professional’s and Owner’s knowledge and understanding, Contractor’s sufficient completion of the Work in accordance with the Contract, so as to be operational and fit for the use intended.

1.8 “Change Order” means a written modification of the Contract between Owner and Contractor, agreed to and signed by Owner, Contractor, and Design Professional.

1.9 “Change Order Request (COR)” means a Contractor generated document which describes a change in the scope of Work, including a detailed description, Drawings and Specifications, and a request for changes to costs or time, as necessary, to inform Owner of the nature of the requested change to the Contract.

1.10 “Close-Out Documents” mean the product brochures, submittals, product/equipment maintenance and operations instructions, manuals, and other documents/warranties, record documents, affidavits of payment, releases of liens and claims, and other documents as may be further defined, identified, and required by the Contract Documents.

1.11 “Contract” means the agreement, including all attachments thereto, and all of the Contract Documents between Owner and Contractor.

1.12 “Contract Date” is the date when the agreement between Owner and Contractor becomes effective.

1.13 “Contract Documents” mean those documents identified as a component of the Contract between Owner and Contractor. These may include, but are not limited to: Drawings; Specifications; Uniform General Conditions; Owner’s Special Conditions; Owner’s Design Criteria Package for Design-Build Projects; Guaranteed Maximum Price Proposal executed by Owner and Contractor; all Change Orders; all pre-bid and/or pre-proposal addenda; Owner’s Request for Proposal and/or Request for Qualifications; and Contractor’s response to Owner’s Request for Proposal and/or Request for Qualifications.

1.14 “Contract Duration” means the period between the Effective Date of the Contract and the end of the Warranty Period.

1.15 “Contract Sum” means the total compensation payable to Contractor for completion of the Work in accordance with the terms of the Contract.

1.16 “Contract Time” means the period between the start date identified in the Notice to Proceed with construction and the date to achieve Substantial Completion identified in the Notice to Proceed or as subsequently amended by a Change Order.
1.17 "Contractor" means the individual, corporation, limited liability company, partnership, joint venture, firm, or other entity contracted to perform the Work, regardless of the type of construction contract used, so that the term as used herein includes a Construction Manager-at-Risk or a Design-Build firm as well as a general or prime Contractor. The Contract Documents refer to Contractor as if singular in number but shall be interpreted to include the plural. The term “Contractor” shall also be inclusive of and apply to Design Professional in these Uniform General Conditions when the context does not indicate otherwise.

1.18 “Construction Change Directive” means an approved change in the Work issued by the Owner without the complete agreement of Contractor as to cost and/or time.

1.19 “Construction Documents” mean the Drawings, Specifications, and other documents issued to build the Project. Construction Documents become part of the Contract Documents when listed in the Contract or any Change Order.

1.20 “Construction Manager-at-Risk”, in accordance with Tex. Education Code §51.782, means a sole proprietorship, partnership, corporation, or other legal entity that assumes the risk for construction, rehabilitation, alteration, or repair of a facility at the contracted price as a general contractor and provides consultation to Owner regarding construction during and after the design of the facility.

1.21 “Coordination Documents” means an ongoing process performed by the Contractor that documents, in a format approved by the Owner, the review of plans and specifications developed by the Design Professional demonstrating the Contractor understands the scope of the project and reviews complex interrelationships among project components.

1.22 “Date of Commencement” means the date designated in the Notice to Proceed for Contractor to commence the Work.

1.23 “Day” means a calendar day unless otherwise specifically stipulated.

1.24 “Design-Build” means a project delivery method in which the detailed design and subsequent construction is provided through a single contract with a Design-Build Firm. The Design-Build Project delivery shall be implemented in accordance with Tex. Education Code § 51.780.

1.25 “Design-Build Firm”, in accordance with Texas Education Code § 51.780, means a partnership, corporation, or other legal entity or team that includes an engineer or architect and builder qualified to engage in building construction in Texas.

1.26 “Design Professional” means a person registered as an architect pursuant to Tex. Occ. Code Ann., Chapter 1051, as a landscape architect pursuant to Tex. Occ. Code Ann., Chapter 1052, a person licensed as a professional engineer pursuant Tex. Occ. Code Ann., Chapter 1001, and/or a firm employed by Owner or Design-Build Contractor to provide professional architectural or engineering services and to exercise overall responsibility for the design of a Project or a significant portion thereof, and to perform the contract administration responsibilities set forth in the Contract.
1.27 “Drawings” mean that product and set of documents of Design Professional which graphically depicts the Work.

1.28 “Final Completion” means the date determined and certified by Design Professional and Owner on which the Work is fully and satisfactorily complete in accordance with the Contract.

1.29 “Final Payment” means the last and final monetary compensation made to Contractor for any portion of the Work that has been completed and accepted for which payment has not been made including adjustments to the final Contract Sum resulting from approved change orders and release of Contractor’s retainage.

1.30 “Float” means the period of time a task can be delayed without delaying Substantial Completion date.

1.31 “Historically Underutilized Business (HUB)” pursuant to Tex. Gov’t Code, Chapter 2161, means a business that is at least 51% owned by an Asian Pacific American, a Black American, a Hispanic American, a Native American and/or an American Woman; is an entity with its principal place of business in Texas; and has an owner residing in Texas with proportionate interest that actively participates in the control, operations, and management of the entity’s affairs.

1.32 “Longest Path” means the sequence of directly related activities that comprise the longest continuous chain of activities from the start of the first activity to the finish of the last activity. The activities represent critical path plus float plus historical weather days. Each activity in the Longest Path is critical and directly related in that it prevents its successor from being scheduled earlier than it is.

1.33 “Notice to Proceed” means written document furnished by the Owner informing Contractor of the date to commence the Work and the date anticipated for Substantial Completion.

1.34 “Open Item List” means a list of work activities, Punch list items, changes, or other issues not expected by Owner, Design Professional, and Contractor to be complete prior to Substantial Completion.

1.35 “Owner” means the University of North Texas System and/or its component institutions, as a higher education university system and agency of the State of Texas.

1.36 “Owner’s Construction Manager (OCM)” means the individual assigned by the Owner to act on its behalf and to undertake certain activities as specifically outlined in the Contract. The OCM does not have the authority to bind the Owner or direct changes to the scope, cost, or time of the Contract.

1.37 “Owner’s Designated Representative (ODR)” means the individual assigned by Owner to act on its behalf and to undertake certain activities as specifically outlined in the Contract. The ODR is the only party authorized to direct changes to the scope, cost, or time of the Contract.

1.38 “Progress Assessment Report (PAR)” means the monthly compliance report to Owner verifying compliance with the HUB subcontracting plan (HSP).
1.39 “Project” means all activities necessary for realization and completion of Owner’s desired building or other structure including all ancillary and related work. This includes design, contract award(s), execution of the Work itself, fulfillment of all Contract and warranty obligations, and work by Owner’s forces or other contractors.

1.40 “Project Costs” means all costs necessary for the realization and completion of Owner’s desired building or other structure including all ancillary and related work. This includes design, contract award(s), execution of the Work itself, fulfillment of all Contract and warranty obligations, and work by Owner’s forces or other contractors.

1.41 “Proposal Request (PR)” means a document that informs Contractor, Owner, and Design Professional of a proposed change in the Work and appropriately describes or otherwise documents such change including Contractor’s pricing for the proposed change.

1.42 “Punch list” means a list of items of Work to be completed or corrected by Contractor before Final Completion, and indicates items to be finished, remaining Work to be performed, or Work that does not meet quality or quantity requirements as required in the Contract Documents.

1.43 “Reasonably Inferable” means a fair, proper, and moderate conclusion reached by considering all of the facts and deducing a logical conclusion from them.

1.44 “Record Documents” mean the Drawings, Specifications, and other materials maintained by Contractor during construction and as corrected by Design Professional, that documents all addenda, Architect’s Supplemental Instructions, Change Orders, and postings and markings that record the as-built conditions of the Work and all changes made during construction.

1.45 “Request for Information (RFI)” means a written request by Contractor directed to Design Professional and Owner for a clarification of the information provided in the Contract Documents or for direction concerning information necessary to perform the Work.

1.46 “Samples” mean representative physical examples of materials, equipment, or workmanship used to confirm compliance with requirements and/or to establish standards for use in execution of the Work.

1.47 “Schedule of Values” means the detailed breakdown of the cost of the materials, labor, and equipment necessary to accomplish the Work, submitted by Contractor for approval by Owner and Design Professional.

1.48 “Shop Drawings” mean the drawings, diagrams, illustrations, schedules, performance charts, brochures, and other data prepared by Contractor or its agents which detail a portion of the Work.

1.49 “Site” means the geographical area of the location of the Work.

1.50 “Special Conditions” mean the documents containing terms and conditions which may be unique to the Work or Project.
1.51 “Specifications” mean the written product of Design Professional that establishes the quality and/or performance of products utilized in the Work and processes to be used, including testing and verification for producing the Work.

1.52 “Subcontractor” means an individual or entity that enters into an agreement with Contractor to perform part of the Work or to provide services, materials, or equipment for use in the Work.

1.53 “Submittal Register” means a list provided by Contractor of all items to be furnished for review and approval by Design Professional and Owner and as identified in the Contract Documents including anticipated sequence and submittal dates.

1.54 “Substantial Completion” means the date determined and certified by Contractor, Design Professional, and Owner when the Work, or a designated portion thereof, is sufficiently complete, in accordance with the Contract, so as to be operational and fit for the use intended.

1.55 “Substantial Completion Date” means the required date for substantial completion of the project. The Substantial Completion Date can only be changed by a written change order.

1.56 “Total Float” means the total number of days an activity on the longest path can be delayed without delaying the Substantial Completion Date.

1.57 “Unit Price Work” means the Work or a portion of the Work, paid for based on incremental units of measurement.

1.58 “Work” means the administration, procurement, materials, equipment, construction, and all services necessary for Contractor, and/or its agents, to fulfill Contractor’s obligations under the Contract.

1.59 “Work Progress Schedule” means the continually updated time schedule prepared and monitored by Contractor that coordinates and integrates activities of the Project, including Contractor’s services, Design Professional’s services, the work of other consultants, suppliers, and Owner’s activities with the anticipated construction schedules for other contractors. The Work Progress Schedule accurately indicates all necessary and appropriate revisions, including a Longest Path impact analysis, as required by the conditions of the Work and the Project while maintaining a concise comparison to the Baseline Schedule.

ARTICLE 2.
WAGE RATES AND OTHER LAWS GOVERNING CONSTRUCTION

2.1 Environmental Regulations. Contractor shall conduct activities in compliance with applicable laws and regulations and other requirements of the Contract relating to the environment and its protection at all times. Unless otherwise specifically determined, Contractor is responsible for obtaining and maintaining permits related to storm water run-off. Contractor shall conduct operations consistent with storm water run-off permit conditions. Contractor is responsible for all items it brings to the Site, including hazardous materials, and all such items brought to the Site by
its Subcontractors and suppliers, or by other entities subject to direction of Contractor. Contractor shall not incorporate hazardous materials into the Work without prior approval of Owner, and shall provide an affidavit attesting to such in association with request for Substantial Completion inspection.

2.2 **Wage Rates.** Contractor shall, and shall cause subcontractors to, comply with the Texas Prevailing Wage law. Contractor shall pay not less than the wage scale of the various classes of labor as shown on the prevailing wage schedule as established by the United States Department of Labor in accordance with the Davis-Bacon Act, as amended. The specified wage rates are minimum rates only. Owner is not bound to pay any claims for additional compensation made by Contractor because Contractor pays wages in excess of the applicable minimum rate contained in the Contract. The prevailing wage schedule is not a representation that qualified labor adequate to perform the Work is available locally at the prevailing wage rates. When requested, Contractor shall furnish competent evidence of compliance with the Texas Prevailing Wage Law and the addresses of all workers.

2.2.1 **Notification to Workers.** Contractor shall post the prevailing wage schedule in a place conspicuous to all workers on the Project Site and shall notify each worker, in writing, of the following as they commence Work on the Contract: the worker’s job classification, the established minimum wage rate requirement for that classification, as well as the worker’s actual wage. The notice must be delivered to and signed in acknowledgement of receipt by the worker and must list both the wages and fringe benefits to be paid or furnished for each classification in which the worker is assigned duties.

2.2.1.1 Contractor shall submit a copy of each worker’s wage-rate notification to Owner with the application for progress payment for the period during which the worker was engaged in activities on behalf of the Project.

2.2.1.2 Pursuant to Tex. Gov’t Code § 2258.024, Contractor shall keep, on site, true and accurate records showing the name and occupation of each worker employed by the Contractor or subcontractors and the actual per diem wages paid to each worker. The record shall be open to inspection by the ODR and their agents at all reasonable hours for the duration of the contract.

2.2.1.3 With each application for progress payment, Contractor shall make available upon request certified payroll records, including from subcontractors of any tier level, on Form WH-347 as promulgated by the U.S. Department of Labor, as may be revised from time to time and in unlocked and unprotected Excel format, along with copies of any and all Contract Documents between Contractor and any Subcontractor. Pursuant to Tex. Penal Code § 37.02 and 37.10, Employees of Contractor and subcontractors, including all tier levels, shall be subject to prosecution for submitting certified payroll records that contain materially false information.

2.2.1.4 The prevailing wage schedule is determined by Owner in compliance with Tex. Gov’t Code, Chapter 2258. Should Contractor at any time become aware
that a particular skill or trade not reflected on Owner’s prevailing wage schedule will be or is being employed in the Work, whether by Contractor or by Subcontractor, Contractor shall promptly inform Owner of the proposed wage to be paid for the skill along with a justification for same and Owner shall promptly concur with or reject the proposed wage and classification.

2.2.1.5 Contractor is responsible for determining the most appropriate wage for a particular skill in relation to similar skills or trades identified on the prevailing wage schedule. In no case, shall any worker be paid less than the wage indicated for laborers.

2.2.1.6 Pursuant to Tex. Labor Code § 214.008, Misclassification of Workers; Penalty. The Owner requires Contractor and all subcontractors properly classify individuals as Employees or Independent Contractors.

2.2.2 Penalty for Violation. Contractor, and any Subcontractor, will pay to the State a penalty of sixty dollars ($60) for each worker employed for each day, or portion thereof, that the worker is paid less than the wage rates stipulated in the prevailing wage schedule.

2.2.3 Complaints of Violations.

2.2.3.1 Owner’s Determination of Good Cause. Upon receipt of information concerning a violation, Owner will conduct an investigation in accordance with Tex. Gov’t Code, Chapter 2258, and make an initial determination as to whether good cause exists that a violation occurred. Upon making a good cause finding, Owner will retain the full amounts claimed by the claimant or claimants as the difference between wages paid and wages due under the prevailing wage schedule and any supplements thereto, together with the applicable penalties, such amounts being subtracted from successive progress payments pending a final decision on the violation.

2.2.3.2 No Extension of Time. If Owner’s determination proves valid that good cause existed to believe a violation had occurred, Contractor is not entitled to an extension of time for any delay arising directly or indirectly from the arbitration procedures.

2.2.3.3 Cooperation with Owner’s Investigation. Contractor shall cooperate with Owner during any investigation hereunder. Such cooperation shall include, but not necessarily be limited to, timely providing the information and/or documentation requested by Owner, which may include certified payroll records on Form WH-347 as promulgated by the U.S Department of Labor, as may be revised from time to time and in unlocked and unprotected Excel format; and copies of any and all Contract Documents between Contractor and any Subcontractors.
2.2.3.4 Notification to Owner. In the event Contractor or Subcontractor elect to appeal an initial determination made pursuant to Paragraph 2.2.3.1, the Contractor and/or Subcontractor, as applicable, shall deliver notice thereof to Owner.

2.3 Licensing of Trades. Contractor shall comply with all applicable provisions of State law related to license requirements for skilled tradesmen, contractors, suppliers, and laborers, as necessary to accomplish the Work. In the event Contractor, or one of its Subcontractors, loses its license during the term of performance of the Contract, Contractor shall promptly hire or contract with a licensed provider of the service at no additional cost to Owner.

2.4 Royalties, Patents, and Copyrights. Contractor shall pay all royalties and license fees, defend suits or claims for infringement of copyrights and patent rights, and shall hold Owner harmless from loss on account thereof. Provided, however, if Contractor is a Construction Manager-at-Risk, Contractor shall not be responsible for such defense or loss when a particular design, process, or product of a particular manufacturer or manufacturers is required by the Contract Documents, or where the copyright violations are contained in Drawings, Specifications, or other documents prepared by Owner or Design Professional; unless Contractor has reason to believe that the required design, process, or product is an infringement of a copyright or a patent then Contractor shall be responsible for such loss unless notice of such information is promptly furnished to Design Professional.

2.5 State Sales and Use Taxes. Owner qualifies for exemption from certain State and local sales and use taxes pursuant to the provisions of Tex. Tax Code, Chapter 151. Upon request from Contractor, Owner shall furnish evidence of tax exempt status. Contractor may claim exemption from payment of certain applicable State taxes by complying with such procedures as prescribed by the State Comptroller of Public Accounts. Owner acknowledges not all items qualify for exemption. Owner is not obligated to reimburse Contractor for taxes paid on items that qualify for tax exemption.

2.6 Antiquities. Contractor shall take precaution to avoid disturbing primitive records and antiquities of archaeological, paleontological, or historical significance. No objects of this nature shall be disturbed without written permission of Owner and the Texas Historical Commission. When such objects are uncovered unexpectedly, the Contractor shall stop all Work in close proximity and notify the OCM and the Texas Historical Commission of their presence and shall not disturb them until written permission and permit to do so is granted. All primitive rights and antiquities, as defined in Chapter 191, Texas Natural Resource Code, discovered on the Owner’s property shall remain property of State of Texas. If it is determined by Owner, in consultation with the Texas Historical Commission that exploration or excavation of primitive records or antiquities on the Project Site is necessary to avoid loss, Contractor shall cooperate in salvage work attendant to preservation. If the Work stoppage or salvage work causes an increase in the Contractor’s cost of, or time required for, performance of the Work, Contractor may file with the Owner a Notice of Claim as described in § 21.1.2.2.

2.7 Franchise Tax Status. Upon request, the Contractor agrees to execute and provide to the Owner a Certification of Franchise Tax Payment, on a form approved by the Owner.
2.8 **Conflicts of Interest.** Parties shall perform their obligations with integrity, ensuring at a minimum that each: (a) avoids conflicts of interest and promptly discloses any to the other Party; and (b) warrants that it has not and shall not pay or receive any contingent fees or gratuities to or from the other Party, including its agents, officers and employees, subcontractors, sub-consultants or others for whom they may be liable, to secure preferential treatment.

ARTICLE 3.

GENERAL RESPONSIBILITIES OF OWNER

3.1 **Preconstruction Conference.** Prior to, or concurrent with, the issuance of Notice to Proceed, a conference will be convened for attendance by Owner, Contractor, Design Professional and appropriate Subcontractors. The purpose of the conference is to establish a working understanding among the parties as to the Work, the operational conditions at the Project Site, and general administration of the Project. Topics include communications, schedules, procedures for handling Shop Drawings and other submittals, processing Applications for Payment, maintaining required records and all other matters of importance to the administration of the Project and effective communications between the Project team members.

3.2 **Owner’s Construction Manager (OCM).** Prior to the start of construction, Owner will identify its OCM, who has the express authority to act on behalf of the Owner to the extent and for the purposes described in the Contract, including responsibilities for general administration of the Contract.

3.2.1 **Point of Contact.** Unless otherwise specifically defined elsewhere in the Contract Documents, OCM is the single point of contact between Owner and Contractor. Notice to OCM, unless otherwise noted, constitutes notice to Owner under the Contract.

3.2.2 **Directives.** All directives on behalf of Owner will be conveyed to Contractor and Design Professional by OCM in writing.

3.3 **Owner Supplied Materials and Information.**

3.3.1 **Surveys.** Owner will furnish to Contractor those surveys Owner possesses describing the physical characteristics, legal description, limitations of the Site, Site utility locations, and other information used in the preparation of the Contract Documents.

3.3.2 **Drawings and Specifications.** Owner will furnish or cause to be furnished, free of charge, the number of complete sets, paper or electronic, of the Drawings, Specifications, and addenda as provided in the Contract.

3.3.3 **Other Information.** Owner will provide information, equipment, or services under Owner’s control to Contractor with reasonable promptness.

3.4 **Availability of Lands.** Owner will furnish, as indicated in the Contract, all required rights to use the lands upon which the Work occurs. This includes rights-of-way and easements for access and such other lands that are designated for use by Contractor. Contractor shall comply with all Owner
identified encumbrances or restrictions specifically related to use of lands so furnished. Owner will obtain and pay for easements for permanent structures or permanent changes in existing facilities, unless otherwise required in the Contract Documents.

3.5 Limitation on Owner’s Duties.

3.5.1 No Control. Owner will not supervise, direct, control or have authority over, or be responsible for Contractor’s means, methods, technologies, sequences, or procedures of construction or the safety precautions and programs incident thereto. Owner is not responsible for any failure of Contractor to comply with laws and regulations applicable to the Work. Owner is not responsible for the failure of Contractor to perform or furnish the Work in accordance with the Contract Documents. Except as provided in Section 2.4, Owner is not responsible for the acts or omissions of Contractor, or any of its Subcontractors, suppliers, or of any other person or organization performing or furnishing any of the Work on behalf of Contractor.

3.5.2 No Contravention of Design Professional. Owner will not take any action in contravention of a design decision made by Design Professional in preparation of the Contract Documents, when such actions are in conflict with statutes under which Design Professional is licensed for the protection of the public health and safety.

ARTICLE 4.
GENERAL RESPONSIBILITIES OF DESIGN PROFESSIONAL

4.1 Role of Design Professional. Unless specified otherwise in the Contract between Owner and Contractor, in addition to design services Design Professional shall provide general administration services for Owner during the construction phase of the project. Written correspondence, RFIs, and Shop Drawings/submittals shall be directed to Design Professional for determination and action. Design Professional has the authority to act on behalf of Owner to the extent provided in the Contract Documents, unless otherwise modified by written instrument, which will be furnished to Contractor by OCM, upon request.

4.2 Site Visits. Design Professional will make visits to the Site at intervals as provided in the Design Professional’s Contract with Owner, to observe the progress and the quality of the various aspects of Contractor’s executed Work and report findings to OCM.

4.3 Inspections. Design Professional has the authority to interpret Contract Documents and inspect the Work for compliance and conformance with the Contract. Except as referenced in Paragraph 3.1.5.2, Owner retains the sole authority to accept or reject Work and issue direction for correction, removal, or replacement of Work.

4.4 Clarifications and Interpretations. It may be determined that clarifications or interpretations of the Contract Documents are necessary. Such clarifications or interpretations will be provided by Design Professional consistent with the intent of the Contract Documents. Design Professional will issue these clarifications with reasonable promptness to Contractor as Design Professional’s
supplemental instruction (“ASI”) or similar instrument. If Contractor believes that such clarification or interpretation justifies an adjustment in the Contract Sum or the Contract Time, Contractor shall so notify Owner in accordance with the provisions of Article 14.

4.5 **Limitations on Design Professional Authority.** Design Professional is not responsible for:

- Contractor’s means, methods, techniques, sequences, procedures, safety, or programs incident to the Work, nor will Design Professional supervise, direct, control, or have authority over the same;
- The failure of Contractor to comply with laws and regulations applicable to the furnishing or performing the Work;
- Contractor’s failure to perform or furnish the Work in accordance with the Contract Documents; or
- Acts or omissions of Contractor, or of any other person or organization performing or furnishing any of the Work.

ARTICLE 5. GENERAL RESPONSIBILITIES OF CONTRACTOR

5.1 **Contractor’s General Responsibilities.** Contractor is solely responsible for implementing the Work in full compliance with all applicable laws and the Contract Documents and shall supervise and direct the Work using the best skill and attention to assure that each element of the Work conforms to the Contract requirements. Contractor is solely responsible for all construction means, methods, techniques, safety, sequences, coordination, procedures and protection of the installed work as part of the contract until Substantial Completion of the project. Contractor remains responsible for the care and protection of materials and Work in the areas where Punch list items are completed until Final Completion.

5.1.1 **Site Visit.** Contractor shall visit the Site before commencing the Work and become familiar with local conditions such as the location, accessibility and general character of the Site and/or building.

5.2 **Project Administration.** Contractor shall provide Project administration for all Subcontractors, vendors, suppliers, and others involved in implementing the Work and shall coordinate administration efforts with those of Design Professional and OCM in accordance with these Uniform General Conditions and other provisions of the Contract, and as outlined in the pre-construction conference. Contractor’s Project Administration includes periodic daily reporting on weather, work progress, labor, materials, equipment, obstruction to prosecution of the work, accidents and injuries in accordance with the Contract and transmitted no less frequently than on a weekly basis.

5.2.1 **Contractor’s Management Personnel.** Contractor shall employ a competent person or persons who will be present at the Project Site during the progress of the Work to supervise or oversee the Work. Contractor’s management personnel are subject to the approval of OCM, and shall be removed and replaced at the request of OCM. Contractor shall not
change approved staff during the course of the Project without the written approval of OCM unless the staff member leaves the employment of Contractor in which case Contractor shall notify OCM and appoint an approved replacement as soon as reasonably possible. Contractor shall provide additional quality control, safety, and other staff as may be stated in the Contract Documents or as may be necessary or advisable for completion of the Work.

5.2.2 Labor. Contractor shall provide competent, suitably qualified personnel to survey, lay-out, and construct the Work as required by the Contract Documents and maintain good discipline and order at the Site at all times.

5.2.3 Services, Materials, and Equipment. Unless otherwise specified, Contractor shall provide and assume full responsibility for all services, materials, equipment, labor, transportation, construction equipment and machinery, tools, appliances, fuel, power, light, heat, telephone, water, sanitary facilities, temporary facilities, and all other facilities, incidentals, and services necessary for the construction, performance, testing, start-up, inspection, and completion of the Work. The Contractor shall provide, without extra charge, all incidental items required as a part of the Work, even if not particularly specified or indicated in the Contract Documents.

5.2.4 No Substitutions without Approval. Contractor may make substitutions only with the consent of the Owner, after evaluation and recommendation by the Design Professional and in accordance with a Change Order.

5.3 Owner Equipment or Material. For Owner furnished equipment or material that will be in the care, custody, and control of Contractor, Contractor will be responsible for any damage or loss.

5.4 Non-Compliant Work. Should Design Professional and/or OCM identify Work as noncompliant with the Contract Documents, Design Professional and/or OCM shall communicate the finding to Contractor, and Contractor shall correct such Work at no additional cost to the Owner. The approval of Work by either Design Professional or OCM does not relieve Contractor from the obligation to comply with all requirements of the Contract Documents.

5.5 Subcontractors. Contractor shall not employ any Subcontractor, supplier, or other person or organization, whether initially or as a substitute, against whom Owner shall have reasonable objection. Owner will communicate such objections in writing within ten (10) days of receipt of Contractor’s intent to use such Subcontractor, supplier, or other person or organization. Contractor is not required to employ any Subcontractor, supplier, or other person or organization to furnish any of the work to whom Contractor has reasonable objection. Contractor shall not substitute Subcontractors without the acceptance of Owner.

5.5.1 Contract Documents. All Subcontracts and supply contracts shall be consistent with and bind the Subcontractors and suppliers to the terms and conditions of the Contract Documents including provisions of the Contract between Contractor and Owner.

5.5.2 Scheduling. Contractor shall be solely responsible for scheduling and coordinating the Work of Subcontractors, suppliers, and other persons and organizations performing or
furnishing any of the Work under a direct or indirect contract or subcontract with Contractor. Contractor shall require all Subcontractors, suppliers, and such other persons and organizations performing or furnishing any of the Work to communicate with Owner only through Contractor. Contractor shall furnish to Owner a copy, at Owner’s request, of each first-tier subcontract promptly after its execution. Contractor agrees that Owner has no obligation to review or approve the content of such contracts and that providing Owner such copies in no way relieves Contractor of any of the terms and conditions of the Contract, including, without limitation, any provisions of the Contract which require the Subcontractor to be bound to Contractor in the same manner in which Contractor is bound to Owner.

5.6 Continuing the Work. Contractor shall carry on the Work and adhere to the progress schedule during all disputes, disagreements, or alternative resolution processes with Owner. Contractor shall not delay or postpone any Work because of pending unresolved disputes, disagreements, or alternative resolution processes, except as Owner and Contractor may agree in writing.

5.7 Cleaning. Contractor shall at all times, keep the Site and the Work clean and free from accumulation of waste materials or rubbish caused by the construction activities under the Contract. Contractor shall ensure that the entire Project is thoroughly cleaned prior to requesting Substantial Completion inspection and, again, upon completion of the Project prior to the final inspection.

5.8 Acts and Omissions of Contractor, its Subcontractors, and Employees. Contractor shall be responsible for acts and omissions of its employees and its Subcontractors and their agents and employees. Owner may, in writing, require Contractor to remove from the Project any of Contractor’s or its Subcontractor’s employees or agents whom OCM finds to be careless, incompetent, unsafe, uncooperative, disruptive, or otherwise objectionable.

5.9 Ancillary Areas. Contractor shall operate and maintain operations and associated storage areas at the site of the Work in accordance with the following:

- All Contractor operations, including storage of materials and employee parking upon the Site of Work, shall be confined to areas designated by OCM.
- Contractor may erect, at its own expense, temporary buildings that will remain its property. Contractor will remove such buildings and associated utility service lines upon completion of the Work, unless Contractor requests and Owner provides written consent that it may abandon such buildings and utilities in place.
- Contractor will use only established roadways or construct and use such temporary roadways as may be authorized by OCM. Contractor will not allow load limits of vehicles to exceed the limits prescribed by appropriate regulations or law. Contractor will provide protection to road surfaces, curbs, sidewalks, trees, shrubbery, sprinkler systems, drainage structures, and other like existing improvements to prevent damage and will repair any damage thereto at the expense of Contractor.
- Owner may restrict Contractor’s entry to the Site to specifically assigned entrances and routes.
5.10 **Off-Site Storage.** With prior approval by Owner and in the event Contractor elects to store materials at an off-site location, Contractor must abide by the following conditions, unless otherwise agreed to in writing by Owner:

- Store materials in a commercial warehouse meeting the criteria stated below.
- Provide insurance coverage adequate not only to cover materials while in storage, but also in transit from the off-site storage areas to the Project Site. Copies of duly authenticated certificates of insurance must be filed with Owner’s representative.
- Inspection by Owner’s representative is allowed at any time. OCM must be satisfied with the security, control, maintenance, and preservation measures.
- Materials for this Project must be physically separated and marked for the Project in a sectioned-off area. Only materials which have been approved through the submittal process are to be considered for payment.
- Owner reserves the right to reject materials at any time prior to final acceptance of the complete Contract if they do not meet Contract requirements regardless of any previous progress payment made.
- With each monthly payment estimate, Contractor must submit a report to OCM and Design Professional listing the quantities of materials already paid for and still stored in the off-site location.
- Contractor must make warehouse records, receipts, and invoices available to Owner’s representatives, upon request, to verify the quantities and their disposition.
- In the event of Contract termination or default by Contractor, the items in storage off-site, upon which payment has been made, will be promptly turned over to Owner or Owner’s agents in place or at a location near the jobsite as directed by OCM. The full provisions of performance and payment bonds on this Project cover the materials off-site in every respect as though they were stored on the Project Site.

5.11 **Separate Contracts.** Owner reserves the right to award other contracts in connection with the Project or other portions of the Project under the same or substantially similar contract conditions, including those portions related to insurance and waiver of subrogation. Owner reserves the right to perform operations related to the Project with Owner’s own forces.

5.11.1 **Continuation of Contract.** Under a system of separate contracts, the conditions described herein continue to apply except as may be amended by Amendment or Change Order.

5.11.2 **Cooperation.** Contractor shall cooperate with other contractors or forces employed on the Project by Owner, including providing access to Site, integration of activities within Contractor’s Work Progress Schedule and Project information as requested.

5.11.3 **Reimbursement.** Owner shall be reimbursed by Contractor for costs incurred by Owner which are payable to a separate contractor because of delays, improperly timed activities, or defective construction by Contractor. Owner will equitably adjust the Contract by Change Order for costs incurred by Contractor because of delays, improperly timed activities, damage to the Work, or defective construction by a separate contractor.
ARTICLE 6.
HISTORICALLY UNDERUTILIZED BUSINESS (HUB) SUBCONTRACTING PLAN

6.1 General Description. The purpose of the Historically Underutilized Business (HUB) program is to promote equal business opportunities for economically disadvantaged persons (as defined by Tex. Gov’t Code, Chapter 2161) to contract with the State of Texas in accordance with the goals specified in the State of Texas Disparity Study. The HUB program annual procurement utilization goals are defined in 34 T.A.C. § 20.13(b).

6.1.1 Good Faith Effort.

6.1.1.1 State agencies are required by statute to make a good faith effort to assist HUBs in participating in contract awards issued by the State. 34 T.A.C. § 20.13(b) outlines the State’s policy to encourage the utilization of HUBs in State contracting opportunities through race, ethnic, and gender neutral means.

6.1.1.2 A Contractor who contracts with the State in an amount of $100,000 or greater is required to make a good faith effort to award subcontracts to HUBs in accordance with 34 T.A.C. § 20.14(a)(2)(A) by submitting a HUB subcontracting plan within twenty-four (24) hours after the bid or response is due and complying with the HUB subcontracting plan after it is accepted by Owner and during the term of the Contract.

6.2 Compliance with Approved HUB Subcontracting Plan. Contractor, having been awarded this Contract in part by complying with the HUB program statute and rules, hereby covenants to continue to comply with the HUB program as follows:

- Prior to adding or substituting a Subcontractor, promptly notify Owner in the event a change is required for any reason to the accepted HUB subcontracting plan.
- Conduct the good-faith effort activities required, and provide Owner with necessary documentation to justify approval of a change to the approved HUB subcontracting plan.
- Cooperate in the execution of a Change Order or such other approval of the change in the HUB subcontracting plans as Contractor and Owner may agree to.
- Maintain and make available to Owner upon request business records documenting compliance with the accepted HUB subcontracting plan.
- Upon receipt of payment for performance of Work, submit to Owner a compliance report, in the format required by Owner that demonstrates Contractor’s performance of the HUB subcontracting plan.
- Submit monthly Progress Assessment Reports (PAR) to Owner, verifying compliance with the HUB subcontracting plan, including the use/expenditures made to Subcontractors. (The PAR is available at the following link: http://www.window.state.tx.us/procurement/prog/hub/hub-forms/.)
• Promptly and accurately explain and provide supplemental information to Owner to assist in Owner’s investigation of Contractor’s good-faith effort to fulfill the HUB subcontracting plan and the requirements under 34 T.A.C. § 20.14(a)(1).

6.3 Failure to Demonstrate Good-Faith Effort. Upon a determination by Owner that Contractor has failed to demonstrate a good-faith effort to fulfill the HUB subcontracting plan or any Contract covenant detailed above, Owner may, in addition to all other remedies available to it, report the failure to perform to the Comptroller of Public Accounts, Texas Procurement and Support Services Division, Historically Underutilized Business Program and may bar Contractor from future contracting opportunities with Owner.

ARTICLE 7.
BONDS

7.1 Construction Bonds. Contractor is required to tender to Owner, prior to commencing the Work, performance and payment bonds, as required by Tex. Gov’t Code, Chapter 2253.

7.2 Bond Requirements. Each bond shall be executed by a corporate surety or sureties authorized to do business in the State of Texas, acceptable to Owner, and in compliance with the relevant provisions of the Texas Insurance Code. If any bond is for more than ten percent (10%) of the surety’s capital and surplus, Owner may require certification that the company has reinsured the excess portion with one or more reinsurers authorized to do business in the State. A reinsurer may not reinsure for more than ten percent (10%) of its capital and surplus. If a surety upon a bond loses its authority to do business in the State, Contractor shall, within thirty (30) days after such loss, furnish a replacement bond at no added cost to Owner.

7.2.1 Performance Bonds. A Performance bond is required if the Contract Sum is in excess of $100,000. The performance bond is solely for the protection of Owner. The performance bond is to be for the Contract Sum to guarantee the faithful performance of the Work in accordance with the Contract Documents. For Design-Build Projects the performance bond is to be for the full amount of both the construction and design services in accordance with the Contract Documents. The form of the bond shall be approved by Owner. The performance bond shall be effective through Contractor’s warranty period.

7.2.2 Payment Bonds. A Payment bond is required if the Contract Sum is in excess of $25,000. The payment bond is to be for the Contract Sum and is payable to Owner solely for the protection and use of payment bond beneficiaries. For Design-Build Projects the payment bond is to be for the full amount of both the construction and design services in accordance with the Contract Documents. The form of the bond shall be approved by Owner.

7.2.3 When Bonds Are Due. Payment and performance bonds are due before Contractor commences any Work.

7.2.4 Power of Attorney. Each bond shall be accompanied by a valid power of attorney (issued by the surety company and attached, signed and sealed with the corporate embossed seal, to the bond) authorizing the attorney-in-fact who signs the bond to commit the company to
the terms of the bond, and stating any limit in the amount for which the attorney can issue a single bond.

7.3 **Bond Indemnification.** The process of requiring and accepting bonds and making claims thereunder shall be conducted in compliance with Tex. Gov’t Code, Chapter 2253. IF FOR ANY REASON A STATUTORY PAYMENT OR PERFORMANCE BOND IS NOT HONORED BY THE SURETY, CONTRACTOR SHALL FULLY INDEMNIFY AND HOLD HARMLESS OWNER, AND ITS COMPONENT INSTITUTIONS, REGENTS, ELECTED AND APPOINTED OFFICIALS, DIRECTORS, OFFICERS, EMPLOYEES, AGENTS, REPRESENTATIVES, AND VOLUNTEERS, FROM AND AGAINST ANY COSTS, LOSSES, OBLIGATIONS, OR LIABILITIES IT INCURS AS A RESULT.

7.3.1 **Furnishing Bond Information.** Owner shall furnish certified copies of the payment bond and the related Contract to any qualified person seeking copies who complies with Tex. Gov’t Code § 2253.026.

7.3.2 **Claims on Payment Bonds.** Claims on payment bonds must be sent directly to Contractor and his surety in accordance with Tex. Gov’t Code § 2253.041. All payment bond claimants are cautioned that no lien exists on the funds unpaid to Contractor on such Contract, and that reliance on notices sent to Owner may result in loss of their rights against Contractor and/or his surety. Owner is not responsible in any manner to a claimant for collection of unpaid bills, and accepts no such responsibility because of any representation by any agent or employee.

7.4 **Payment of Claims when Payment Bond is Not Required.** The rights of Subcontractors regarding payment are governed by Tex. Prop. Code § 53.231 – 53.239 when the value of the Contract between Owner and Contractor is less than $25,000.00. These provisions set out the requirements for filing a valid lien on funds unpaid to Contractor as of the time of filing the claim, and actions necessary to release the lien and satisfaction of such claim.

7.5 **Sureties.** A surety shall be listed on the US Department of the Treasury’s Listing of Approved Sureties maintained by the Bureau of Financial Management Service (FMS), www.fms.treas.gov/c570, stating companies holding Certificates of Authority as acceptable sureties on federal bonds and acceptable reinsuring companies (FMS Circular 570). The Owner will consider acceptable any corporate surety which is qualified under this paragraph and which has a rating of at least B in Best's Insurance Reports – Property – Casualty.

7.6 **Bond Costs.** The costs of bonds are a pass through amount to the Owner. No markup amounts are to be included and documentation of bond costs are required in requests for payment. Any costs associated with subcontractor bonds or SubGuard-related items are not paid by the Owner in General Conditions or Cost of Work.
ARTICLE 8.
INDEMNITY AND INSURANCE

8.1 Indemnification of Owner. Contractor covenants and agrees to FULLY INDEMNIFY and HOLD HARMLESS Owner, and its component institutions, Regents, elected and appointed officials, directors, officers, employees, agents, representatives, and volunteers, individually or collectively, from and against any and all costs, claims, liens, damages, losses, expenses, fees, fines, penalties, proceedings, actions, demands, causes of action, liability, and suits of any kind and nature, including but not limited to, personal or bodily injury, death, or property damage, made upon Owner directly or indirectly arising out of, resulting from, or related to Contractor’s activities under the Contract, including any acts or omissions of Contractor, or any director, officer, employee, agent, representative, consultant, or Subcontractor of Contractor, and their respective directors, officers, employees, agents, and representatives while in the exercise of performance of the rights or duties under the Contract. The indemnity provided for in this paragraph does not apply to any liability resulting from the negligence of Owner or separate contractors in instances where such negligence causes personal injury, death, or property damage. IN THE EVENT CONTRACTOR AND OWNER ARE FOUND JOINTLY LIABLE BY A COURT OF COMPETENT JURISDICTION, LIABILITY WILL BE APPORTIONED COMPARATIVELY IN ACCORDANCE WITH THE LAWS OF THE STATE OF TEXAS, WITHOUT WAIVING ANY GOVERNMENTAL IMMUNITY AVAILABLE TO THE STATE UNDER TEXAS LAW AND WITHOUT WAIVING ANY DEFENSES OF THE PARTIES UNDER TEXAS LAW.

8.1.1 No Third-Party Beneficiaries. The provisions of this indemnification are solely for the benefit of the parties hereto and not intended to create or grant any rights, contractual or otherwise, to any other person or entity.

8.1.2 Notice. Contractor shall promptly advise Owner in writing of any claim or demand against Owner or against Contractor known to Contractor related to or arising out of Contractor’s activities under this Contract.

8.1.3 The indemnity provisions shall survive the termination of this Agreement regardless of the reason for termination

8.2 Insurance Requirements. Design Professional shall carry insurance in the types and amounts indicated in the Contract for the duration of the Contract. Unless otherwise provide for in the Contract, Contractor shall carry insurance in the types and amounts indicated in these Uniform General Conditions for the duration of the Contract. The insurance shall be evidenced by delivery to Owner of certificates of insurance executed by the insurer or its authorized agent stating coverage, limits, expiration dates, and compliance with all applicable required provisions. Upon request, Owner and its agents shall be entitled to receive, without expense, copies of the policies and all endorsements. Contractor shall update all expired policies prior to submission for monthly payment. Failure to update policies shall be reason for withholding of payment until renewal is provided to Owner.
8.2.1 **Period of Coverage.** Contractor, consistent with its status as an independent contractor, shall provide and maintain all insurance coverages with the minimum amounts described below until the end of the warranty period unless expressly agreed otherwise. Failure to maintain insurance coverage, as required, is grounds for suspension of Work for cause pursuant to Article 17.

8.2.2 **Certificates.** Contractor shall deliver to Owner true and complete copies of certificates and corresponding policy endorsements prior to the issuance of any Notice to Proceed.

8.2.3 **Failure to Provide Certificates.** Failure of Owner to demand such certificates or other evidence of Contractor’s full compliance with these insurance requirements or failure of Owner to identify a deficiency in compliance from the evidence provided shall not be construed as a waiver of Contractor’s obligation to maintain such insurance.

8.2.4 **Contractor’s Liability.** The insurance and insurance limits required herein shall not be deemed as a limitation on Contractor’s liability under the indemnities granted to Owner in the Contract Documents.

8.2.5 **Insurance Limits.** The insurance coverage and limits established herein shall not be interpreted as any representation or warranty that the insurance coverage and limits necessarily will be adequate to protect Contractor.

8.2.6 **Insurers.** Coverage shall be written on an occurrence basis by companies authorized and admitted to do business in the State of Texas and rated A-, VII or better by A.M. Best Company or similar rating company or otherwise acceptable to Owner.

8.3 **Insurance Coverage Required.**

8.3.1 **Workers’ Compensation Insurance.** Coverage with limits as required by the Texas Workers’ Compensation Act, with the policy endorsed to provide a waiver of subrogation as to Owner, and Employer’s Liability Insurance of not less than:

- $1,000,000 each accident;
- $1,000,000 disease each employee; and
- $1,000,000 disease policy limit.

Workers’ compensation insurance coverage must meet the statutory requirements of Tex. Lab. Code § 401.011(44), and requirements specific to construction projects for public entities as required by Tex. Lab. Code § 406.096.

- Policies must include (a) Other States Endorsement to include TEXAS if business is domiciled outside the State of Texas, and (b) a waiver of all rights of subrogation in favor of Owner.

8.3.2 **Commercial General Liability Insurance.** Coverage including premises, operations, independent contractor’s liability, products, and completed operations and contractual liability, covering, but not limited to, the liability assumed under the indemnification provisions of this Contract, fully insuring Contractor’s (or Subcontractor’s) liability for bodily injury (including death) and property damage with a minimum limit of:
- $1,000,000 per occurrence;
- $2,000,000 general aggregate;
- $5,000 Medical Expense each person;
- $1,000,000 Personal Injury and Advertising Liability;
- $2,000,000 products and completed operations aggregate;
- $50,000 Damage to Premises Rented by You; and
- Coverage shall be on an “occurrence” basis.
- The policy shall include coverage extended to apply to completed operations and explosion, collapse, and underground hazards. The policy shall include endorsement CG2503 Amendment of Aggregate Limits of Insurance (per Project) or its equivalent.
- If the Work involves any activities within fifty (50) feet of any railroad, railroad protective insurance as may be required by the affected railroad, written for not less than the limits required by such railroad.

8.3.3 Asbestos Abatement Liability Insurance. Coverage including coverage for liability arising from the encapsulation, removal, handling, storage, transportation, and disposal of asbestos containing materials. This requirement applies if the Work or the Project includes asbestos containing materials.

- The combined single limit for bodily injury and property damage will be a minimum of $1,000,000 per occurrence.
- Specific requirement for claims-made form: Required period of coverage will be determined by the following formula: continuous coverage for life of the Contract, plus one (1) year (to provide coverage for the warranty period), and an extended discovery period for a minimum of five (5) years which shall begin at the end of the warranty period.
- Employer’s liability limits for asbestos abatement will be:
 - $1,000,000 each accident;
 - $1,000,000 disease each employee; and
 - $1,000,000 disease policy limit.

8.3.4 Comprehensive Automobile Liability Insurance. Coverage covering owned, hired, and non-owned vehicles, with a minimum combined single limit for bodily injury (including death) and property damage of $1,000,000 per occurrence. No aggregate shall be permitted for this type of coverage.

- Such insurance is to include coverage for loading and unloading hazards.
- Contractor, or any subcontractor of Contractor, responsible for transporting asbestos or other hazardous materials defined as asbestos shall provide pollution coverage for any vehicle hauling asbestos containing cargo. The policy must include an MCS 90 endorsement with a $5,000,000 limit and the CA 9948 Pollution Endorsement, or its equivalent.
8.3.5 All-Risk Builder’s Risk Insurance. Coverage shall be all-risk (or all-risk installation floater for instances in which the project involves solely the installation of material and/or equipment), including, but not limited to, fire, extended coverage, vandalism and malicious mischief, theft and, if applicable, flood, earth movement and named storm. Builder’s risk and installation floater limits shall be equal to 100 percent of the Contract Sum plus, if any, existing property and Owner-furnished equipment specified by Owner. The policy shall be written jointly in the names of Owner and Contractor. Subcontractors shall be named as additional insureds. The policy shall have endorsements as follows:

- This insurance shall be specific as to coverage and not contributing insurance with any permanent insurance maintained on the property.
- This insurance shall not contain an occupancy clause suspending or reducing coverage should Owner partially occupy the Site and before the parties have determined Substantial Completion.
- Loss, if any, shall be adjusted with and made payable to Owner as trustee for the insureds as their interests may appear. Owner shall be named as loss payee.
- For renovation projects or projects that involve portions of Work contained within an existing structure, refer to Supplementary or Special Conditions for possible additional builder’s risk insurance requirements.
- For Owner furnished equipment or materials that will be in care, custody or control of Contractor, Contractor will be responsible for damage and loss.
- For those properties located within a Tier 1 or 2 windstorm area, named storm coverage must be provided with limits specified by Owner.
- For those properties located in flood prone areas, flood insurance coverage must be provided with limits specified by Owner.
- Builder’s risk insurance policy shall remain in effect until Substantial Completion.
- If this Contract is for asbestos abatement only, the foregoing All-Risk Builder’s Risk or All-Risk Installation Floater is not required.

8.3.6 “Umbrella” Liability Insurance. Coverage during the Contract term, insuring Contractor (or Subcontractor) that provides coverage at least as broad as and applies in excess and follows form of the primary liability coverage required above. The policy shall provide “drop down” coverage where underlying primary insurance coverage limits are insufficient or exhausted.

- “Umbrella” Liability Insurance coverage shall be for the following Contract amounts in the corresponding coverage amounts:

<table>
<thead>
<tr>
<th>Contract Amount</th>
<th>Occurrence</th>
<th>Annual Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>< $1,000,000</td>
<td>No Umbrella</td>
<td></td>
</tr>
<tr>
<td>$1,000,000 up to < $3,000,000</td>
<td>$1,000,000</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>$3,000,000 up to < $5,000,000</td>
<td>$5,000,000</td>
<td>$5,000,000</td>
</tr>
<tr>
<td>$5,000,000 or greater</td>
<td>$10,000,000</td>
<td>$10,000,000</td>
</tr>
</tbody>
</table>
8.4 **Policy Requirements.** Policies must include the following clauses, as applicable:

- This insurance shall not be suspended, voided, canceled, materially changed, or non-renewed except after thirty (30) days, or ten (10) days for non-payment of premium, written notice has been given to Owner.
- It is agreed that Contractor’s insurance shall be deemed primary with respect to any insurance or self-insurance carried by Owner for liability arising out of operations under the Contract with Owner.
- Owner, its officials, directors, employees, representatives, and volunteers are added as additional insureds as respects operations and activities of, or on behalf of the named insured performed under the Contract with Owner. The additional insured status must cover completed operations as well. This is not applicable to workers’ compensation policies.
- A waiver of subrogation in favor of Owner shall be provided in all policies.
- If Owner is damaged by the failure of Contractor (or Subcontractor) to maintain insurance as required herein and/or as further described in Owner’s Special Conditions, then Contractor shall bear all reasonable costs properly attributable to that failure.

8.5 **Subcontractor Insurance Coverage.** WITHOUT LIMITING ANY OF THE OTHER OBLIGATIONS OR LIABILITIES OF CONTRACTOR, CONTRACTOR SHALL REQUIRE EACH SUBCONTRACTOR PERFORMING WORK UNDER THE CONTRACT TO MAINTAIN DURING THE TERM OF THE CONTRACT, THE SAME STIPULATED MINIMUM INSURANCE INCLUDING THE REQUIRED PROVISIONS AND ADDITIONAL POLICY CONDITIONS AS SHOWN ABOVE. AS AN ALTERNATIVE, CONTRACTOR MAY INCLUDE ITS SUBCONTRACTORS AS ADDITIONAL INSUREDS ON ITS OWN COVERAGE AS PRESCRIBED UNDER THESE REQUIREMENTS. CONTRACTOR’S CERTIFICATE OF INSURANCE SHALL NOTE IN SUCH EVENT THAT SUBCONTRACTORS ARE INCLUDED AS ADDITIONAL INSUREDS AND THAT CONTRACTOR AGREES TO PROVIDE WORKERS’ COMPENSATION FOR SUBCONTRACTORS AND THEIR EMPLOYEES. CONTRACTOR SHALL OBTAIN AND MONITOR THE CERTIFICATES OF INSURANCE FROM EACH SUBCONTRACTOR IN ORDER TO ASSURE COMPLIANCE WITH THE INSURANCE REQUIREMENTS. CONTRACTOR MUST RETAIN THE CERTIFICATES OF INSURANCE FOR THE DURATION OF THE CONTRACT PLUS FIVE (5) YEARS AND SHALL HAVE THE RESPONSIBILITY OF ENFORCING THESE INSURANCE REQUIREMENTS AMONG ITS SUBCONTRACTORS. OWNER SHALL BE ENTITLED, UPON REQUEST AND WITHOUT EXPENSE, TO RECEIVE COPIES OF THESE CERTIFICATES. CONSTRUCTION DOCUMENTS, COORDINATION DOCUMENTS, AND RECORD DOCUMENTS

ARTICLE 9

CONSTRUCTION DOCUMENTS, COORDINATION DOCUMENTS, AND RECORD DOCUMENTS
9.1 **Drawings and Specifications.**

9.1.1 **Copies Furnished.** Design Professional will furnish, free of charge, the number of complete sets of Drawings, Specifications, and addenda as provided in the Contract. Contractor will be furnished, free of charge, the number of complete sets of Drawings, Specifications, and addenda as provided in the Contract. Additional complete sets of Drawings and Specifications, if requested, will be furnished at reproduction cost to the one requesting such additional sets. Electronic copies of such documents will be provided to Contractor without charge.

9.1.2 **Ownership of Drawings and Specifications.** All Drawings, Specifications and copies thereof furnished by Design Professional shall be property of the Owner. These documents are not to be used by the Design Professional on any other project. Owner may use the Contract record set and electronic versions as needed for warranty operations or future renovations or additions without written approval of the Design Professional. All additional or confirmatory land survey field notes, sketches and related data, and additional or confirmatory soils engineering or investigations, samples, calculations, test results, and reports, for which Owner has paid for such direct services, shall be the sole property of Owner.

9.2 **Interrelation of Documents.** The Contract Documents as referenced in the Contract between Owner and Contractor are complimentary, and what is required by one shall be as binding as if required by all.

9.3 **Resolution of Conflicts in Documents.** Where conflicts may exist within the Contract Documents, the documents shall govern in the following order: (a) Change Orders or other written, signed amendments or addenda; (b) the Contract; (c) Uniform General Conditions; (d) Drawings; (e) Specifications (but Specifications shall control over Drawings as to quality of materials); and (f) other Contract Documents. Among other categories of documents having the same order of precedence, the term or provision that includes the latest date shall control. Contractor shall notify Design Professional and Owner for resolution of the issue prior to executing the Work in question.

9.4 **Contractor’s Duty to Review Contract Documents.** In order to facilitate Contractor’s responsibilities for completion of the Work in accordance with and as reasonably inferable from the Contract Documents, Contractor shall, prior to commencing the Work, examine and compare the Contract Documents, information furnished by Owner, relevant field measurements made by Contractor, and any visible or reasonably anticipated conditions at the Site affecting the Work. This duty extends throughout the design phase and construction phase prior to commencing each particular work activity and/or system installation. Updated Coordination Documents shall be provided to the Owner and Design Professional monthly.

9.5 **Discrepancies and Omissions in Drawings and Specifications.** Contractor shall immediately report to OCM and to Design Professional the discovery of any discrepancy, error, omission, or inconsistency in the Contract Documents prior to execution of the Work. When performing as a Construction Manager-at-Risk, Contractor has a shared responsibility with Design Professional for discovery and resolution of discrepancies, errors, omissions, and inconsistencies in the
Contract Documents. In such case, Contractor’s responsibility pertains to review, coordination, and recommendation of resolution strategies within budget constraints.

9.5.1 **Design-Build Firm.** It is recognized that Contractor is not acting in the capacity of a licensed design professional, unless it is performing as a Design-Build firm. When performing as a Design-Build firm, Contractor has sole responsibility for discrepancies, errors, and omissions in the Drawings and Specifications.

9.5.2 **Construction Manager-at-Risk Examination and Reporting.** When performing as a Construction Manager-at-Risk, Contractor has no liability for discrepancies, errors, omissions, or inconsistencies unless Contractor fails to immediately report in writing a discovered or apparent discrepancy, error, omission, or inconsistency to OCM and Design Professional. Should Contractor fail to perform the examination and reporting obligations of these provisions, Contractor is responsible for avoidable costs and direct and/or consequential damages.

9.5.3 **Other Limitations.** Unless Contractor is performing as a Design-Build Firm or a Construction Manager-at-Risk, Contractor’s examination of Contract Documents is to facilitate construction and does not create an affirmative responsibility to detect discrepancies, errors, omissions, or inconsistencies or to ascertain compliance with applicable laws, building codes, or regulations.

9.6 **No Warranty or Representation by Owner.** Owner makes no representations, express or implied, about the adequacy or accuracy of the Drawings, Specifications, or other Construction Documents provided or their suitability for their intended use. Owner expressly disclaims any implied warranty that the Construction Documents are adequate, accurate, or suitable for their intended use.

9.7 **Requirements for Record Documents.**

9.7.1 **Contractor shall:**

9.7.1.1 Maintain at the Site one copy of all Drawings, Specifications, addenda, approved submittals, Contract modifications, Change Orders, and all Project correspondence and one record copy of approved Shop Drawings, Samples, and similar required submittals.

9.7.1.2 Keep current and maintain Drawings and Specifications in good order with postings and markings to record actual conditions of Work, and show and reference all changes made during construction. Provide Owner and Design Professional access to these documents.

9.7.1.3 Keep current and maintain the record set of Drawings and Specifications which reflect the actual field conditions and representations of the Work performed, whether it be directed by addendum, Change Order, or otherwise. Make available all records prescribed herein for reference and examination by Owner and Design Professional, and their representatives and agents.
9.7.1.4 Be responsible for marking the Record Documents for all Contractor initiated documents and changes to the Contract Documents due to coordination and actual field conditions, including RFIs. During construction, update the Record Documents, including all related RFI’s, ASI’s CCD’s, and CO’s, at least monthly prior to submission of periodic partial pay estimates. Failure to maintain current Record Documents constitutes cause for denial of a progress payment otherwise due.

9.7.1.5 Within thirty (30) days of Substantial Completion, Contractor shall furnish the Design Professional a copy of its marked-up Record Documents and a preliminary copy of each instructional manual, maintenance and operating manual, parts catalog, wiring diagrams, spare parts, specified written warranties and like publications, or parts for all installed equipment, systems, and like items, and as described in the Contract Documents. A complete set must be provided to the Design Professional within seven (7) days of Final Completion.

9.7.2 Design Professional shall:

9.7.2.1 In coordination with Contractor, shall update Record Documents to accurately depict progress of the Work and “as-built” condition of the Project.

9.7.2.2 Be responsible for updating the Record Documents for any addenda, Change Orders, Design Professional supplemental instructions, and any other alterations to the Contract Documents generated by Design Professional or Owner. Design Professional shall provide Owner with an electronic copy of the Auto-CADD files, BIM files, and Record Documents in both native format and a reproducible format within thirty (30) days following Final Completion.

9.7.2.3 Upon final completion and as a condition of final payment, once Record Documents are determined acceptable by OCM and with input from the Contractor, provide one (1) reproducible copy and one (1) electronic media copy of all Record Documents incorporating all of the above requirements, unless required otherwise.

ARTICLE 10.
CONSTRUCTION SAFETY

10.1 General. It is the duty and responsibility of Contractor and all of its Subcontractors to be familiar with, enforce, and comply with all requirements of Public Law No. 91-596, 29 U.S.C. § 651 et. seq., the Occupational Safety and Health Act of 1970, (OSHA) and all amendments thereto. Contractor shall prepare a safety plan specific to the Project and submit it to OCM and Design Professional prior to commencing Work. In addition, Contractor and all of its Subcontractors shall comply with all applicable laws and regulations of any public body having jurisdiction for safety.
of persons or property to protect them from damage, injury, or loss and erect and maintain all necessary safeguards for such safety and protection.

10.2 Notices. Contractor shall provide notices as follows:

10.2.1 Utilities and Adjacent Properties. Notify owners of adjacent property, including those that own or operate utilities, utility services, and/or underground facilities, when prosecution of the Work may affect them or their facilities, and cooperate with them in the protection, removal, relocation and replacement, and access to their facilities and/or utilities.

10.2.2 Material Safety Data Sheets. Coordinate the exchange of material safety data sheets (MSDSs) or other hazard communication information required to be made available to or exchanged between or among employers at the site in connection with laws and regulations. Maintain a complete file of MSDSs for all materials in use on site throughout the construction phase and make such file available to Owner and its agents as requested.

10.3 Emergencies. In any emergency affecting the safety of persons or property, Contractor shall act to minimize, mitigate, and prevent threatened damage, injury, or loss. Contractor shall:

10.3.1 On Call Response. Have authorized agents of Contractor respond immediately upon call at any time of day or night when circumstances warrant the presence of Contractor to protect the Work or adjacent property from damage or to take such action pertaining to the Work as may be necessary to provide for the safety of the public.

10.3.2 Notice.
10.3.2.1 Give OCM and Design Professional prompt notice of all such events.

10.3.2.2 If Contractor believes that any changes in the Work or variations from Contract Documents have been caused by its emergency response, promptly notify Owner within twenty-four (24) hours of the emergency response event.

10.3.3 Owner Remedy. Should Contractor fail to respond, Owner is authorized to direct other forces to take action as necessary and Owner may deduct any cost of remedial action from funds otherwise due Contractor.

10.4 Injuries. In the event of an incident or accident involving outside medical care for an individual on or near the Work, Contractor shall notify OCM and other parties as may be directed promptly, but no later than twenty-four (24) hours after Contractor learns that an event required medical care. Contractor shall:

10.4.1 Documentation. Record the location of the event and the circumstances surrounding it, by using photography or other means, and gather witness statements and other documentation which describes the event.

10.4.2 Incident Report. Supply OCM and Design Professional with an incident report no later than thirty-six (36) hours after the occurrence of the event. In the event of a catastrophic incident (one (1) fatality or three (3) workers hospitalized), barricade and leave intact the
scene of the incident until all investigations are complete. A full set of incident investigation documents, including facts, finding of cause, and remedial plans shall be provided within one (1) week after occurrence, unless otherwise directed by legal counsel. Contractor shall provide OCM with written notification within one (1) week of such catastrophic event if legal counsel delays submission of full report.

10.5 Environmental Safety. Upon encountering any previously unknown potentially hazardous material, or other materials potentially contaminated by hazardous material, Contractor shall immediately stop work activities impacted by the discovery, secure the affected area, and notify OCM immediately.

10.5.1 Subcontractors. Contractor shall bind all Subcontractors to the same duty.

10.5.2 Owner. Upon receiving such notice, OCM will promptly engage qualified experts to make such investigations and conduct such tests as may be reasonably necessary to determine the existence or extent of any environmental hazard. Upon completion of this investigation, OCM will issue a written report to Contractor identifying the material(s) found and indicate any necessary steps to be taken to treat, handle, transport or dispose of the material.

10.5.2.1 Owner may hire third-party Contractors to perform any or all such steps.

10.5.2.2 Should compliance with OCM’s instructions result in an increase in Contractor’s cost of performance or delay the Work, upon Contractor’s submission of substantiated costs or an updated Work Progress Schedule and substantiated critical path analysis, Owner will make an equitable adjustment to the Contract Sum and/or the time of completion, and issue a Change Order accordingly.

10.6 Trenching Plan. When the project requires excavation which either exceeds a depth of four (4) feet, or results in any worker’s upper body being positioned below grade level, Contractor is required to submit a trenching plan to OCM prior to commencing trenching operations unless an engineered plan is part of the Contract Documents. The plan is required to be prepared and sealed by a professional engineer registered in the State of Texas and hired or employed by Contractor or Subcontractor to perform the work. Said engineer cannot be anyone who is otherwise either directly or indirectly engaged on this project.

ARTICLE 11.
QUALITY CONTROL

11.1 Materials & Workmanship. Contractor shall execute Work in a good and workmanlike matter in accordance with the Contract Documents. Contractor shall develop and provide a quality control plan specific to this Project and acceptable to Owner. Where Contract Documents do not specify quality standards, complete and construct all Work in compliance with generally accepted
construction industry standards. Unless otherwise specified, incorporate all new materials and equipment into the Work under the Contract.

11.2 Testing.

11.2.1 **Owner.** Owner is responsible for coordinating and paying for routine and special tests required to confirm compliance with quality and performance requirements, except as stated below or otherwise required by the Contract Documents.

11.2.2 **Contractor shall provide the following testing:**

 11.2.2.1 Any test of basic material or fabricated equipment included as part of a submittal for a required item in order to establish compliance with the Contract Documents.

 11.2.2.2 Any test of basic material or fabricated equipment offered as a substitute for a specified item on which a test may be required in order to establish compliance with the Contract Documents.

 11.2.2.3 Preliminary, start-up, pre-functional, and operational testing of building equipment and systems as necessary to confirm operational compliance with requirements of the Contract Documents.

 11.2.2.4 All subsequent tests on original or replaced materials conducted as a result of prior testing failure.

11.2.3 **Standards.** All testing shall be performed in accordance with standard test procedures by an accredited laboratory, or special consultant as appropriate, acceptable to Owner. Results of all tests shall be provided promptly to OCM, Design Professional, and Contractor.

11.2.4 **Non-Compliance (Test Results).** Should any of the tests indicate that a material and/or system does not comply with the Contract requirements, the burden of proof remains with Contractor, subject to:

 11.2.4.1 Contractor selection and submission of the laboratory for Owner acceptance.

 11.2.4.2 Acceptance by Owner of the quality and nature of tests.

 11.2.4.3 All tests taken in the presence of Design Professional and/or OCM, or their representatives.

 11.2.4.4 If tests confirm that the material/systems comply with Contract Documents, Owner will pay the cost of the test.

 11.2.4.5 If tests reveal noncompliance, Contractor will pay those laboratory fees and costs of that particular test and all future tests, of that failing Work, necessary to eventually confirm compliance with Contract Documents.
11.2.4.6 Proof of noncompliance with the Contract Documents will make Contractor liable for any corrective action which OCM determines appropriate, including complete removal and replacement of noncompliant work or material.

11.2.5 Notice of Testing. Contractor shall give OCM and Design Professional timely notice of its readiness and the date arranged so OCM and Design Professional may observe such inspection, testing, or approval.

11.2.6 Test Samples. Contractor is responsible for providing Samples of sufficient size for test purposes and for coordinating such tests with the Work Progress Schedule to avoid delay.

11.2.7 Covering Up Work. If Contractor covers up any Work without providing Owner an opportunity to inspect, Contractor shall, if requested by OCM, uncover and recover the work at Contractor’s expense.

11.3 Submittals.

11.3.1 Contractor’s Submittals. Contractor shall submit with reasonable promptness consistent with the Project schedule and in orderly sequence all Shop Drawings, Samples, or other information required by the Contract Documents, or subsequently required by Change Order. Prior to submitting, Contractor shall review each submittal for general compliance with Contract Documents and approve submittals for review by Design Professional and Owner by an approval stamp affixed to each copy. Submittal data presented without Contractor’s stamp will be returned without review or comment, and any delay resulting from failure is Contractor’s responsibility.

11.3.1.1 Contractor shall within twenty-one (21) days of the effective date of the Notice To Proceed with construction, submit to OCM and Design Professional, a submittal schedule/register, organized by specification section, listing all items to be furnished for review and approval by Design Professional and Owner. The list shall include Shop Drawings, manufacturer literature, certificates of compliance, materials Samples, materials colors, guarantees, and all other items identified throughout the Specifications.

11.3.1.2 Contractor shall indicate the type of item, Contract requirements reference, and Contractor’s scheduled dates for submitting the item along with the requested dates for approval answers from Design Professional and Owner. The submittal register shall indicate the projected dates for procurement of all included items and shall be updated at least monthly with actual approval and procurement dates. Contractor’s Submittal Register must be reasonable in terms of the review time for complex submittals. Contractor’s submittal schedule must be consistent with the Work Progress Schedule and identify critical submittals. Show and allow a minimum of fifteen (15) days duration after receipt by Design Professional and OCM for review and approval. If re-submittal required, allow a minimum of an additional seven (7) days for review. Submit the updated Submittal Register with each request for progress.
payment. Owner may establish routine review procedures and schedules for submittals at the preconstruction conference and/or elsewhere in the Contract Documents. If Contractor fails to update and provide the Submittal Register as required, Owner may, after seven (7) days notice to Contractor withhold a reasonable sum of money that would otherwise be due Contractor.

11.3.1.3 Contractor shall coordinate the Submittal Register with the Work Progress Schedule. Do not schedule Work requiring a submittal to begin prior to scheduling review and approval of the related submittal. Revise and/or update both schedules monthly to ensure consistency and current project data. Provide to OCM the updated Submittal Register and schedule with each application for progress payment. Refer to requirements for the Work Progress Schedule for inclusion of procurement activities therein. Regardless, the Submittal Register shall identify dates submitted and returned and shall be used to confirm status and disposition of particular items submitted, including approval or other action taken and other information not conveniently tracked through the Work Progress Schedule.

11.3.1.4 By submitting Shop Drawings, Samples or other required information, Contractor represents that it has determined and verified all applicable field measurements, field construction criteria, materials, catalog numbers and similar data; and has checked and coordinated each Shop Drawing and Sample with the requirements of the Work and the Contract Documents.

11.3.2 Review of Submittals. Design Professional and OCM review is only for conformance with the design concept and the information provided in the Contract Documents. Responses to submittals will be in writing. The approval of a separate item does not indicate approval of an assembly in which the item functions. The approval of a submittal does not relieve Contractor of responsibility for any deviation from the requirements of the Contract unless Contractor informs Design Professional and OCM of such deviation in a clear, conspicuous, and written manner on the submittal transmittal and at the time of submission, and obtains Owner’s written specific approval of the particular deviation.

11.3.3 Correction and Resubmission. Contractor shall make any corrections required to a submittal and resubmit the required number of corrected copies promptly so as to avoid delay, until submittal approval. Direct attention in writing to Design Professional and OCM, when applicable, to any new revisions other than the corrections requested on previous submissions.

11.3.4 Limits on Shop Drawing Review. Contractor shall not commence any Work requiring a submittal until review of the submittal under Subsection 11.3.2. Construct all such work in accordance with reviewed submittals. Comments incorporated as part of the review in Subsection 11.3.2 of Shop Drawings and Samples is not authorization to Contractor to perform extra work or changed work unless authorized through a Change Order. Design Professional’s and OCM’s review, if any, does not relieve Contractor from responsibility
for defects in the Work resulting from errors or omissions of any kind on the submittal, regardless of any approval action.

11.3.5 No Substitutions without Approval. OCM and Design Professional may receive and consider Contractor’s request for substitution when Contractor agrees to reimburse Owner for review costs and satisfies the requirements of this section. If Contractor does not satisfy these conditions, OCM and Design Professional will return the request without action except to record noncompliance with these requirements. Owner will not consider the request if Contractor cannot provide the product or method because of failure to pursue the Work promptly or coordinate activities properly. Contractor’s request for a substitution may be considered by OCM and Design Professional when:

11.3.5.1 The Contract Documents do not require extensive revisions; and

11.3.5.2 Proposed changes are in keeping with the general intent of the Contract Documents and the design intent of Design Professional and do not result in an increase in cost to Owner; and

11.3.5.3 The request is timely, fully documented, properly submitted and one or more of the following apply:

- Contractor cannot provide the specified product, assembly or method of construction within the Contract Time;
- The request directly relates to an “or-equal” clause or similar language in the Contract Documents;
- The request directly relates to a “product design standard” or “performance standard” clause in the Contract Documents;
- The requested substitution offers Owner a substantial advantage in cost, time, energy conservation or other considerations, after deducting additional responsibilities Owner must assume;
- The specified product or method of construction cannot receive necessary approval by an authority having jurisdiction, and OCM can approve the requested substitution;
- Contractor cannot provide the specified product, assembly or method of construction in a manner that is compatible with other materials and where Contractor certifies that the substitution will overcome the incompatibility;
- Contractor cannot coordinate the specified product, assembly or method of construction with other materials and where Contractor certifies they can coordinate the proposed substitution; or
- The specified product, assembly or method of construction cannot provide a warranty required by the Contract Documents and where Contractor certifies that the proposed substitution provides the required warranty.
• The manufacture of the specified product has been removed from production due to cancellation or obsolescence.

11.3.6 Unauthorized Substitutions at Contractor’s Risk. Contractor is financially responsible for any additional costs or delays resulting from unauthorized substitution of materials, equipment or fixtures other than those specified. Contractor shall reimburse Owner for any increased design or contract administration costs resulting from such unauthorized substitutions.

11.4 Field Mock-up. Mock-ups shall be constructed prior to commencement of a specified scope of work to confirm acceptable workmanship.

11.4.1 Minimum. As a minimum, field mock-ups shall be constructed for roofing systems, exterior veneer / finish systems, glazing systems, and any other Work requiring a mock-up as identified throughout the Contract Documents. Mock-ups for systems not part of the Project scope shall not be required.

11.4.2 No Incorporation Unless Approved. Mock-ups may be incorporated into the Work if allowed by the Contract Documents and if acceptable to OCM. If mock-ups are freestanding, they shall remain in place until otherwise directed by Owner.

11.4.3 Schedule. Contractor shall include field mock-ups in their Work Progress Schedule and shall notify OCM and Design Professional of readiness for review sufficiently in advance to coordinate review without delay.

11.5 Inspection During Construction. Contractor shall provide sufficient, safe, and proper facilities, including equipment as necessary for safe access, at all reasonable times for observation and/or inspection of the Work by Owner or Design Professional and their agents. Contractor shall not cover up any Work with finishing materials or other building components prior to providing Owner and Design Professional and their agents an opportunity to perform an inspection of the Work.

11.5.1 Corrected Work. Should corrections of the Work be required for approval, Contractor shall not cover up corrected Work until Owner indicates approval.

11.5.2 Owner’s Self Help. Should Contractor be unable to perform corrective work without impacting the overall WPS, Owner reserves the right to hire a separate Contractor to complete the correction. The cost of the correction performed by separate Contractor will be charged back to Contractor.

11.5.3 Notice. Contractor shall provide notification of at least five (5) working days or otherwise as mutually agreed, to OCM of the anticipated need for an inspection so that Contractor may proceed with cover-up of Work. Should OCM fail to make the necessary inspection within the agreed period, Contractor may proceed with cover-up Work, but is not relieved of responsibility for Work to comply with requirements of the Contract Documents.
ARTICLE 12.
CONSTRUCTION SCHEDULES

12.1 Contract Time. TIME IS AN ESSENTIAL ELEMENT OF THE CONTRACT. The Contract Time is the time between the dates indicated in the Notice to Proceed for commencement of the Work and for achieving Substantial Completion. The Contract Time can be modified only by Change Order. Failure to achieve Substantial Completion within the Contract Time will cause damage to Owner and may subject Contractor to liquidated damages as provided in the Contract Documents. If Contractor fails to achieve Final Completion within thirty (30) days after Substantial Completion, Contractor shall be responsible for Owner’s additional inspection, project management, and maintenance cost to the extent caused by Contractor’s failure to achieve Final Completion.

12.2 Notice to Proceed. Owner will issue a Notice to Proceed which shall state the dates for commencing Work and for achieving Substantial Completion of the Work.

12.3 Work Progress Schedule. Refer to Division 1 of the Specifications for additional schedule requirements. Contractor shall submit for review and approval a Construction Baseline Schedule to Owner and Design Professional no later than twenty-one (21) days after the effective date of the Notice to Proceed with construction. The Construction Baseline Schedule shall indicate the dates for starting and completing the various aspects required to complete the work and shall utilize the Longest Path Method with fully editable logic. The schedule shall include mobilization, procurement, installation, testing, inspection, delivery of Close-out Documents, and acceptance of all Work. This Baseline Schedule shall become the comparison to the actual conditions throughout the Contract duration and become a part of the Work Progress Schedule (WPS). Contractor shall coordinate and integrate the Work Progress Schedule with the services and activities of Owner, Contractor, Design Professional, other consultants/suppliers, subcontractors and the requirements of governmental entities.

This section applies to construction phase Work Progress Schedules. Requirements for design phase scheduling for Construction Manager-at-Risk and Design Build contracts are outlined in the specific agreements.

12.3.1 Work Progress Schedule Updates.

12.3.1.1 Contractor shall update the Work Progress Schedule and the Submittal Register weekly during the Owner/Architect/Contractor (OAC) meetings, at a minimum, to reflect progress to date and current plans for completing the Work, while maintaining the Baseline Schedule, and shall submit electronic and paper copies of the update to Design Professional and OCM as directed but at a minimum with each request for payment. Owner has no duty to make progress payments unless accompanied by the updated Work Progress Schedule.

12.3.1.2 Contractor should revise the Work Progress Schedule as necessary or appropriate for the management of the Work. All updated Work Progress
Schedules must show the anticipated date of completion and reflect all extensions of time granted through Change Order as of the date of the update.

12.3.1.3 Contractor shall identify all proposed changes to schedule logic to Owner and to Design Professional via an executive summary accompanying the updated Work Progress Schedule for review and approval prior to implementation of any revisions to the Work Progress Schedule. Schedule changes that materially impact Owner’s operations shall be communicated within forty-eight (48) hours to OCM.

12.3.1.4 The Work Progress Schedule constitutes Contractor’s representation to Owner of the accurate depiction of all progress to date and that Contractor will follow the schedule as submitted in performing the Work.

12.3.2 Use of Work Progress Schedules. The Work Progress Schedule is for Contractor’s use in managing the Work and submittal of the Work Progress Schedule, and successive updates or revisions, is for the information of Owner and to demonstrate that Contractor has complied with requirements for planning and completing the Work.

12.3.2.1 Owner will coordinate its own activities with Contractor’s activities as shown on the Work Progress Schedule.

12.3.2.2 Owner’s review of the Work Progress Schedule, or update or revision, does not indicate any approval of Contractor’s proposed sequences and duration.

12.3.2.3 Owner’s review of a Work Progress Schedule update or revision indicating early or late completion does not constitute Owner’s consent, alter the terms of the Contract, or waive either Contractor’s responsibility for timely completion or Owner’s right to damages for Contractor’s failure to so do.

12.3.2.4 Contractor’s scheduled dates for completion of any activity or the entire Work do not constitute a change in terms of the Contract. Change Orders are the only method of modifying the Substantial Completion Date(s) and Contract Time.

12.4 Ownership of Float. Unless indicated otherwise in the Contract Documents, Contractor shall develop its schedule, pricing, and execution plan to provide a minimum of ten percent (10%) total float at acceptance of the Baseline Schedule. Float time contained in the Work Progress Schedule is not for the exclusive benefit of Contractor or Owner, but belongs to the Project and may be consumed by either party. Before Contractor uses any portion of the float, Contractor must submit a written request to Owner and receive Owner’s written authorization to use the portion of float. Owner’s approval will not unreasonably be withheld.

12.5 Completion of Work. Contractor is responsible and accountable for completing the Work within the Contract Time stated in the Contract, or as otherwise amended by Change Order.
12.5.1 **Owner’s Self Help.** Should Contractor be unable to complete portion of Work, Owner may hire separate Contractor to complete these items. The cost to complete this Work will be charged back to Contractor.

12.5.2 **Requirement to Regain Schedule.** If, in the judgment of Owner, the Work is behind schedule and the rate of placement of Work is inadequate to regain scheduled progress to insure timely completion of the entire Work or a separable portion thereof, Contractor, when so informed by Owner, shall immediately take action to increase the rate of Work placement by:

12.5.2.1 An increase in working forces.

12.5.2.2 An increase in equipment or tools.

12.5.2.3 An increase in hours of work or number of shifts.

12.5.2.4 Expedited delivery of materials.

12.5.2.5 Other action proposed if acceptable to Owner.

12.5.3 **Recovery Schedule.** Within ten (10) days after such notice, Contractor shall notify OCM in writing of the specific measures taken and/or plan to increase the rate of progress. Contractor shall include an estimate as to the date of scheduled progress recovery and an updated Work Progress Schedule illustrating Contractor’s plan for achieving timely completion of the Work. Should Owner deem the plan of action inadequate, Contractor shall take additional steps or make adjustments as necessary to its plan of action until it meets with Owner’s approval.

12.5.4 **Owner’s Notice Not Acceleration.** Owner’s notice to Contractor shall not be considered acceleration by Owner and Owner shall not be responsible for any increased costs incurred by Contractor.

12.6 **Modification of the Contract Time.** Delays and extensions of Contract Time are valid only if properly noticed and documented by Change Order.

12.6.1 **Extension Request.** When a delay is an Excusable Delay, and such delay prevents Contractor from completing the Work within the Contract Time, Contractor may be granted an extension of Contract Time. Owner will extend Contract Time by the number of days lost due to Excusable Delay, as measured by a substantiated critical path analysis of the Work Progress Schedule; provided, however, in no event will an extension of Contract Time be granted for delays that merely extend the duration of non-critical activities, or concurrent delay or which only consume float. All extensions of Contract Time will be granted in calendar days.

12.6.2 **Weather Day.** “Weather Days” means days contained in the Baseline Schedule that are reasonably foreseeable adverse weather conditions and will not constitute an Excusable Delay. For purposes of the Agreement, “reasonably foreseeable adverse weather
conditions” means weather conditions in keeping with the historical average listed by the National Oceanic and Atmospheric Administration on its website, www.noaa. When a Weather Day prevents critical path activities at the site from proceeding, Contractor shall: (a) immediately notify OCM for confirmation of the conditions and provide a detailed list of critical path activities impacted; and (b) at the end of each calendar month, submit to OCM and Design Professional a list of Weather Days occurring in that month along with documentation of the impact on critical path activities. Based on substantiated critical path analysis to the Work Progress Schedule, Owner will issue a Weather Day Confirmation for any Contract Time extension to be documented by Change Order.

12.6.3 Excusable Delay. An “Excusable Delay” is a delay to Contractor’s current schedule caused by circumstances listed below that prevents Contractor from completing the Work within the Contract Time. Based on substantiated critical path analysis to the Work Progress Schedule, any Contract Time extension will be issued by Change Order. Excusable Delay may be caused by the following:

12.6.3.1 Discrepancies, errors, omissions, and inconsistencies in design, which Design Professional corrects by means of changes in the Drawings and Specifications; provided, however, that this does not apply if (a) Contractor is a Design-Build Firm, or (b) Contractor is a Construction Manager-at-Risk and failed to promptly report a discovered or apparent discrepancy, error, omission, or inconsistency during the pre-construction phase.

12.6.3.2 Unanticipated physical conditions at the Site, which Design Professional corrects by means of changes to the Drawings and Specifications or for which ODR directs changes in the Work identified in the Contract Documents.

12.6.3.3 Changes in the Work that delay activities identified in Contractor’s Work Progress Schedule as “critical” to completion of the entire Work, if such changes are directed by ODR or recommended by Design Professional and directed by ODR.

12.6.3.4 Suspension of Work for unexpected natural events, civil unrest, strikes or other events which are not within the reasonable control of Contractor.

12.6.3.5 Suspension of Work for convenience of Owner, which prevents Contractor from completing the Work within the Contract Time.

12.7 No Damages for Weather Days. An extension of Contract Time shall be the sole remedy of Contractor for delays in performance of the Work due to Weather Days, and Contractor shall not be entitled to any compensation or recovery of any direct or indirect costs or damages.

12.8 Costs for Excusable Delay. In the event that Contractor incurs additional direct costs because of an Excusable Delay (other than described in Subsection 12.6.3.4) within the reasonable control of Owner, in addition to an extension of Contract Time the Contract Sum will be equitably adjusted by Owner pursuant to the provisions of Article 14.
12.9 **No Damages for Other Delay.** Except for direct costs for Excusable Delay as provided above, Contractor has no claim for monetary damages for delay or hindrances to the Work from any cause, whether or not such delays are foreseeable, except for delays caused solely by acts of Owner that constitute intentional interference with Contractor’s performance of the Work and then only to the extent such acts continue after Contractor notifies Owner in writing of such interference. For delays caused by any act other than the sole intentional interference of Owner that continues after notice, Contractor shall not be entitled to any compensation or recovery of any damages including, without limitation, direct and indirect costs, consequential damages, lost opportunity costs, impact damages, loss of productivity, or other similar damages. Owner’s exercise of any of its rights or remedies under the Contract including, without limitation, ordering changes in the Work or directing suspension, rescheduling, or correction of the Work, shall not be construed as intentional interference with Contractor’s performance of the Work regardless of the extent or frequency of Owner’s exercise of such rights or remedies.

12.10 **Concurrent Delay.** Notwithstanding anything herein to the contrary, when the completion of the Work is simultaneously delayed by a Weather Day or an Excusable Delay and a delay arising from a cause not designated as excusable, Contractor will not be entitled to an extension of Contract Time for the period of concurrent delay.

12.11 **Time Extension Requests for Changes to the Work or Excusable Delay.** Extensions to Contract Time requested in association with changes to the Work directed or requested by Owner shall be included with Contractor’s proposed costs for such change. If Contractor believes that the completion of the Work is delayed by Excusable Delay, Contractor shall give OCM written notice, stating the nature of the delay and the activities potentially affected, within five (5) days after the onset of the event or circumstance giving rise to the Excusable Delay. Contractor shall provide sufficient written evidence to document the Excusable Delay. In the case of a continuing cause of delay, only one claim is necessary. Claims for extensions of time should be made in numbers of whole or half days.

12.11.1 **Content of Request.** Within ten (10) days after the cessation of the Excusable Delay, Contractor shall formalize in writing its request for extension of Contract Time to include substantiation of the excusable nature of the delay and a complete analysis of impact to critical path activities. Based on substantiated critical path analysis to the Work Progress Schedule, any Contract Time extension granted will be issued by Change Order.

12.11.2 **No Release.** No extension of time releases Contractor or the Surety furnishing a performance or payment bond from any obligations under the Contract or such a bond. Those obligations remain in full force until the discharge of the Contract.

12.11.3 **Longest Path Analysis.** Contractor shall provide with each Time Extension Request a quantitative demonstration of the impact of the delay on completion of the Work and Contract Time, based on the Work Progress Schedule. Contractor shall include with Time Extension Requests a reasonably detailed narrative setting forth:
12.11.3.1 The nature of the delay and its cause due to a change in the Work or an Excusable Delay and the basis of Contractor’s claim of entitlement to an extension of Contract Time.

12.11.3.2 Documentation of the actual impacts of the claimed delay on the Longest Path in Contractor’s Work Progress Schedule, and any concurrent delays.

12.11.3.3 Description and documentation of steps taken by Contractor to mitigate the effect of the claimed delay, including, when appropriate, the modification of the Work Progress Schedule.

12.11.4 Owner Response. Owner will respond to the Time Extension Request by providing to Contractor written notice of the number of days granted, if any, and giving its reason if this number differs from the number of days requested by Contractor.

12.11.4.1 Owner will not grant time extensions for delays that do not affect the Contract Substantial Completion date.

12.11.4.2 Owner will respond to each properly submitted Time Extension Request within a reasonable time following receipt. If Owner does not have enough information to make a determination or cannot reasonably make a determination within forty-five (45) days, Owner will notify Contractor in writing.

12.12 Failure to Complete Work in the Contract Time. **TIME IS AN ESSENTIAL ELEMENT OF THE CONTRACT.** Contractor’s failure to achieve substantial completion by the Contract Time or to achieve Substantial Completion as required will cause damage to Owner. These damages shall be liquidated by agreement of Contractor and Owner, in the amount per day as set forth in Section 12.13 below or elsewhere in the Contract Documents.

12.13 Liquidated Damages. Unless otherwise stated in the Contract, for each consecutive calendar day beyond the Contract Time that Substantial Completion of the Work is not achieved, Contractor shall pay Owner, within ten (10) days following written demand, an amount determined by the following schedule:

<table>
<thead>
<tr>
<th>Project Cost</th>
<th>Liquidated Damages Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>From To</td>
<td></td>
</tr>
<tr>
<td>< $ 1,000,000</td>
<td>$ 250</td>
</tr>
<tr>
<td>$ 1,000,000</td>
<td>$ 1,000</td>
</tr>
<tr>
<td>$ 25,000,000</td>
<td>$ 2,500</td>
</tr>
<tr>
<td>$ 50,000,000</td>
<td>$ 5,000</td>
</tr>
<tr>
<td>$ 75,000,000</td>
<td>$ 7,500</td>
</tr>
<tr>
<td>> $ 100,000,000</td>
<td>$ 10,000</td>
</tr>
</tbody>
</table>
12.13.2 **Reasonable Estimate.** Not as a penalty but as liquidated damages representing the parties’ estimate at the time of Contract execution of the damages that Owner will sustain for late Substantial Completion of Work. The parties stipulate and agree that the actual damages sustained by Owner for late Substantial Completion of the Work will be uncertain and difficult to ascertain, that calculating Owner’s actual damages would be impractical, unduly burdensome, and cause unnecessary delay, and that the amount of daily liquidated damages set forth above is a reasonable estimate.

12.13.3 **Offset.** Owner may also recover the liquidated damages from any money due or that becomes due Contractor. The amount of liquidated damages may be adjusted by the terms of the Contract.

12.13.4 **No Waiver.** Payment or offset of the liquidated damages does not preclude recovery under the Contract, except for claims related to delays in Substantial Completion or Final Completion. Owner’s right to receive liquidated damages shall not affect Owner’s right to terminate the Contract as provided in these Uniform General Conditions or elsewhere in the Contract Documents, nor shall termination of the Contract release Contractor from the obligation to pay liquidated damages.

ARTICLE 13. PAYMENTS

13.1 **Job Order Contracts.** Contractor shall submit to OCM pricing based on the regional RS Means or Gordian Group pricing. The Job Order may be a fixed price, lump-sum contract based on unit pricing applied to estimated quantities or unit price order based on the quantities and line items delivered and the coefficient applied to the work items.

13.2 **Schedule of Values (utilized in CMAR and GCA).** Contractor shall submit to OCM and Design Professional for acceptance a Schedule of Values accurately itemizing material and labor for the various classifications of the Work based on the organization of the specification sections and of sufficient detail acceptable to OCM. The accepted Schedule of Values will be the basis for the progress payments under the Contract.

13.2.1 **Requirements.**

13.2.1.1 No progress payments will be made prior to receipt and acceptance of the Schedule of Values, provided in such detail as required by OCM, and submitted not less than twenty-one (21) days after the effective date of the Notice to Proceed. The Schedule of Values shall follow the order of trade divisions of the Specifications and include itemized costs for General Conditions, costs for preparing Close-Out Documents, fees, contingencies, and Owner cash allowances, if applicable, so that the sum of the items will equal the Contract Sum. As appropriate, assign each item labor and/or material
values, the subtotal thereof equaling the value of the Work in place when complete.

13.2.1.2 Owner requires that the Work items be inclusive of the cost of the Work items only. Any contract markups for overhead and profit, General Conditions, etc., shall be contained within separate line items for those specific purposes which shall be divided into at least two (2) lines, one (1) for labor and one (1) for materials.

13.2.1.3 Contractor shall retain a copy of all worksheets used in preparation of its bid or proposal, supported by a notarized statement that the worksheets are true and complete copies of the documents used to prepare the bid or proposal, and shall make the worksheets available to Owner at the time of Contract execution. Thereafter, Contractor shall grant Owner during normal business hours access to said copy of worksheets at any time during the period commencing upon execution of the Contract and ending one (1) year after final payment.

13.3 Progress Payments. Contractor will receive periodic progress payments for Work performed, materials in place, suitably stored on Site, or as otherwise agreed to by Owner and Contractor. Payment is not due until receipt by Owner or its designee of a correct and complete Pay Application in electronic and/or hard copy format as required by the Contract Documents, and certified by Design Professional. Progress payments are made provisionally and do not constitute acceptance of Work not in accordance with the Contract Documents. Owner will not process progress payment applications for Change Order Work until all parties execute the Change Order.

13.3.1 Preliminary Pay Worksheet. Once each month that a progress payment is to be requested, the Contractor shall submit to Design Professional and OCM a complete, clean copy of a preliminary pay worksheet or preliminary pay application, to include the following:

13.3.1.1 Contractor’s estimate of the amount of Work performed, labor furnished, and materials incorporated into the Work, using the established Schedule of Values;

13.3.1.2 An updated Work Progress Schedule reflecting progress of Work, including the executive summary and all required schedule reports. The progress of Work shall be the same progress as payment request;

13.3.1.3 HUB subcontracting plan Progress Assessment Report;

13.3.1.4 Reimbursable expenses incurred solely and directly in support of the Project within one of the following categories:

- Travel expenditures at State of Texas reimbursement rates, provided that reimbursement will not be granted for travel 1) within the Denton-Dallas-Fort Worth area or 2) involving less than 150 miles round-trip; or
• Reproductions, printing, printing supplies, plotting, photographs, renderings, postage, binding, collating, delivery and handling of reports; Drawings and Specifications or other project-related work product other than that used solely in-house by Contractor at actual expense incurred; or

• Fees and associated reimbursable expenses paid to Consultants hired in accordance with prior written approval from Owner.

• Expenses excluded from reimbursement include telephone charges, FAX services, alcoholic beverages, laundry service, valet service, entertainment expenses and any non-Project related items.

• Reimbursement of tips shall not exceed fifteen percent (15%).

13.3.1.5 Such additional documentation as Owner may require in the Contract Documents; and

13.3.1.6 Construction payment affidavit.

13.3.2 Contractor’s Application for Payment. As soon as practicable, but in no event later than seven (7) days after receipt of the preliminary pay worksheet, Design Professional and OCM will meet with Contractor to review the preliminary pay worksheet and to observe the condition of the Work. Based on this review, OCM and Design Professional may require modifications to the preliminary pay worksheet prior to the submittal of an Application for Payment, and will promptly notify Contractor of revisions necessary for approval. As soon as practicable, Contractor shall submit its Application for Payment on the appropriate and completed form, reflecting the required modifications to the Schedule of Values required by Design Professional and/or OCM, and must attach all additional documentation required by OCM and/or Design Professional, as well as an affidavit affirming that all payrolls, bills for labor, materials, equipment, subcontracted work, and other indebtedness connected with Contractor’s Application for Payment are paid or will be paid within the time specified in Tex. Gov’t Code, Chapter 2251. No Application for Payment is complete unless it fully reflects all required modifications, and attaches all required documentation including Contractor’s affidavit.

13.3.3 Certification by Design Professional. Within five (5) days or earlier following Design Professional’s receipt of Contractor’s formal Application for Payment, Design Professional will review the Application for Payment for completeness, and forward it to OCM. Design Professional will certify that the application is complete and payable, or that it is incomplete, stating in particular what is missing. If the Application for Payment is incomplete, Contractor shall make the required corrections and resubmit the Application for Payment for processing.

13.4 Owner’s Duty to Pay. Owner has no duty to pay the Contractor except on receipt by OCM of: (a) a complete Application for Payment certified by Design Professional; and (b) Contractor’s updated Work Progress Schedule.
13.4.1 Stored Materials. Payment for stored materials and/or equipment confirmed by Owner and Design Professional to be on-site or otherwise properly stored is limited to eighty-five percent (85%) of the invoice price or eighty-five percent (85%) of the scheduled value for the materials or equipment, whichever is less.

13.4.2 Retainage. Owner will withhold from each progress payment, as retainage, whichever is more of the following three options: (a) five percent (5%) of the total earned amount; (b) the amount authorized by law; or (c) as otherwise set forth in the Contract Documents. Retainage will be managed in conformance with Tex. Gov’t Code, Chapter 2252, Subchapter B.

13.4.2.1 Contractor shall provide written consent of its surety and concurrence of Design Professional for any request for reduction or release of retainage.

13.4.2.2 At least sixty-five percent (65%) of the Contract, or such other discrete Work phase as set forth in Subsection 15.1.6 or Work package delineated in the Contract Documents, must be completed before Owner can consider a retainage reduction or release, and only if permissible by law.

13.4.2.3 Contractor shall not withhold retainage from its Subcontractors and suppliers in amounts that are any percentage greater than that withheld in its Contract with Owner under this subsection, unless otherwise acceptable to Owner.

13.4.3 Price Reduction to Cover Loss. Owner may reduce any Application for Payment, prior to payment to the extent necessary to protect Owner from loss on account of actions of Contractor including, but not limited to, the following:

13.4.3.1 Defective or incomplete Work not remedied;

13.4.3.2 Damage to Work of a separate Contractor;

13.4.3.3 Failure to maintain scheduled progress;

13.4.3.4 Reasonable evidence provided with Work Progress Schedule that the Work will not be completed within the Contract Time;

13.4.3.5 Persistent failure to carry out the Work in accordance with the Contract Documents;

13.4.3.6 Reasonable evidence that the Work cannot be completed for the unpaid portion of the Contract Sum;

13.4.3.7 Assessment of fines for violations of prevailing wage rate law; or

13.4.3.8 Failure to include the appropriate amount of retainage for that periodic progress payment.
13.4.4 Title.

13.4.4.1 Title to all material and Work covered by progress payments transfers to Owner upon payment.

13.4.4.2 Transfer of title to Owner does not: (a) relieve Contractor and its Subcontractors of the sole responsibility for the care and protection of materials and Work upon which payments have been made until final acceptance; (b) diminish the responsibility of Contractor and its Subcontractors to restore any damaged Work; or (c) waive the right of Owner to require the fulfillment of all the terms of the Contract.

13.4.5 Contracts with No Payment Bond. For a Contract in any amount less than $25,000.00, payment will be made in one lump sum at the Final Completion of the Work, including Punch list items and change orders.

13.4.6 No Release. Progress payments to Contractor do not release Contractor or its surety from any obligations under the Contract.

13.4.7 Documentation.

13.4.7.1 Upon Owner’s request, Contractor shall furnish manifest proof of the status of Subcontractor’s accounts in a form acceptable to Owner.

13.4.7.2 Pay estimate certificates must be signed by a corporate officer or a representative duly authorized by Contractor.

13.4.7.3 Provide copies of bills of lading, invoices, delivery receipts, or other evidence of the location and value of such materials in requesting payment for materials. For purposes of Tex. Gov't Code § 2251.021(a)(2), the date the performance of service is complete is the date when ODR approves the Application for Payment.

13.5 Time for Payment by Contractor Pursuant to Tex. Gov't Code § 2255.022. Upon Contractor's receipt of payment from Owner, Contractor shall pay Subcontractor the appropriate share of the payment not later than the tenth (10th) day after the date the Contractor receives the payment. The appropriate share is overdue on the eleventh (11th) day after the date Contractor receives the payment.

ARTICLE 14.
CHANGES

14.1 Change Orders. A Change Order issued after execution of the Contract is a written order to Contractor, signed by ODR, Contractor, and Design Professional, authorizing a change in the Work or an adjustment in the Contract Sum or the Contract Time. The Contract Sum and the Contract Time can only be changed by Change Order. A Change Order signed by Contractor
indicates his agreement therewith, including the adjustment in the Contract Sum and/or the Contract Time. ODR may issue a written authorization for Contractor to proceed with Work of a Change Order in advance of final execution by all parties in accordance with Section 14.9 or other contract provisions.

14.1.1 **Owner Ordered Changes.** Owner, without invalidating the Contract and without approval of Contractor’s Surety, may order changes in the Work within the general scope of the Contract consisting of additions, deletions, or other revisions, and the Contract Sum and the Contract Time will be adjusted accordingly. All such changes in the Work shall be authorized by Change Order or CCD, and shall be performed under the applicable conditions of the Contract Documents. If such changes cause an increase or decrease in Contractor’s cost of, or time required for, performance of the Work, an adjustment to Contract Sum or Contract Time shall be made and authorized by a Change Order.

14.1.2 **Corrections.** It is recognized by the parties hereto and agreed by them that the Drawings and Specifications may not be complete or free from discrepancies, errors, omissions, or inconsistencies, or that they may require changes or additions in order for the Work to be completed to the satisfaction of Owner. Accordingly, it is the express intention of the parties, notwithstanding any other provisions in this Contract, that any discrepancies, errors, omissions, or inconsistencies in such Drawings and Specifications, or any changes in or additions to Drawings and Specifications or to the Work ordered by Owner and any resulting delays in the Work or increases in Contractor’s costs and expenses arising out of such discrepancies, errors, omissions, or inconsistencies shall not constitute or give rise to any claim, demand, or cause of action of any nature whatsoever in favor of Contractor, whether for breach of Contract, or otherwise. However, that Contractor will be entitled to the time or sum stated to be due Contractor in any Change Order approved and signed by all parties, which shall constitute full compensation to Contractor for all costs, expenses, and damages to Contractor.

14.2 **Unit Prices.** If unit prices are stated in the Contract Documents or subsequently agreed upon, and if the quantities originally contemplated are so changed in a Proposed Change Order that application of the agreed unit prices to the quantities of work proposed will cause substantial inequity to Owner or Contractor, the applicable unit prices shall be equitably adjusted as agreed to by the parties and incorporated into a Change Order.

14.2.1 **Job Order Unit Prices.** Job Order Unit Prices as stated in the contract document or Proposed Change Order shall be based upon a **regional RS Means Book or Gordian Group pricing.**

14.3 **Claims for Additional Costs.**

14.3.1 **Claim with no Requested Change.** If Contractor wishes to make a claim for an increase in the Contract Sum not related to a requested change, Contractor shall give Owner and Design Professional written notice thereof within twenty-one (21) days after the occurrence of the event giving rise to such claim, but, in any case before proceeding to execute the Work considered to be additional cost or time, except in an emergency endangering life or
property in which case Contractor shall act in accordance with Section 10.3. No such claim shall be valid unless so made. If Owner and Contractor cannot agree on the amount of the adjustment in the Contract Sum, it shall be determined as set forth under Article 18. Any change in the Contract Sum resulting from such claim must be authorized by a Change Order.

14.3.2 **Miscellaneous Claims.** If Contractor claims that additional cost is involved because of, but not limited to: (1) any written interpretation of the Contract Documents; (2) any order by Owner to stop the Work pursuant to Article 17 where Contractor was not at fault; or (3) any written order for a minor change in the Work issued pursuant to Section 14.4, Contractor shall make such claim as provided in Section 14.3.1.

14.3.3 **Failure to Notify.** Should Contractor fail to call to the attention of Owner and Design Professional to discrepancies, errors, omissions, or inconsistencies in the Contract Documents, but claim additional costs for corrective Work after Contract award or after Owner’s acceptance of Contractor’s Construction Manager-at-Risk guaranteed maximum price, Owner may assume intent to circumvent competitive bidding for the necessary corrective Work. In such case, Owner may choose to let a separate Contract for the corrective Work, or issue a CCD to require performance by Contractor. Claims for time extensions or for extra cost resulting from delayed notice of patent Contract Document discrepancies, errors, omissions, or inconsistencies will not be considered by Owner.

14.4 **Minor Changes.** Design Professional, with concurrence of OCM, will have authority to order minor changes in the Work not involving an adjustment in the Contract Sum or an extension of the Contract Time. Such changes shall be effected by written order which Contractor shall carry out promptly and record on as-built Record Documents.

14.5 **Concealed Site Conditions.** Contractor is responsible for visiting the Site and being familiar with local conditions such as the location, accessibility, and general character of the Site and/or building. If, in the performance of the Contract, subsurface, latent, or concealed conditions at the Site are found to be materially different from the information included in the Contract Documents, or if unknown conditions of an unusual nature are disclosed differing materially from the conditions usually inherent in Work of the character shown and specified, OCM and Design Professional shall be notified in writing of such conditions before they are disturbed. Upon such notice, or upon its own observation of such conditions, Design Professional, with the approval of ODR, will promptly make such changes in the Drawings and Specifications as deemed necessary to conform to the different conditions. Any increase or decrease in the cost of the Work, or in the time within which the Work is to be completed, resulting from such changes will be adjusted by Change Order.

14.6 **Extension of Time.** All changes to the Contract Time made as a consequence of requests as required in the UGC’s, must be documented by Change Order.
14.7 **Administration of Change Order Requests.** All changes in the Contract shall be administered in accordance with procedures approved by Owner, and when required, make use of such electronic information management system(s) as Owner may employ.

14.7.1 **Procedures.**

14.7.1.1 Procedures for administration of Change Orders shall be established by Owner and stated in the Contract Documents.

14.7.1.2 No oral order, oral statement, or oral direction of Owner or his duly appointed representative shall be treated as a change under this article or entitle Contractor to an adjustment.

14.7.2 **Routine Changes.** Routine changes shall be formally initiated by Design Professional or Owner by means of a Proposal Request form detailing requirements of the proposed change for pricing by Contractor, or may be initiated by Contractor by means of a Change Order Request form detailing proposed work, pricing, and time. This action may be preceded by communications between Contractor, Design Professional, and OCM concerning the need and nature of the change, but such communications shall not constitute a basis for beginning the proposed Work by Contractor. Except for emergency conditions described below, approval of Contractor’s cost proposal by Design Professional and ODR will be required for authorization to proceed with the Work being changed. Owner will not be responsible for the cost of Work changed without prior approval and Contractor may be required to remove Work so installed.

14.7.3 **Documentation.** All proposed costs or time for Change Order Work must be supported by itemized accounting of material, equipment, and associated itemized installation costs in sufficient detail following the outline and organization of the established Schedule of Values, and be supported by documented impact to critical path activities, to permit analysis by Design Professional and ODR using current estimating guides and/or practices. Photocopies of Subcontractor and vendor proposals shall be furnished unless specifically waived by ODR. Contractor shall provide written response to a change request within twenty-one (21) days of receipt.

14.7.4 **Emergencies.** Emergency changes to save life or property may be initiated by Contractor alone with the claimed cost and/or time of such work to be fully documented as to necessity and detail of the reported costs and/or time.

14.7.5 **Coordination with Schedule of Values.** The method of incorporating approved Change Orders into the parameters of the accepted Schedule of Values must be coordinated and administered in a manner acceptable to Owner.

14.8 **Pricing Change Order Work.** The amounts that Contractor and/or its Subcontractor includes in a Change Order for profit and overhead will also be considered by Owner before approval is given. The amounts established hereinafter are the maximums that are acceptable to Owner.
14.8.1 **Self-Performance.** For Work performed by its forces, Contractor will be allowed its actual costs for materials, the total amount of wages paid for labor, plus the total cost of state and federal payroll taxes and of worker’s compensation and comprehensive general liability insurance, plus additional bond and builders risk insurance cost if the change results in an increase in the premium paid by Contractor.

14.8.1.1 To the total of the above costs, Contractor will be allowed to add a percentage to cover overhead and profit combined. Allowable percentages for overhead and profit on changes will not exceed fifteen percent (15%) if the total sum of self-performed Work is less than or equal to $10,000, ten percent (10%) if the total sum of self-performed Work is between $10,000 and $20,000 and five percent (5%) if the total sum of self-performed Work is over $20,000, for any specific change priced.

14.8.2 **Overhead and Profit.** Overhead shall be considered to include insurance beyond the scope of Article 8, field and office supervisors and assistants, including safety and scheduling personnel, use of small tools, incidental job burdens, and general home office expenses. No separate allowance will be made.

14.8.3 **Subcontractor Performed.** For subcontracted Work, each affected Subcontractor shall be allowed to figure costs, overhead, and profit as described in 14.8.1 for Self-Performance.

14.8.4 **Subcontractor Coordination.** Subcontractor costs shall be combined and Contractor will be allowed to add a maximum mark-up of ten percent (10%) if the total sum of all subcontracted Work is less than or equal to $10,000, seven and one-half percent (7.5%) if the total sum of all subcontracted Work is more than $10,000 and less than or equal to $20,000, and five percent (5%) if the total sum of all subcontracted Work is more than $20,000. This markup will apply to subcontractor’s coordination of lesser tier subcontractor Work performed.

14.8.5 **GMP Limitation.** For Contracts based on a GMP, the Construction Manager-at-Risk or Design Builder shall NOT be entitled to a percentage mark-up or additional fee on any Change Order Work unless the Change Order increases the GMP or if contingency funds are utilized. If the GMP increases or contingency funds are utilized, the Construction Manager-at-Risk or Design Builder will be allowed additional fees at the rate specified in the Contract.

14.8.6 **Net Amount.** On changes involving both additions and deletions, percentages for overhead and profit will be allowed only on the net addition. Owner does not accept and will not pay for additional Contract cost identified as indirect or consequential damages or as damages caused by delay.

14.9 **Construction Change Directive (CCD).** Owner may issue a written CCD directing a change in the Work prior to reaching agreement with Contractor on the adjustment, if any, in the Contract Sum and/or the Contract Time. Owner retains sole discretion whether or not to issue any CCD. Owner’s issuance of a CCD does not require Owner to issue subsequent CO’s. Owner and
Contractor shall negotiate for appropriate adjustments, as applicable, to the Contract Sum or the Contract Time arising out of a CCD. Contractor shall not submit its costs for CCD Work with its Application for Payment until a CO has been issued. The Parties reserve their rights as to the disputed amount, subject to Article 18.

14.10 **Audit of Changes.** All Change Orders are subject to audit by Owner or its representative at any time and Change Order amounts may be adjusted lower as a result of such audit.

ARTICLE 15.

PROJECT COMPLETION AND ACCEPTANCE

15.1 **Closing Inspections.**

15.1.1 **Purpose of Inspection.** Inspection is for determining the completion of the Work, and does not relieve Contractor of its overall responsibility for completing the Work in a good and competent fashion, in compliance with the Contract. Work accepted with incomplete Punch list items, or the failure of Owner or other parties to identify Work that does not comply with the Contract Documents or is defective in operation or workmanship, does not constitute a waiver of Owner’s rights under the Contract or relieve Contractor of its responsibility for performance or warranties.

15.1.2 **Annotation.** Any Certificate issued under this Article may be annotated to indicate that it is not applicable to specified portions of the Work, or that it is subject to any limitation as determined by Owner.

15.1.3 **Substantial Completion Inspection.** When Contractor considers the entire Work or part thereof Substantially Complete, it shall notify OCM in writing that the Work will be ready for Substantial Completion inspection on a specific date. Contractor shall include with this notice Contractor’s Punch list to indicate that it has previously inspected all the Work associated with the request for inspection, noting items it has corrected and included all remaining work items with date scheduled for completion or correction prior to final inspection. The failure to include any items on this list does not alter the responsibility of Contractor to complete all Work in accordance with the Contract Documents. If any of the items on this list prevents the Project from being used as intended, Contractor shall not request a Substantial Completion inspection. Owner and its representatives will review the list of items and schedule the requested inspection, or inform Contractor in writing that such an inspection is premature because the Work is not sufficiently advanced or conditions are not as represented on Contractor’s list.

15.1.3.1 Prior to the Substantial Completion inspection, Contractor shall furnish a copy of its marked-up Record Documents and a preliminary copy of each instructional manual, maintenance and operating manual, parts catalog, wiring diagrams, spare parts, specified written warranties, and like publications or parts for all installed equipment, systems, and like items as described in the
Conduct of Final Completion Inspection. Delivery of these items is a prerequisite for requesting the Substantial Completion inspection.

15.1.3.2 On the date requested by Contractor, or as mutually agreed upon pending the status of the Open Items List, Design Professional, OCM, Contractor, and other Owner representatives as determined by Owner will jointly attend the Substantial Completion inspection, which shall be conducted by OCM or Owner’s representative. If Owner and Design Professional determines that the Work is Substantially Complete, Design Professional will issue a Certificate of Substantial Completion to be signed by Design Professional, Owner, and Contractor establishing the date of Substantial Completion and identifying responsibilities for security and maintenance. Design Professional will provide with this certificate a list of Punch list items (the pre-final Punch list) for completion prior to final inspection. This list may include items in addition to those on Contractor’s Punch list, which the inspection team deems necessary to correct or complete prior to final inspection. If Owner occupies the Project upon determination of Substantial Completion, Contractor shall complete all corrective Work at the convenience of Owner, without disruption to Owner’s use of the Project for its intended purposes.

15.1.4 Final Inspection. Contractor shall correct or complete all items on the final Punch list before requesting a Final Completion inspection and Final Payment. Unless otherwise agreed to in writing by the parties, Contractor shall complete this work within thirty (30) days of receiving the final Punch list. Upon completion of the final Punch list, Contractor shall notify Design Professional and OCM in writing stating the disposition of each final Punch list item. Design Professional, Owner, and Contractor shall promptly inspect the completed items. When the final Punch list is complete, and the Contract is fully satisfied according to the Contract Documents Design Professional will issue a certificate establishing the date of Final Completion. Completion of all Work is a condition precedent to Contractor’s right to receive Final Payment.

15.1.5 Additional Inspections.

15.1.5.1 If Owner’s inspection team determines that the Work is not Substantially Complete at the Substantial Completion inspection, Owner or Design Professional will give Contractor written notice listing cause(s) of the rejection. Contractor will set a time for completion of incomplete or defective work acceptable to Owner. Contractor shall complete or correct all work so designated prior to requesting a second Substantial Completion inspection. Owner’s or Design Professional’s failure to include items as causes of rejection does not constitute a waiver of Owner’s right under the Contract or relieve Contractor of its responsibility for performance.

15.1.5.2 If Owner’s inspection team determines that the Work is not complete at the Final Completion inspection, Owner or Design Professional will give
Contractor written notice listing the cause(s) of the rejection. Contractor will set a time for completion of incomplete or defective work acceptable to Owner. Contractor shall complete or correct all Work so designated prior to again requesting a final inspection. Owner’s or Design Professional’s failure to include items as causes of rejection does not constitute a waiver of Owner’s right under the Contract or relieve Contractor of its responsibility for performance.

15.1.5.3 The Contract contemplates three (3) comprehensive inspections: the Substantial Completion inspection, the Final Completion inspection, and the inspection of completed final Punch list items. The cost to Owner of additional inspections resulting from the Work not being ready for one or more of these inspections is the responsibility of Contractor. Owner may issue a CO deducting these costs from Final Payment. Upon Contractor’s written request, Owner will furnish documentation of any costs so deducted. Work added to the Contract by Change Order after Substantial Completion inspection is not corrective Work for purposes of determining timely completion, or assessing the cost of additional inspections.

15.1.6 **Phased Completion.** The Contract may provide, or Project conditions may warrant, as determined by ODR, that designated elements or parts of the Work be completed in phases. Where phased completion is required or specifically agreed to by the parties, the provisions of the Contract related to closing inspections, occupancy, and acceptance apply independently to each designated element or part of the Work. For all other purposes, unless otherwise agreed by the parties in writing, Substantial Completion of the Work as a whole is the date on which the last element or part of the Work completed receives a Substantial Completion certificate. Final Completion of the Work as a whole is the date on which the last element or part of the Work completed receives a Final Completion certificate.

15.2 **Owner’s Right of Occupancy.** Owner may occupy or use all or any portion of the Work following Substantial Completion, or at any earlier stage of completion. Should Owner wish to use or occupy the Work, or part thereof, prior to Substantial Completion, Owner will notify Contractor in writing and identify responsibilities for security and maintenance. Work performed on the premises by third parties on Owner’s behalf does not constitute occupation or use of the Work by Owner for purposes of this Article. All Work performed by Contractor after occupancy, whether in part or in whole, shall be at the convenience of Owner so as to not disrupt Owner’s use of, or access to, occupied areas of the Project.

15.3 **Acceptance and Payment.**

15.3.1 **Request for Final Payment.** Following the certified completion of all Work, including all final Punch list items, cleanup, and the delivery of Record Documents, Contractor shall submit a certified Application for Final Payment and include all sums held as retainage and forward to Design Professional and OCM for review and approval.
15.3.2 **Final Payment Documentation.** Contractor shall submit, prior to or with the Application for Final Payment, final copies of all Close-Out Documents, maintenance and operating instructions, guarantees and warranties, certificates, Record Documents, and all other items required by the Contract. Contractor shall submit evidence of return of access keys and cards, evidence of delivery to Owner of attic stock, spare parts, and other specified materials. Contractor shall submit consent of surety to Final Payment form and an affidavit that all payrolls, bills for materials and equipment, subcontracted work, and other indebtedness connected with the Work, except as specifically noted, are paid, will be paid after payment from Owner, or otherwise satisfied within the period of time required by Tex. Gov’t Code, Chapter 2251. Contractor shall furnish documentation establishing payment or satisfaction of all such obligations, such as receipts, releases, and waivers of claims and liens arising out of the Contract. Contractor may not subsequently submit a claim on behalf of Subcontractor or vendor unless Contractor’s affidavit notes that claim as an exception.

15.3.3 **Design Professional Approval.** Design Professional will review a submitted Application for Final Payment promptly but in no event later than ten (10) days after its receipt. Prior to the expiration of this deadline, Design Professional will either: 1) return the Application for Final Payment to Contractor with corrections for action and resubmission; or 2) accept it, note approval, and send to Owner.

15.3.4 **Offsets and Deductions.** Owner may deduct from the Final Payment all sums due from Contractor. If the Certificate of Final Completion notes any Work remaining, incomplete, or defects not remedied, Owner may deduct the cost of remedying such deficiencies from the Final Payment. On such deductions, Owner will identify each deduction, the amount, and the explanation of the deduction on or by the twenty-first (21st) day after Owner’s receipt of an approved Application for Final Payment. Such offsets and deductions shall be incorporated via a final Change Order, including a CCD as may be applicable.

15.3.5 **Final Payment Due.** Final Payment is due and payable by Owner, subject to all allowable offsets and deductions, on the thirtieth (30th) day following Owner’s approval of the Application for Payment. If Contractor disputes any amount deducted by Owner, Contractor shall give notice of the dispute on or before the thirtieth (30th) day following receipt of Final Payment. Failure to do so will bar any subsequent claim for payment of amounts deducted.

15.3.6 **Effect of Final Payment.** Final Payment shall not constitute a waiver of claims by Owner relating to the condition of the Work including those arising from:

15.3.6.1 Faulty or defective Work appearing after Substantial Completion (latent defects);

15.3.6.2 Failure of the Work to comply with the requirements of the Contract Documents;

15.3.6.3 Terms of any warranties required by the Contract, or implied by law; or
15.3.6.4 Claims arising from personal injury or property damage to third parties.

15.3.7 **Waiver of Claims.** Acceptance of final payment constitutes a waiver of all claims and liens by Contractor except those specifically identified in writing and submitted to ODR prior to the application for Final Payment.

15.3.8 **Effect on Warranty.** Regardless of approval and issuance of Final Payment, the Contract is not deemed fully performed by Contractor and closed until the expiration of all warranty periods.

ARTICLE 16. WARRANTY AND GUARANTEE

16.1 **Contractor’s General Warranty and Guarantee.** Contractor warrants to Owner that all Work is executed in accordance with the Contract, complete in all parts and in accordance with approved practices and customs, and of the required finish and workmanship. Contractor further warrants that unless otherwise specified, all materials and equipment incorporated in the Work under the Contract are new. Owner may, at its option, agree in writing to waive any failure of the Work to conform to the Contract, and to accept a reduction in the Contract Sum for the cost of repair or diminution in value of the Work by reason of such defect. Absent such a written agreement, Contractor’s obligation to perform and complete the Work in accordance with the Contract Documents is absolute and is not waived by any inspection or observation, or lack thereof, by Owner, Design Professional, or others, by making any progress payment or final payment, by the use or occupancy of the Work or any portion thereof by Owner, at any time, or by any repair or correction of such defect made by Owner.

16.1.1 **Warranty Period.** Except as may be otherwise specified or agreed, Contractor shall repair all defects in materials, equipment, or workmanship appearing within one (1) year from the date of Substantial Completion of the Work. If Substantial Completion occurs by phase, the warranty period for that particular Work begins on the date of Substantial Completion of that phase, or as otherwise stipulated on the Certificate of Substantial Completion for that particular Work.

16.1.2 **Limits on Warranty.** Contractor’s warranty and guarantee hereunder excludes defects or damage caused by:

16.1.2.1 Modification or improper maintenance or operation by persons other than Contractor, Subcontractors, or any other individual or entity for whom Contractor is not responsible, unless Owner is compelled to undertake maintenance or operation due to the neglect of Contractor.

16.1.2.2 Normal wear and tear under normal usage after acceptance of the Work by Owner.
16.1.3 **Events Not Affecting Warranty.** Contractor’s obligation to perform and complete the Work in a good and workmanlike manner in accordance with the Contract Documents is absolute. None of the following will constitute an acceptance of defective Work that is not in accordance with the Contract Documents or a release of Contractor’s obligation to perform the Work in accordance with the Contract Documents:

16.1.3.1 Observations, or lack thereof, by Owner and/or Design Professional;

16.1.3.2 Recommendation to pay any progress or final payment by Design Professional;

16.1.3.3 The issuance of a certificate of Substantial Completion or any payment by Owner to Contractor under the Contract Documents;

16.1.3.4 Use or occupancy of the Project or any part thereof by Owner;

16.1.3.5 Any acceptance by Owner or any failure to do so;

16.1.3.6 Any review by Owner of a Shop Drawing or sample submittal; or

16.1.3.7 Any inspection, test or approval by others.

16.2 **Separate Warranties.** If a particular piece of equipment or component of the Work for which the Contract requires a separate warranty is placed in continuous service before Substantial Completion, the warranty period for that equipment or component will not begin until Substantial Completion, regardless of any warranty agreements in place between suppliers and/or Subcontractors and Contractor. Contractor shall assume any duty to repair not otherwise covered by those warranty agreements. Owner will certify the date of service commencement in the Substantial Completion certificate.

16.2.1 **Assumption.** In addition to Contractor’s warranty and duty to repair, Contractor expressly assumes all warranty obligations required under the Contract for specific building components, systems, and equipment.

16.2.2 **Assignment.** Contractor may satisfy any such obligation by obtaining and assigning to Owner a complying warranty from a manufacturer, supplier, or Subcontractor. Where an assigned warranty is tendered and accepted by Owner which does not fully comply with the requirements of the Contract, Contractor remains liable to Owner on all elements of the required warranty not provided by the assigned warranty.

16.3 **Correction of Defects.** Upon receipt of written notice from Owner, or any agent of Owner designated as responsible for management of the warranty period, of the discovery of a defect, Contractor shall promptly remedy the defect(s), and provide written notice to Owner and designated agent indicating action taken. In case of emergency where delay would cause serious risk of loss or damage to Owner, or if Contractor fails to remedy within thirty (30) days, or within another period agreed to in writing, Owner may correct the defect and be reimbursed the cost of remedying the defect from Contractor or its surety.
16.4 **Certification of No Asbestos Containing Materials or Work.** Contractor shall provide a notarized certification to Owner that all equipment and materials used in fulfillment of its Contract responsibilities are non-Asbestos Containing Building Materials (ACBM). This certification must be provided no later than Contractor’s application for Final Payment. Contractor shall insure that Texas Department of State Health Services licensed individual, consultants or companies are used for any required asbestos work including asbestos inspection, asbestos abatement plans/specifications, asbestos abatement, asbestos project management and third-party asbestos monitoring.

16.5 Contractor shall warrant and ensure compliance with the following Acts by Contractor or Contractor’s Subcontractors and assigns:

- Asbestos Hazard Emergency Response Act (AHERA-40 CFR 763-99 (7));
- National Emission Standards for Hazardous Air Pollutants (NESHAP-EPA 40 CFR 61, Subpart M-National Emission Standard for Asbestos); and
- Texas Asbestos Health Protection Rules (TAHPR-Tex. Admin. Code Title 25, Part 1, Ch. 295C, Asbestos Health Protection)

ARTICLE 17. SUSPENSION AND TERMINATION

17.1 **Suspension of Work for Cause.** Owner may, at any time without prior notice, suspend all or any part of the Work, if after reasonable observation and/or investigation, Owner determines it is necessary to do so to prevent or correct any condition of the Work, which constitutes an immediate safety hazard, or which may reasonably be expected to impair the integrity, usefulness, or longevity of the Work when completed.

17.1.1 **Cease Work.** Owner will give Contractor a written notice of suspension for cause, setting forth the reason for the suspension and identifying the Work suspended. Upon receipt of such notice, Contractor shall immediately stop the Work so identified.

17.1.2 **Investigation.** As soon as practicable following the issuance of such a notice, Owner will initiate and complete a further investigation of the circumstances giving rise to the suspension, and issue a written determination of the findings. Contractor shall cooperate with Owner’s investigation.

17.1.3 **Outcome.** If it is confirmed that the cause was within the control of Contractor, Contractor will not be entitled to an extension of Contract Time or any compensation for delay resulting from the suspension. If the cause is determined not to have been within the control of Contractor, and the suspension has prevented Contractor from completing the Work within the Contract Time, the suspension shall be considered an Excusable Delay and an extension of Contract Time will be granted through a Change Order.
17.1.4 **Time.** Suspension of Work under this provision will be no longer than is reasonably necessary to investigate and remedy the conditions giving rise to the suspension.

17.2 **Suspension of Work for Owner’s Convenience.** Upon seven (7) days written notice to Contractor, Owner may at any time without breach of the Contract suspend all or any portion of the Work for its own convenience. When such a suspension prevents Contractor from completing the Work within the Contract Time, it shall be considered an Excusable Delay. A notice of suspension for convenience may be modified by Owner at any time on seven (7) days written notice to Contractor. If Owner suspends the Work for its convenience for more than sixty (60) consecutive days, Contractor may elect to terminate the Contract pursuant to the provisions of the Contract.

17.3 **Termination by Owner for Cause.**

17.3.1 **Cause.** Upon written notice to Contractor and its surety, Owner may, without prejudice to any right or remedy, terminate the Contract and take possession of the Site and of all materials, equipment, tools, construction equipment, and machinery thereon owned by Contractor under any of the following circumstances:

17.3.1.1 Persistent or repeated failure or refusal, except during complete or partial suspensions of work authorized under the Contract, to supply enough properly skilled workmen or proper materials;

17.3.1.2 Persistent disregard of laws, ordinances, rules, regulations, or orders of any public authority having jurisdiction, including Owner;

17.3.1.3 Persistent failure to prosecute the Work in accordance with the Contract, and to ensure its completion within the Contract Time;

17.3.1.4 Failure to remedy defective work;

17.3.1.5 Failure to pay Subcontractors, laborers, and material suppliers pursuant to Tex. Gov’t Code, Chapter 2251;

17.3.1.6 Persistent endangerment to the safety of labor or of the Work;

17.3.1.7 Failure to supply or maintain statutory bonds or to maintain required insurance pursuant to the Contract;

17.3.1.8 Any material breach of the Contract; or

17.3.1.9 Contractor’s insolvency, bankruptcy, or demonstrated financial inability to perform the Work.

17.3.2 **No Waiver.** Failure by Owner to exercise the right to terminate in any instance is not a waiver of the right to do so in any other instance.
17.3.3 Notice. Owner may immediately terminate the Contract under the provisions of this Section 17.3 upon written notice to Contractor and Contractor’s sureties. Owner may also give notice to Contractor and Contractor’s sureties of Owner’s intent to terminate the Contract under the provisions of this Section 17.3 at any later date upon written notice to Contractor and its sureties.

17.3.4 Cure. Should Contractor or its surety, after having received notice of Owner’s intent to terminate at a later date, demonstrate to the satisfaction of Owner that Contractor or its surety are proceeding to correct such default with diligence and promptness, upon which the notice of intent to terminate was based, the notice of intent to terminate may be rescinded in writing by Owner. If so rescinded, the Work may continue without an extension of Contract Time.

17.3.5 Failure to Cure. Should Contractor or its surety fail, after having received notice of Owner’s intent to terminate, to commence and continue correction of such default with diligence and promptness to the satisfaction of Owner within the date specified by Owner, Owner may arrange for completion of the Work and deduct the cost of completion from the unpaid Contract Sum.

17.3.5.1 This amount includes the cost of additional Owner costs such as Design Professional services, other consultants, and contract administration.

17.3.5.2 Owner will make no further payment to Contractor or its surety unless the costs to complete the Work are less than the Contract balance, then the difference shall be paid to Contractor or its surety. If such costs exceed the unpaid balance, Contractor or its surety will pay the difference to Owner.

17.3.5.3 This obligation for payment survives the termination of the Contract.

17.3.5.4 Owner reserves the right in termination for cause to take assignment of all the Contracts between Contractor and its Subcontractors, vendors, and suppliers. Owner will promptly notify Contractor of the contracts Owner elects to assume. Upon receipt of such notice, Contractor shall promptly take all steps necessary to effect such assignment.

17.3.6 Conversion to Termination for Convenience. In the event that any termination of the Contract for cause under this Section 17.3 is later determined to have been improper, the termination shall automatically convert to a termination for convenience of Owner and Contractor’s recovery for termination shall be strictly limited to the payments allowable under Subsection 17.4.3.

17.4 Termination for Convenience of Owner. Owner reserves the right, without breach, to terminate the Contract prior to, or during the performance of the Work, for any reason. Upon such an occurrence, the following shall apply:
17.4.1 Notice. Owner will immediately notify Contractor and Design Professional in writing, specifying the reason for and the effective date of the Contract termination. Such notice may also contain instructions necessary for the protection, storage, or decommissioning of incomplete Work or systems, and for safety.

17.4.2 Contractor Action. Upon receipt of the notice of termination, Contractor shall immediately proceed with the following obligations, regardless of any delay in determining or adjusting any amounts due at that point in the Contract:

17.4.2.1 Stop all work.

17.4.2.2 Place no further subcontracts or orders for materials or services.

17.4.2.3 Terminate all subcontracts for convenience.

17.4.2.4 Cancel all materials and equipment orders as applicable.

17.4.2.5 Take action that is necessary to protect and preserve all property related to the Contract which is in the possession of Contractor.

17.4.3 Contractor Remedy. When the Contract is terminated for Owner’s convenience, Contractor may recover from Owner payment for all Work completed including the corresponding pro rata portion of Contractor’s overhead and profit. Contractor may not claim lost profits on other work or lost business opportunities.

17.5 Termination by Contractor. If the Work is stopped for a period of ninety (90) days under an order of any court or other public authority having jurisdiction, or as a result of an act of government, such as a declaration of a national emergency making materials unavailable, through no act or fault of Contractor or Subcontractor or their agents or employees or any other persons performing any of the Work under a contract with Contractor, then Contractor may, upon thirty (30) additional days written notice to ODR, terminate the Contract and recover from Owner payment for all Work completed including the corresponding pro rata portion of Contractor’s overhead and profit, but not lost profits on other work or lost business opportunities. If the cause of the Work stoppage is removed prior to the end of the thirty (30) day notice period, Contractor may not terminate the Contract.

17.6 Settlement on Termination. When the Contract is terminated for any reason, at any time prior to one hundred eighty (180) days after the effective date of termination, Contractor shall submit a final termination settlement proposal to Owner based upon recoverable costs as provided under the Contract. If Contractor fails to submit the proposal within the time allowed, Owner may determine the amount due to Contractor because of the termination and pay the determined amount to Contractor as final payment.
ARTICLE 18.
DISPUTE RESOLUTION

18.1 Contracts Less Than $250,000. The dispute resolution process provided for in Texas Government Code, Chapter 2260, shall be used by Contractor or Design Professional to attempt to resolve any claim for breach of Contract made by Contractor or Design Professional that is not resolved under procedures described throughout the Uniform General Conditions or any Supplementary or Special Conditions of the Contract, where the amount in controversy is less than $250,000.

18.2 Contracts $250,000 or Greater. Contractor or Design Professional and Owner shall use the following dispute resolution process prior to initiating any litigation or filing suit in a court of competent jurisdiction.

18.2.1 Mediation. If a dispute arises out of or relates to the Contract or the breach thereof in which the amount in controversy is $250,000 or greater, and if the dispute cannot be settled through negotiation, the parties agree first to try to settle the dispute by mediation using the procedures specified in this section prior to the commencement of any legal action. The parties commit to participate in the proceedings in good faith with the intention of resolving the dispute if at all possible.

18.2.1.1 The party seeking to initiate mediation of a dispute shall give written notice to the other party describing the nature of the dispute, the initiating party’s claim for relief and identifying one or more individuals with authority to settle the dispute on such party’s behalf. The party receiving such notice shall have five (5) business days to designate by written notice one or more individuals with authority to settle the dispute on such party’s behalf.

18.2.1.2 The parties shall then have ten (10) business days to submit to each other a written list of acceptable qualified mediators not affiliated with any of the parties. The mediator shall possess the qualifications required under Civil Practice and Remedies Code, § 154.052, be subject to the standards and duties prescribed by Civil Practice and Remedies Code, §154.053, and have the qualified immunity prescribed by Civil Practice and Remedies Code, §154.055, if applicable. The parties shall mutually agree on the mediator.

18.2.1.3 In consultation with the mediator selected, the parties shall promptly designate a mutually convenient time and place for the mediation, and unless circumstances require otherwise, such time to be not later than forty-five (45) days after selection of the mediator.

18.2.1.4 The parties agree to participate in the mediation to its conclusion. The mediation shall be terminated (i) by the execution of a settlement agreement by the parties, (ii) by a declaration of the mediator that the mediation is terminated, or (iii) by a written declaration of a party to the effect that the mediation process is terminated at the conclusion of one (1) full day's mediation session. Even if the mediation is terminated without a resolution of
the dispute, the parties agree not to terminate negotiations and not to commence any legal action or seek other remedies prior to the expiration of five (5) days following the mediation. Notwithstanding the foregoing, any party may commence litigation within such five (5) day period if litigation could be barred by an applicable statute of limitations or in order to request an injunction to prevent irreparable harm.

18.2.1.5 The parties shall share the cost of the mediation process equally although each party’s attorneys and witnesses or specialists are the direct responsibility of each party and their fees and expenses shall be the responsibility of the individual parties.

18.2.1.6 The entire mediation process is confidential, and no stenographic, visual or audio record shall be made. All conduct, statements, promises, offers, views and opinions, whether oral or written, made in the course of the mediation by any party, their agents, employees, representatives or other invitees and by the mediator are confidential and shall, in addition and where appropriate, be deemed to be privileged and shall not be discoverable or admissible for any purpose, including impeachment, in any litigation or other proceeding involving the parties.

18.3 Owner Retained Rights. Nothing herein shall hinder, prevent, or be construed as a waiver of Owner’s right to seek redress on any disputed matter in a court of competent jurisdiction.

18.4 No Waiver. Except as may be expressly and specifically provided otherwise by Chapter 114, Texas Civil Practice & Remedies Code, nothing herein shall be construed as a waiver of sovereign immunity; nor constitute or be construed as a waiver of any of the privileges, rights, defenses, remedies, or immunities available to the State of Texas or the University of North Texas System.

18.5 No Attorney’s Fees. In any litigation between Owner and Contractor or Design Professional arising from the Contract or Project, neither party will be entitled to an award of legal fees or costs in any judgment regardless of which is deemed the prevailing party.

18.6 Interest. Pre-judgment and post-judgment interest shall be limited to the rate of one and a half percent (1.5%) per annum.

ARTICLE 19. MISCELLANEOUS

19.1 Right to Audit. Owner, or any of its duly authorized auditors or representatives including the State Auditor’s Office, shall during regular business hours and upon reasonable notice have access to and the right to examine, and be permitted to audit and copy, any directly pertinent books, documents, papers, and records of Contractor, including, without limitation, complete documentation supporting accounting entries, books, correspondence, instructions, drawings, receipts, subcontracts, Subcontractor’s quotes, proposals, purchase order, vouchers, memoranda,
schedules, electronic data, pictures, videos, logs, minutes, notes, reports and other data relating to the Project. Further, Contractor or Design Professional agree to include in all subcontracts a provision to the effect that Subcontractor agrees that Owner or any of its duly authorized representatives shall have access to and the right to examine any directly pertinent books, documents, papers, and records of such Subcontractor relating to any claim arising from the Contract and subcontract, whether or not the Subcontractor is a party to the claim. The period of access and examination described herein shall continue until the later of five (5) years after Final Payment or final disposition of any disputes, claims, litigation, or appeals arising out of the Contract.

19.2 **Supplementary or Special Conditions.** When the Work contemplated by Owner is of such a character that the foregoing Uniform General Conditions of the Contract cannot adequately cover necessary and additional contractual relationships, the Contract may include Supplementary General or Special Conditions as described below:

19.2.1 **Supplementary Conditions.** Supplementary Conditions may describe the standard procedures and requirements of contract administration. Supplementary Conditions may expand upon matters covered by the Uniform General Conditions, where necessary, provided the expansion does not weaken the character or intent of the Uniform General Conditions. Supplementary Conditions are of such a character that it is to be anticipated that Owner may normally use the same, or similar, conditions to supplement each of its several projects.

19.2.2 **Special Conditions.** Special Conditions shall relate to a particular Project and be unique to that Project but shall not weaken the character or intent of the Uniform General Conditions.

19.3 **Federally Funded Projects.** On federally funded projects, Owner may waive, suspend, or modify any provision in these Uniform General Conditions which conflicts with any federal statute, rule, regulation, or procedure, where such waiver, suspension, or modification is essential to receipt by Owner of such federal funds for the Project. In the case of any Project wholly financed by federal funds, any standards required by the enabling federal statute, or any federal rules, regulations, or procedures adopted pursuant thereto, shall be controlling.

19.4 **Internet-based Project Management Systems.** At its option, Owner may administer its design and construction management through an Internet-based management system. In such cases, Contractor shall conduct communication through this media and perform all Project related functions utilizing this database system. This includes correspondence, submittals, Requests for Information, vouchers, or payment requests and processing, amendment, Change Orders, and other administrative activities.

19.4.1 **Accessibility and Administration.**

19.4.1.1 When used, Owner will make the software accessible via the Internet to all Project team members.

19.4.1.2 Owner shall administer the software.
19.4.2 **Training.** When used, Owner shall provide training to the Project team members.

19.5 **Computation of Time.** In computing any time period set forth in this Contract, the first day of the period shall not be included, but the last day shall be.

19.6 **Survival of Obligations.** All representations, indemnifications, warranties and guarantees made in accordance with the Contract Documents will survive final payment, completion and acceptance of the Work, as well as termination for any reason. All duties imposed upon the Contractor by reason of termination, including without limitation the duty to assign subcontracts and contracts with vendors and suppliers, shall likewise survive the termination of the Contract.

19.7 **No Waiver of Performance.** The failure of either party in any instance to insist on the performance of any of the terms, covenants or conditions of the Contract Documents, or to exercise any of the rights granted thereunder, shall not be construed as waiver of any such term, covenant, condition or right with respect to further performance.

19.8 **Governing Law and Venue.** This Contract shall be governed by the laws of the State of Texas. Venue for any suit arising from the Contract will be in a court of competent jurisdiction subject to the mandatory venue statute set forth in § 105.151 of the Texas Education Code, or if mandatory venue is not applicable in the county in which the Project is located.

19.9 **Captions and Catch Lines.** The captions and catch lines used throughout the Uniform General Conditions and elsewhere in the Contract Documents are for ease of reference only and have no effect on the meaning of the terms and conditions set forth herein.

19.10 **Independent Contractor Status.** The Contract Documents create an independent contractor relationship between the Owner and Contractor and neither party’s employees or contractors shall be considered employees, contractors, partners or agents of the other party.

19.11 **No Third-Party Beneficiaries.** The parties do not intend, nor shall any clause be interpreted to create in any third party, any obligations to, or right of benefit by, such third party under these Contract Documents from either the Owner or Contractor.

19.12 **Child Support Obligor.** Notwithstanding anything to the contrary within the Contract Documents, it is understood and agreed between the parties that in accordance with the laws of the State of Texas, a child support obligor who is more than thirty (30) days delinquent in paying child support, and a business entity in which an obligor is a sole proprietor, partner, shareholder, or owner with an ownership interest of at least twenty-five percent (25%), is not eligible to receive payments from state funds under a contract to provide property, materials or services until all arrearages have been paid or the obligor is in compliance with a written repayment agreement.

19.13 **Buy America Requirements for Iron and Steel Used in Construction.** In accordance with Texas Government Code 2252, Section 2252.202, all iron or steel products (i.e., rolled structural shapes including wide flange beams and columns, angles, bars, plates, sheets, hollow structural sections, pipe, etc.) shall be produced, manufactured and fabricated in the United States.
19.14 **No Assignment.** This Contract may not be assigned by either party without the prior written consent of the other, except either party may, upon notice to the other party but without the other party’s consent, assign this Contract to a present or future affiliate or successor, provided that any such assignment by Contractor shall be contingent on Owner’s determination that the assignee is qualified to perform the Work, is in good standing with the State of Texas and otherwise eligible to do business with the State of Texas.

19.15 **Severability.** If any provision, sentence, clause or article of this Contract is found to be invalid or unenforceable for any reason, the remaining provisions shall continue in effect as if the invalid or unenforceable provision were not in the Contract. All provisions, sentences, clauses and articles of this Contract are severable for this purpose.

19.16 **Parties Bound.** Execution of this Contract by each party binds the entity represented as well as its employees, agents, successors and assigns to its faithful performance.

19.17 **Public Information.** Owner shall release information to the extent required by the Texas Public Information Act and other applicable law. If requested, Contractor shall make public information available to Owner in an electronic format.

19.18 **Entire Agreement.** These Contract Documents supersede in full all prior discussions and agreements (oral and written) between the parties relating to the subject matter hereof and constitute the entire agreement.
1.01 ASBESTOS SURVEY:

The Owner will provide Asbestos Survey to contractor. Contractor shall not start any work, demolition or construction prior to receiving Asbestos Survey from Owner.

Once received, the Contractors shall assume responsibility for any conclusions they may draw from such data. They may employ their own consultants to analyze available information and shall be responsible for any conclusions drawn from that information. The Contractors need to meet all Code / City requirements regarding Asbestos Control, etc.

1.02 EXISTING CONDITIONS:

The Contractors are expected to visit the site and examine existing conditions. The Contractors shall assume responsibility for conclusions drawn from his observations and for any differences between those conditions and the contract documents.

END OF SECTION
SECTION 01 45 29

TESTING LABORATORY SERVICES

PART 1 – GENERAL

1.1 PAYMENT FOR TESTING SERVICES

A. Owner will pay for all required testing services and any additional testing requested by Owner. When the initial tests indicate non-compliance with Contract Documents, the costs of all tests associated with that non-compliance will be deducted by Owner from the Contract Sum.

1. All subsequent retesting occasioned by the non-compliance shall be performed by the same agency and the costs thereof will be deducted by Owner from the Contract Sum.

2. All material testing will be contracted and paid by Owner except retesting of failed materials will be at Contractor's expense.

1.2 GENERAL SCOPE OF WORK

A. It will be the responsibility of Owner to employ and pay for the services of an independent Testing Laboratory to perform all the specified testing and services included in this Section.

1. Special Inspections: Where special inspections are required per the adopted Building Codes, for insulation, structural steel, cast-in-place concrete, etc. Owner will engage a qualified special inspector to perform inspections as required by authority having jurisdiction.

B. Employment of Testing Laboratory shall in no way relieve Contractor of his obligation to perform Work in accordance with Contract Documents.

C. Contractor shall cooperate with Testing Laboratory to facilitate the execution of its required services.

D. Contractor will pay for additional samples and tests required for Contractor's convenience or when initial tests indicate Work does not comply Contract Documents.

F. Where terms "Inspector" and "Testing Laboratory" are used, they mean and refer respectively to an officially designated and accredited Inspector of Testing Laboratory, and Testing Laboratory employed by Owner.

G. Contractor shall be responsible for notifying Testing Laboratory of impending work to be performed at least 24 hours in advance of needing testing or observations.

1.3 RELATED WORK

A. Drawings and General provisions of the Contract, including General and Supplementary Conditions and Division 01 Sections, apply to work under this Section.

B. Inspections and testing required by laws, ordinances, rules, regulations, orders or approvals of public authorities.

1.4 REFERENCE STANDARDS

A. American Society for Testing and Materials (ASTM International):

1. ASTM C31/C31M-08b, Standard Practice for Making and Curing Concrete Test Specimens in the Field.

3. ASTM C42/C42M-04, Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete.
6. ASTM C138/C138M-08, Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete.
7. ASTM C143/C143M-08, Standard Test Method for Slump of Hydraulic-Cement Concrete.
8. ASTM C172-08, Standard Practice for Sampling Freshly Mixed Concrete.
9. ASTM C173/C173M-08a, Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method.
10. ASTM C231-08c, Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method.
12. ASTM D698-07e1, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft³ (600 kN-m/m³)).
13. ASTM D1557-07, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2,700 kN-m/m³)).
14. ASTM E164-08, Standard Practice for Contact Ultrasonic Testing of Weldments.
20. ASTM F710-08, Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring.

1.5 QUALIFICATION OF LABORATORY

A. Meet "Recommended Requirements for Independent Laboratory Qualification", published by American Council of Independent Laboratories.
B. Meet basic requirements of ASTM E329.
C. Authorized to operate in the State in which the project is located (Texas).
D. Testing equipment shall be calibrated at reasonable intervals by devices of accuracy traceable to either:
 2. Accepted values of natural physical constants.
E. Testing Laboratory shall furnish an insurance certificate indicating the monetary limits of coverage for their general liability, professional liability (errors and omission coverage) and workmen’s compensation.

1.6 LABORATORY DUTIES AND RESPONSIBILITIES

A. Provide personnel who are under the direct supervision of a registered Professional Engineer charged with engineering experience in inspection and testing of construction materials.
B. Perform specified inspections, sampling and testing of materials and methods of construction as indicated on Construction Documents and listed in this Section.
 1. Attend pre-construction meeting.
3. Ascertain compliance of materials with requirements of Contract Documents.
4. Furnish Architect and Structural Engineer with written evaluation of proposed concrete design mixes, and other material mixes, submitted by Contractor for evaluation.

C. Notify Contractor immediately of observed work or materials which fail to meet the requirements of Contract Documents; notify Architect, Structural Engineer within two (2) days of observation.

D. Promptly submit daily written report of each test and inspection to General Contractor, with distribution of each report to be sent to Architect and Structural Engineer (each report must show that the above were copied).
 1. Date issued.
 2. Project title and number.
 3. Testing Laboratory name, address and telephone number.
 4. Name and signature of Testing Laboratory inspector.
 5. Date and time of sampling or inspection.
 6. Record of temperature and weather conditions.
 7. Date of tests.
 9. Location of sample of test in the project.
 10. Type of inspection of test.
 11. Results of tests and compliance with Contract Documents.
 12. Interpretation of test reports, when requested by Architect and/or Structural Engineer.

E. Perform additional tests as required by Architect or Structural Engineer, or Owner's Development Manager.

F. At the completion of Project, Testing Laboratory will furnish the following information:
 1. Provide bound set of all testing reports arranged in order by dates, with name of project and title on front cover.
 2. Provide letter to Owner’s Development Manager certifying that test reports were completed, and indicating that the project was constructed per Project Drawings and Project Manual requirements.

1.7 LIMITATIONS OF AUTHORITY OF TESTING LABORATORY

A. Testing Laboratory is not authorized to:
 1. Release, revoke, alter or enlarge on requirements of Contract Documents.
 2. Approve or accept any portion of the Work.
 3. Perform any duties of Contractor.

B. Work will be checked as it progresses, but failure to detect any defective work or material shall not in any way, prevent later rejection when such defect is discovered.

1.8 CONTRACTOR’S RESPONSIBILITIES

A. Cooperate with Testing Laboratory personnel, provide access to Work and to Manufacturers operations.

B. Secure and deliver to Testing Laboratory, adequate quantities of representational samples of materials that are proposed to be used and which require testing.

C. Furnish Testing Laboratory with proposed concrete design mixes, and other material mixes which require evaluation by Testing Laboratory, a minimum of 14 days prior to use on the project.

D. Furnish copies of project test reports as required.

E. Furnish incidental labor and facilities:
 1. To provide access to work to be tested.
2. To obtain and handle samples at the project site or at the source of the product to be tested.
3. To facilitate inspections and tests.
4. For safe storage and curing of test samples.

F. Notify Testing Laboratory and Architect sufficiently in advance of operations to allow for assignment of personnel and scheduling of tests.
 1. When tests or inspections cannot be performed after such notice, reimburse Testing Laboratory for personnel and travel expenses incurred due to Contractor’s negligence.
 2. Make arrangements with Testing Laboratory and pay for additional samples and tests required for Contractor’s convenience.
 3. Make arrangements with Testing Laboratory and pay for additional samples and tests required when initial tests indicate non-compliance with Contract Documents, including load tests.
 4. Pay Testing Laboratory for such tests or inspections as are performed exclusively for Contractor’s convenience.

PART 2 – PRODUCTS (NOT USED)

PART 3 – EXECUTION

3.1 REINFORCING STEEL
A. Refer to Structural Drawings for reinforcing steel requirements.
B. Perform visual inspection prior to placement of size, type and quality of materials.
C. Observe and report on placement of reinforcement, including size, quantity, vertical location, horizontal spacing, correctness of bends, splices, clearance between bars and forms, firmness of installation, and security of supports and ties, immediately prior to concreting.

3.2 CONCRETE CONTROL AND TESTING
A. Refer to Structural Drawings for concrete requirements.
B. Secure composite samples in accordance with ASTM C172. Each sample shall be obtained from a different batch of concrete on a random basis, avoiding any selection of the test batch other than by a number selected at random before commencement of concrete placement.
C. All concrete shall be tested as follows:
 1. Mold and cure four specimens from each sample in accordance with ASTM C31.
 2. One specimen shall be tested at seven (7) days for information.
 3. Two specimens shall be tested at 28 days for acceptance.
 4. One specimen will be on hold if needed.
D. Specimens for pumped concrete shall be taken at the discharge end of pumping equipment.
E. Any deviations from the requirements of ASTM Specifications shall be recorded in the test report. Test concrete specimens in accordance with ASTM C39.
F. Make at least one (1) set strength tests (four specimens) for each 100 cubic yards or fraction thereof, of each mix design of concrete placed in any one day. Determine slump of the concrete sample for each strength test and whenever consistency of concrete appears to vary, in accordance with ASTM C143. Notify Contractor immediately of any excessive concrete slumps.
G. Determine the percentage of air content or air-entrainment, normal weight and/or lightweight concrete sample for each strength test in accordance with either ASTM C231, ASTM C173, or ASTM C138. Determine temperature of concrete sample for each strength test.

H. Contactor shall be responsible to inspect each batch of concrete, adjust amounts of mixing water to assure uniform consistency from truck to truck. Check mixing from mixers before mix begins to set and within time limits set forth in ASTM C94.
 1. Contractor shall control addition of water to concrete at job site and length of time concrete is allowed to remain in truck during placement.
 2. Contractor shall verify each delivery ticket indicating class of concrete delivered, amount of water added and time at which cement and aggregate was discharged into truck, and time at which concrete was discharged from truck.

I. Should the strength of concrete fall below the minimum, then additional tests, including load tests, will be required. These tests shall be made at Contractor's expense and shall be in accordance with ASTM C42 and ACI 318. If tests do not meet the applicable requirements, then the structure or any part of the structure, shall be removed and replaced at Contractor's expense.
 1. General Contractor is responsible for reporting promptly to Architect with a copy to Structural Engineer, giving all details of reasons that any and all quantities of concrete fail to test out to the standards on Project Drawings or in Project Manual. Give all information concerning locations of the concrete pours, quantities, date of pours, and other pertinent facts concerning concrete represented by the specimens noted by Testing Laboratory as being below the required standards.

J. Test reports shall show concrete mix identification number or give proportions of ingredients, time test as made, truck ticket, number, slump and time of batching, and location of each placement.

K. Concrete testing requested by Contractor for early formwork or shoring removal, etc., shall be at Contractor's expense.

3.6 GROUT (NON-SHRINK)

A. Refer to Structural Drawings for grout requirements.

B. For every one third (1/3) cubic yards of grout placed, grout strength shall be tested with a set of cubes as follows:
 1. A set of cubes shall consist of three (3) cubes to be tested at seven (7) days, and three (3) cubes to be tested at 28 days.
 2. Test cubes shall be made and tested in accordance with ASTM C109, with the exception that the grout should be restrained from expansion by a top plate.

3.7 STRUCTURAL STEEL

A. Refer to Structural Drawings for structural steel requirements.

B. Contractor shall provide Testing Laboratory with names of welders to be employed on Work, during fabrication and erection, together with certification that each of these welders has passed qualification tests within the last year, unless noted otherwise, in accordance with AWS Standards.

C. Inspect all structural steel during and after erection for conformance with Contract Documents and shop drawings. Any cases of insufficient bracing or guyin, or other unsafe conditions shall be immediately called to attention of Contractor and reported to Architect.
 1. No burning or other field corrections of steel members are permitted without express permission of Owner's Development Manager. Immediately report violations.
 2. Field Inspection:
 a. Obtain planned erection procedure, and review with erector's supervisory personnel.
 b. Check installation of anchor bolts and base plates.
c. Verify field welding procedures and welder qualifications to assure conformance with Project Manual.
d. Check steel as received in field for possible shipping damage, workmanship and piece marking.
e. Check plumbness, alignment and camber as erection progresses, including proper bracing.
f. Check joint preparation, fit-up, backing strips and run out plates.
g. Check preheating to assure proper temperature, uniformity, and thoroughness through the full material thickness.
h. Review welding sequence.
i. Visually inspect field welding for size, length, and quality.

3. Inspection of high-strength bolted construction shall be in accordance with the latest edition of AISC Specification for Structural Joints, and as follows:
 a. All high-strength bolted connections shall be visually inspected.
 b. At least two bolts of every third connection between floor beams and girders shall be checked with a calibrated torque wrench for proper torque.
 c. At least two bolts of every third connection between girders and columns shall be checked as above.
 d. All bolts in every connection in the primary exterior framing and braced framing shall be checked as above.
 e. All bolted connections that fail shall be corrected and all bolts in that connection shall be retested.
 f. Check calibration of impact wrenches at least twice daily.

4. Inspection of all welds shall be in accordance with the latest edition of the AWS Structural Welding Code.
 a. Visually inspect all welds in accordance with AWS D1.1.
 b. Penetration welds in full moment connections and column splices shall be inspected by ultrasonic testing in accordance with ASTM E164.

5. Inspection of headed stud connector welding shall be in accordance with the latest edition of the AWS Structural Welding Code and as follows:
 a. Visual inspection of all studs shall indicate complete fusion and weld flush or fillet for 100% circumference. There will be no indication of lack of fusion or undercut weld.
 b. If visual inspection reveals that a sound weld or a full 360 degree fillet has not been obtained for a particular stud, such stud shall be struck with a hammer and bent 15 degrees off perpendicular to the nearest end of the beam. Studs failing this test shall be replaced.

3.8 NOT USED.

3.9 NOT USED.

3.10 COLD FORMED STEEL FRAMING

 A. Testing Laboratory shall perform field inspection of cold-formed steel framing systems for proper type, gage, finish, installation and attachment, to verify that the Work is in compliance with the information on the structural drawings including but not limited to the following:
 1. **Verify that the welded connections for the steel framing is per connection requirements indicated on Structural Drawings.**
 2. Verify anchor type and spacing of track into concrete floor slab.
 3. Verify framing gage and sizes are in conformance with Structural Drawings and approved Shop Drawings.

3.11 EXTERIOR WALL SHEATHING INSPECTION

 A. Testing Laboratory shall inspect the exterior sheathing on the face of the exterior stud framing as follows:
 1. Verify that sheathing is fastened using screw fasteners, spaced as specified or required by Structural Drawings.
 2. Verify that the sheathing is the type, grade and thickness as shown on Project Drawings.
3. If the sheathing is plywood:
 a. Verify that all plywood edges have the specified 1/8" clear for expansion as specified.
 b. Verify that all sheathing board is covered up completely with a weather-resistant barrier membrane as specified, where sheathing board is exposed to airspace behind masonry veneer.

4. If sheathing is exterior gypsum sheathing:
 a. Verify that sheathing board is type and thickness as specified.
 b. Verify that all sheathing board is covered by a continuous weather-resistant barrier membrane.
 1) Weather barrier at all masonry veneer that has a 2" air space.
 2) Weather barrier where adhered calcium silicate masonry is installed with cement mortar over galvanized metal lath.
 c. Verify that the air space between masonry veneer and sheathing board is free of any mortar protrusions and mortar droppings, and that no mortar droppings have accumulated on top of adjustable anchors, and that no mortar has “bridged” the air space.
 d. Verify that no exterior masonry mortar of any kind is in direct contact with exterior sheathing board anywhere.

5. Verify that all sheathing behind EIFS, whether it be plywood sheathing or exterior gypsum sheathing, is covered completely by a troweled-on weather-resistive barrier membrane by the EIFS subcontractor with products as recommended by EIFS manufacturer. Refer to Section 07 24 00 – Drainage EIFS with Fluid-Applied Membrane.

6. All sheathing (plywood, OSB or exterior gypsum) which terminates over metal stud framing but does not terminate at a metal stud wall track (for example, Tower walls where the vertical stud framing is continuous); are required to be screw-fastened not only at each metal stud framing member, but also to be screw-fastened between each metal stud framing (along the edge of the sheathing), by the use of 6" X 20 gage continuous galvanized metal straps which permit a fastener between the metal studs.

END OF SECTION
SECTION 01 60 00

PRODUCT REQUIREMENTS

PART 1 – GENERAL

1.1 GENERAL

A. Material and equipment incorporated into Project:
 1. Conform to applicable Sections of this Project Manual, reference standards, and the
 Americans with Disabilities Act.
 2. Comply with size, make, type and quality specified, or as specifically approved in writing
 by Architect.
 3. Manufactured and fabricated products:
 a. Design, fabricate and assemble in accordance with best engineering and shop
 practices.
 b. Manufacture like parts of duplicate units to standard sizes and gages, to be
 interchangeable.
 c. Two or more items of the same kind shall be identical, by same manufacturer.
 d. Products shall be suitable for service conditions.
 e. Equipment capacities, sizes and dimensions shown or specified shall be adhered
 to unless variations are specifically approved in writing.
 4. Do not use material or equipment for any purpose other than that for which it is designed
 or is specified.

1.2 MANUFACTURER’S INSTRUCTIONS

A. When Contract Documents require that installation of Work shall comply with manufacturer's
 printed instructions, obtain and distribute copies of such instructions to parties involved in
 installation, including two (2) copies to Owner.

B. Maintain one (1) set of complete instructions at job site during installation and until completion.

C. Handle, install, connect, clean, condition and adjust products in strict accordance with such
 instructions and in conformance with specified requirements.
 1. Should job conditions or specified requirements conflict with manufacturer's instructions,
 consult with Owner for further instructions.
 2. Do not proceed with work without clear instructions.

D. Perform Work in accord with manufacturer's instructions. Do not omit any preparatory step or
 installation procedure unless specifically modified or exempted by Contract Documents.

1.3 TRANSPORTATION AND HANDLING

A. Arrange deliveries of products in accordance with construction schedules; coordinate to avoid
 conflict with work and conditions at site.
 1. Deliver products in undamaged condition, in manufacturer's original containers or
 packaging, with identifying labels intact and legible.
 2. Immediately upon delivery, inspect shipments to assure compliance with requirements of
 Contract Documents and approved submittals and that products are properly protected
 and undamaged.

B. Provide equipment and personnel to handle products by methods to prevent soiling or damage to
 products or packaging.
1.4 STORAGE AND PROTECTION

A. Store products in accordance with manufacturer's instructions, with seals and labels intact and legible.
 1. Store products subject to damage by elements in weathertight enclosures.
 2. Maintain temperature and humidity within ranges required by manufacturer's instructions.

B. Exterior storage:
 1. Store fabricated products above ground, on blocking or skids; prevent soiling or staining.
 Cover products which are subject to deterioration with impervious sheet coverings; provide adequate ventilation to avoid condensation.
 2. Store loose granular materials in well-drained area on solid surfaces to prevent mixing with foreign matter.

C. Arrange storage in manner to provide easy access for inspection. Make periodic inspections of stored products to assure that products are maintained under specified conditions and free from damage or deterioration.

D. Provide substantial coverings as necessary to protect installed products from damage from traffic and subsequent construction operations. Remove when no longer needed.

PART 2 – PRODUCTS (NOT USED)

PART 3 – EXECUTION (NOT USED)

END OF SECTION
SECTION 01 74 00
CLEANING AND WASTE MANAGEMENT

PART 1 – GENERAL

1.1 SUMMARY

A. This Section specifies administrative and procedural requirements for cleaning during construction, and final cleaning at substantial completion prior to turning the project over to the Owner.

B. Cleaning for specific products: Refer to the relevant Sections elsewhere in this Project Manual for that work related to specified products.

1.2 ENVIRONMENTAL REQUIREMENTS

A. Conduct cleaning and waste disposal operations in compliance with local laws and ordinances. Comply fully with federal and local environmental and anti-pollution regulations.
1. Do not dispose of volatile wastes such as mineral spirits, oil or paint thinner in storm or sanitary drains.
2. Burning or burying of debris, rubbish or other waste material on the premises will not be permitted. Contractor is responsible for removing all waste materials from the premises.

PART 2 – PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by the manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property, or that might damage finished surfaces.

B. Provide proper containers for storing and transporting waste.

PART 3 – EXECUTION

3.1 DURING CONSTRUCTION

A. Execute cleaning to insure that building, grounds and public properties are maintained free from accumulations of waste materials and rubbish; remove such accumulations from premises at least once per week.

B. Wet down dry materials and rubbish to lay dust and prevent blowing dust.

C. Schedule cleaning operation so that dust and other contaminates resulting from cleaning process will not fall on wet, newly painted surfaces.

3.2 FINAL CLEANING

A. Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit of work to the condition expected from a commercial building cleaning and maintenance program. Comply with manufacturer’s instructions.
B. Complete the following cleaning operations before requesting inspection for Certification of Substantial Completion for portion of Project designated on the Project Drawings as the Scope of Work:

1. Clean the project site, yard and grounds, in areas disturbed by construction activities, of rubbish, waste materials, litter and foreign substances. All trash, rubbish, scraps, packing materials and debris shall be removed from the site prior to turnover to Owner.

2. Sweep paved areas broom clean.

3. Remove tools, construction equipment, machinery and surplus material from the site.

4. Clean exposed exterior hard-surfaced finishes to a dirt-free condition, free of stains, films, grease, dust, fingerprints and similar foreign substances.

5. Restore reflective surfaces to their original condition. Clean transparent materials, including glass in doors and windows on both sides with ammonia-type non-streaking glass cleaner. Remove glazing compounds and other substances that are noticeably vision-obscuring. Polish glass, taking care not to scratch surfaces. Replace chipped or broken glass.

6. Remove labels, protective coatings and tags except for those required to demonstrate compliance with building codes, fire-ratings and testing. Remove all residue and glue remaining on the surface after removing labels.

7. Touch-up and otherwise repair and restore marred exposed finishes and surfaces. Replace finishes and surfaces that cannot be satisfactorily repaired or restored, or that show evidence of repair or restoration. Do not paint over “UL” and similar labels including mechanical and electrical nameplates.

8. Clean light fixtures, lamps, globes and reflectors to function with full efficiency. Replace burned out bulbs, and defective and noisy starters in fluorescent and mercury vapor fixtures.

C. Continue cleaning areas of subsequent work or punch list areas of work, until the punch list items are finally complete.

D. Cleaning of all surfaces is required to make the exterior remodel work like new; prior to turnover of the project to Owner.
PART 1 – GENERAL

1.1 DEFINITIONS

A. Alternates are defined as alternate products, materials, equipment, installations or systems for the Work, which may, at Owner's option and under terms established by Instructions to Bidders, be selected and recorded in the Contract (Owner-Contractor Agreement) to either supplement or displace corresponding basic requirements of Contract Documents.

B. Alternates may or may not substantially change scope and general character of the Work; and must not be confused with "Allowances", "Unit Prices", "Change Orders", "Substitutions", and other similar provisions.

1.2 GENERAL PROVISIONS

A. Each Alternate is defined by abbreviated language, recognizing that Project Drawings and Project Manual document these requirements. Coordination of related work is required to ensure that work affected by each selected Alternate is complete and properly interfaced with work of Alternates.

1.3 NOTIFICATION

A. Immediately following award of Contract, prepare and distribute to each entity to be involved in performance of the Work, a notification of status of each Alternate. Indicate which Alternates have been:
 1. Accepted,
 2. Rejected, or
 3. Deferred for consideration at a later date as indicated.

B. Include full description of negotiated modifications to Alternates, if any.

1.4 SCHEDULE OF ALTERNATES

A. Alternates to be determined by Owner.

PART 2 – PRODUCTS (NOT USED)

PART 3 – EXECUTION (NOT USED)

END OF SECTION
SECTION 01 25 00
SUBSTITUTION PROCEDURES

PART 1 – GENERAL

1.1 CONTRACTOR’S OPTIONS

A. For products specified only by reference standards, submit any product meeting standards, by any manufacturer.

B. For products specified by naming several products or manufacturers, select from products and manufacturers named.

C. For products specified by naming one or more products, but indicating the option of selecting equivalent products by stating "or approved substitute", "or approved equal", "equal to", or "or equal to", after or before specified product, Contractor must submit request (as noted below) for substitutions, for any product not specifically named.

1.2 SUBSTITUTIONS

A. Substitutions will be considered only under the following conditions:
 1. The request is accompanied in writing with the reason for which the substitution is required and is "beyond Contractor's control".
 2. The request is accompanied by complete data on the proposed substitution substantiating compliance with Contract Documents including product identification and description, performance and test data, references and samples where applicable, and an itemized comparison of the proposed substitution with the products specified or named by Addenda, with data relating to Contract Schedule, design, and artistic effect where applicable, including color, texture, pattern, and design, and its relationship to separate contracts. Samples shall be submitted with the request for substitution.
 3. The request is accompanied by accurate cost data on the proposed substitution in comparison with the product specified, and whether or not modification of the Contract Sum is to be a consideration.

B. Substitutions will not be considered if they are indicated or implied on shop drawings or project data submittals without formal written request within sixty (60) days after award of the Contract.

C. All requests for substitutions must receive the approval of Architect and Owner.

PART 2 – PRODUCTS (NOT USED)
PART 3 – SUBSTITUTION FORM

The following FORM must be completed by Contractor before any Substitutions will be reviewed by Architect.

1. Specified Product or Material: __
 __

2. Drawing number or Project Manual Section Number: _________________________

3. Proposed Substitution: ___
 __

4. Proposed Reduction In Contract Sum: _________________________________

5. Contractor has investigated the Proposed Product and determined that it meets or exceeds the quality level of the Specified Product.
 Agreed: _________________ Does Not Apply: _________________

6. Contractor will provide the same Warranty for the Substitution as for the Specified Product.
 Agreed: _________________ Does Not Apply: _________________

7. Contractor will coordinate installation and make changes to other Work which may be required for the Work to be complete with no additional cost to Owner.
 Agreed: _________________ Does Not Apply: _________________

8. Contractor waives claims for additional costs or time extensions which may subsequently become apparent.
 Agreed: _________________ Does Not Apply: _________________

9. Contractor will reimburse Owner and Architect/Engineer(s) for all review or redesign services associated with the proposed substitution.
 Agreed: _________________ Does Not Apply: _________________

By: __
 (Contractor’s signature, identical to that shown on the Bid Form; same person)

Title: __

Date Submitted: _________________
10. **The following is to be completed by Architect:**

 Approved: _____________________ Date: ___________________
 Not Approved: __________________ Date: ___________________
 By: __

11. **The following is to be completed by Owner:**

 Approved: _____________________ Date: ___________________
 Not Approved: __________________ Date: ___________________
 By: __

END OF SECTION
SECTION 01 73 29
CUTTING AND PATCHING

PART 1 – GENERAL

1.1 SUMMARY

A. This Section specifies administrative and procedural requirements for cutting and patching.
 1. Refer to other Sections for specific requirements and limitations applicable to cutting and patching individual parts of the Work.
 2. Requirements of this Section apply to mechanical and electrical installations.

B. Demolition of selected portions of the building for alteration work is included in Section 02 41 00 – Demolition, and these provisions take precedence over any conflicting provisions given in this Section.

1.2 RELATED DOCUMENTS

A. The General Conditions of the Contract for Construction, AIA Document 201, 2007 Edition, Articles 1 through 15 inclusive, General Conditions as herein described, Special Conditions as herein described, and all Division 01 Sections, apply to work of this Section and are incorporated herein.

1.3 SUBMITTALS

A. Cutting and Patching Proposal: Where approval of procedures for cutting and patching is required before proceeding, submit a proposal describing procedures well in advance of the time cutting and patching will be performed and request approval to proceed. Include the following information as applicable, in the proposal:
 1. Describe the extent of cutting and patching required and how it is to be performed; indicate why it cannot be avoided.
 2. Describe anticipated results in terms of changes to existing construction; include changes to structural elements and operating components as well as changes in the building's appearance and other significant visual elements.
 3. List products to be used and firms or entities that will perform Work.
 4. Indicate dates when cutting and patching is to be performed.
 5. List utilities that will be disturbed or affected, including those that will be relocated and those that will be temporarily out-of-service. Indicate how long service will be disrupted.
 6. Where cutting and patching involves addition of reinforcement to structural elements, submit details and engineering calculations to show how reinforcement is integrated with the original structure.
 7. Approval by Architect or Owner to proceed with cutting and patching does not waive Architect’s or Owner’s right to later require complete removal and replacement of any part of the Work found to be unsatisfactory.

1.4 QUALITY ASSURANCE

A. Requirements for Structural Work: Do not cut and patch structural elements in a manner that would reduce their load-carrying capacity or load-deflection ratio.

B. Operational and Safety Limitations: Do not cut and patch operating elements or safety related components in a manner that would result in reducing their capacity to perform as intended, or result in increased maintenance, or decreased operational life or safety.
1. Obtain approval of the cutting and patching proposal from the General Contractor before cutting and patching the following operating elements or safety related systems:
 a. Primary operational systems and equipment.
 b. Air or smoke barriers.
 c. Water, moisture or vapor barriers.
 d. Membranes and flashings.
 e. Piping, ductwork, vessels and equipment.
 f. Communication systems.
 g. Electrical wiring systems.

 C. Visual Requirements: Do not cut and patch construction exposed on the exterior in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities, or result in visual evidence of cutting and patching. Remove and replace Work cut and patched in a visually unsatisfactory manner.

PART 2 – PRODUCTS

2.1 MATERIALS

A. Use materials that are identical to existing materials. If identical materials are not available or cannot be used where exposed surfaces are involved, use materials that match existing adjacent surfaces to the fullest extent possible with regard to visual effect. Use materials whose installed performance will equal or surpass that of existing materials.

PART 3 – EXECUTION

3.1 INSPECTION

A. Before cutting existing surfaces, examine surfaces to be cut and patched and conditions under which cutting and patching is to be performed. Take corrective action before proceeding, if unsafe or unsatisfactory conditions are encountered.
 1. Before proceeding, meet at the site with parties involved in cutting and patching, including mechanical and electrical trades. Review areas of potential interference and conflict. Coordinate procedures and resolve potential conflicts before proceeding.

3.2 PREPARATION

A. Temporary Support: Provide temporary support of work to be cut.

B. Protection: Protect existing construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of the project that might be exposed during cutting and patching operations.

C. Avoid interference with use of adjoining areas or interruption of free passage to adjoining areas.

D. Take all precautions necessary to avoid cutting existing pipe, conduit or ductwork serving the existing building, but scheduled to be removed or relocated until provisions have been made to bypass them.

3.3 PERFORMANCE

A. General: Employ skilled workmen to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time and complete without delay.
1. Cut existing construction to provide for installation of other components or performance of other construction activities and the subsequent fitting and patching required to restore surfaces to their original condition.

B. Cutting: Cut existing construction using methods least likely to damage elements to be retained or adjoining construction. Where possible, review proposed procedures with the original installer; comply with the original installer's recommendations.
 1. In general, where cutting is required, use hand or small power tools designed for sawing or grinding, not hammering and chopping. Cut holes and slots neatly to size required with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
 2. To avoid marring existing finished surfaces, cut or drill from the exposed or finished side into concealed surfaces.
 3. Cut through concrete and masonry using a cutting machine such as a carborandum saw or diamond core drill.
 4. Bypass utility services such as pipe or conduit, before cutting, where services are shown or required to be removed, relocated or abandoned. Cut off pipe or conduit in walls or partitions to be removed. Cap, valve or plug and seal the remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after bypassing and cutting.

C. Patching: Patch with durable seams that are invisible or as seamless as possible. Comply with specified tolerances.
 1. Where feasible, inspect and test patched areas to demonstrate integrity of the installation.
 2. Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will eliminate evidence of patching and refinishing (the preferred option is to provide for a seamless transition. Where this is not possible, obtain Architect's visual approval at all exposed transition locations).

3.4 CLEANING

A. Thoroughly clean areas and spaces where cutting and patching is performed or used as access. Remove completely paint, mortar, oils, putty and items of similar nature. Thoroughly clean piping, conduit and similar features before painting or other finishing is applied. Restore damaged pipe covering to its original condition.
PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Demolition and removal of selected portions of building or structure.

1.2 DEFINITIONS
A. Remove: Detach items from existing construction and dispose of them off-site unless indicated to be salvaged or reinstalled.
B. Existing to Remain: Leave existing items that are not to be removed and that are not otherwise indicated to be salvaged or reinstalled.
C. Dismantle: To remove by disassembling or detaching an item from a surface, using gentle methods and equipment to prevent damage to the item and surfaces; disposing of items unless indicated to be salvaged or reinstalled.

1.3 MATERIALS OWNERSHIP
A. Unless otherwise indicated, demolition waste becomes property of Contractor.

1.4 INFORMATIONAL SUBMITTALS
B. Proposed Protection Measures: Submit report, including Drawings, that indicates the measures proposed for protecting individuals and property, for environmental protection, for dust control and for noise control. Indicate proposed locations and construction of barriers.
C. Schedule of Selective Demolition Activities: Indicate the following:
 1. Detailed sequence of selective demolition and removal work, with starting and ending dates for each activity. Ensure Owner’s on-site operations are uninterrupted.
 2. Interruption of utility services. Indicate how long utility services will be interrupted.
 3. Coordination for shutoff, capping, and continuation of utility services.
 4. Use of elevator and stairs.
 5. Coordination of Owner’s continuing occupancy of portions of existing building and of Owner’s partial occupancy of completed Work.
D. Predemolition Photographs or Video: Show existing conditions of adjoining construction, including finish surfaces, that might be misconstrued as damage caused by demolition operations. Comply with Section 013233 “Photographic Documentation.” Submit before Work begins.
E. Warranties: Documentation indicating that existing warranties are still in effect after completion of selective demolition.

1.5 QUALITY ASSURANCE
A. Refrigerant Recovery Technician Qualifications: Certified by an EPA-approved certification program.

1.6 FIELD CONDITIONS
A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner’s operations will not be disrupted.
B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.
C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.
D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.
 1. If suspected hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.
E. Storage or sale of removed items or materials on-site is not permitted.
F. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.
 1. Maintain fire-protection facilities in service during selective demolition operations.

1.7 WARRANTY
A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials and using approved contractors so as not to void existing warranties. Notify warrantor before proceeding.
B. Notify warrantor on completion of selective demolition, and obtain documentation verifying that existing system has been inspected and warranty remains in effect. Submit documentation at Project closeout.

1.8 COORDINATION
A. Arrange selective demolition schedule so as not to interfere with Owner’s operations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
B. Standards: Comply with ASSE A10.6 and NFPA 241.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Review Project Record Documents of existing construction or other existing condition and hazardous material information provided by Owner. Owner does not guarantee that existing conditions are same as those indicated in Project Record Documents.
B. Perform an engineering survey of condition of building to determine whether removing any element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures during selective building demolition operations.
 1. Perform surveys as the Work progresses to detect hazards resulting from selective demolition activities.
C. Steel Tendons: Locate tensioned steel tendons and include recommendations for de-tensioning.
D. Survey of Existing Conditions: Record existing conditions by use of preconstruction photographs or video.

3.2 PREPARATION
A. Refrigerant: Before starting demolition, remove refrigerant from mechanical equipment according to 40 CFR 82 and regulations of authorities having jurisdiction.

3.3 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS
A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.
B. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off utility services and mechanical/electrical systems serving areas to be selectively demolished.
 1. Arrange to shut off utilities with utility companies.
 2. If services/systems are required to be removed, relocated, or abandoned, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.
 3. Disconnect, demolish, and remove fire-suppression systems, plumbing, and HVAC systems, equipment, and components indicated on Drawings to be removed.
 a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 b. Equipment to Be Removed: Disconnect and cap services and remove equipment.
c. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
d. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.

3.4 PROTECTION
A. Temporary Shoring: Design, provide, and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.
 1. Strengthen or add new supports when required during progress of selective demolition.
B. Remove temporary barricades and protections where hazards no longer exist.

3.5 SELECTIVE DEMOLITION, GENERAL
A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 1. Proceed with selective demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level.
 2. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping. Temporarily cover openings to remain.
 3. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
 4. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain portable fire-suppression devices during flame-cutting operations.
 5. Maintain fire watch during and for at least two hour after flame-cutting operations.
 7. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.
 8. Remove structural framing members and lower to ground by method suitable to avoid free fall and to prevent ground impact or dust generation.
 9. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
 10. Dispose of demolished items and materials promptly.
B. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
C. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition and cleaned and reinstalled in their original locations after selective demolition operations are complete.

3.6 SELECTIVE DEMOLITION PROCEDURES FOR SPECIFIC MATERIALS
A. Concrete: Demolish in sections. Cut concrete full depth at junctures with construction to remain and at regular intervals using power-driven saw, and then remove concrete between saw cuts.
B. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, and then remove masonry between saw cuts.
C. Concrete Slabs-on-Grade: Saw-cut perimeter of area to be demolished, and then break up and remove.
D. Resilient Floor Coverings: Remove floor coverings and adhesive according to recommendations in RFCI's "Recommended Work Practices for the Removal of Resilient Floor Coverings." Do not use methods requiring solvent-based adhesive strippers.
3.7 DISPOSAL OF DEMOLISHED MATERIALS

A. Remove demolition waste materials from Project site and dispose of them in an EPA-approved construction and demolition waste landfill acceptable to authorities having jurisdiction.
 1. Do not allow demolished materials to accumulate on-site.
 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
 3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.

B. Burning: Do not burn demolished materials.

3.8 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

END OF SECTION
PART 1 - GENERAL

A. Section Includes:
1. Concrete masonry units.
2. Mortar and grout.
3. Steel reinforcing bars.
5. Ties and anchors.
6. Embedded flashing.
7. Miscellaneous masonry accessories.

B. Products Installed but not Furnished under This Section:
1. Steel lintels in unit masonry.
2. Cavity wall insulation.

1.2 DEFINITIONS

A. CMU(s): Concrete masonry unit(s).

B. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For the following:
1. Masonry Units: Show sizes, profiles, coursing, and locations of special shapes.
 a. Show locations of control joints including additional proposed locations that may not be indicated on the Drawings.
2. Reinforcing Steel: Detail bending, lap lengths, and placement of unit masonry reinforcing bars. Comply with ACI 315.
3. Fabricated Flashing: Detail corner units, end-dam units, and other special applications.

C. Samples for Initial Selection:
1. Colored mortar.

D. Samples for Verification: For each type and color of the following:
1. Pigmented mortar. Make Samples using same sand and mortar ingredients to be used on Project.

1.5 INFORMATIONAL SUBMITTALS

A. Material Certificates: For each type and size of the following:
1. Masonry units.
 a. Include data on material properties.
2. Integral water repellent used in CMUs.
3. Cementitious materials. Include name of manufacturer, brand name, and type.
5. Preblended, dry mortar mixes. Include description of type and proportions of ingredients.
6. Grout mixes. Include description of type and proportions of ingredients.
7. Reinforcing bars.
8. Joint reinforcement.
9. Anchors, ties, and metal accessories.
B. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.
 1. Include test reports for mortar mixes required to comply with property specification. Test according to ASTM C109/C109M for compressive strength, ASTM C1506 for water retention, and ASTM C91/C91M for air content.

1.6 QUALITY ASSURANCE

A. Sample Panels: Build sample panels to verify selections made under Sample submittals and to demonstrate aesthetic effects. Comply with requirements in Section 014000 "Quality Requirements" for mockups.
 1. Build sample panels for each type of exposed unit masonry construction in sizes approximately 48 inches (1200 mm) long by 36 inches (900 mm) high by full thickness.
 2. Build sample panels facing south.
 3. Where masonry is to match existing, build panels adjacent and parallel to existing surface.
 4. Clean one-half of exposed faces of panels with masonry cleaner indicated.
 5. Protect approved sample panels from the elements with weather-resistant membrane.
 6. Approval of sample panels is for color, texture, and blending of masonry units; relationship of mortar and sealant colors to masonry unit colors; tooling of joints; aesthetic qualities of workmanship; and other material and construction qualities specifically approved by Architect in writing.
 a. Approval of sample panels does not constitute approval of deviations from the Contract Documents contained in sample panels unless Architect specifically approves such deviations in writing.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store masonry units on elevated platforms in a dry location. If units are not stored in an enclosed location, cover tops and sides of stacks with waterproof sheeting, securely tied. If units become wet, do not install until they are dry.
B. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials that have become damp.
C. Store aggregates where grading and other required characteristics can be maintained and contamination avoided.
D. Deliver preblended, dry mortar mix in moisture-resistant containers. Store preblended, dry mortar mix in delivery containers on elevated platforms in a dry location or in covered weatherproof dispensing silos.
E. Store masonry accessories, including metal items, to prevent corrosion and accumulation of dirt and oil.

1.8 FIELD CONDITIONS

A. Protection of Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day’s work. Cover partially completed masonry when construction is not in progress.
 1. Extend cover a minimum of 24 inches (600 mm) down both sides of walls, and hold cover securely in place.
 2. Where one wythe of multiwythe masonry walls is completed in advance of other wythes, secure cover a minimum of 24 inches (600 mm) down face next to unconstructed wythe, and hold cover in place.
B. Do not apply uniform floor or roof loads for at least 12 hours and concentrated loads for at least three days after building masonry walls or columns.
C. Stain Prevention: Prevent grout, mortar, and soil from staining the face of masonry to be left exposed or painted. Immediately remove grout, mortar, and soil that come in contact with such masonry.
 1. Protect base of walls from rain-splashed mud and from mortar splatter by spreading coverings on ground and over wall surface.
 2. Protect sills, ledges, and projections from mortar droppings.
 3. Protect surfaces of window and door frames, as well as similar products with painted and integral finishes, from mortar droppings.
 4. Turn scaffold boards near the wall on edge at the end of each day to prevent rain from splashing mortar and dirt onto completed masonry.
D. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.

1. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F (4 deg C) and higher and will remain so until masonry has dried, but not less than seven days after completing cleaning.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations for Masonry Units: Obtain exposed masonry units of a uniform texture and color, or a uniform blend within the ranges accepted for these characteristics, from single source from single manufacturer for each product required.

B. Source Limitations for Mortar Materials: Obtain mortar ingredients of a uniform quality, including color for exposed masonry, from single manufacturer for each cementitious component and from single source or producer for each aggregate.

2.2 UNIT MASONRY, GENERAL

A. Masonry Standard: Comply with TMS 602/ACI 530.1/ASCE 6, except as modified by requirements in the Contract Documents.

B. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated. Do not use units where such defects are exposed in the completed Work.

2.3 CONCRETE MASONRY UNITS

A. Shapes: Provide shapes indicated and as follows, with exposed surfaces matching exposed faces of adjacent units unless otherwise indicated.

1. Provide special shapes for lintels, corners, jambs, sashes, movement joints, headers, bonding, and other special conditions.

2. Provide square-edged units for outside corners unless otherwise indicated.

B. Integral Water Repellent: Provide units made with integral water repellent for exposed units.

1. Integral Water Repellent: Liquid polymeric, integral water-repellent admixture that does not reduce flexural bond strength. Units made with integral water repellent, when tested according to ASTM E514/E514M as a wall assembly made with mortar containing integral water-repellent manufacturer's mortar additive, with test period extended to 24 hours, shall show no visible water or leaks on the back of test specimen.

2. Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to the following:

 1) ACM Chemistries, Inc.; RainBloc.
 2) BASF Corporation; MasterPel 240.
 3) Euclid Chemical Company (The), an RPM International company; EUCON BLOCKTITE.
 4) GCP Applied Technologies Inc.; DRY-BLOCK Block Admixture.
 5) Moxie International; Moxie Shield 1800 Admixture

C. CMUs: ASTM C90.

1. Density Classification: Lightweight.
2. Exposed Faces: Provide color and texture matching the range represented by Architect's sample.

2.4 MASONRY LINTELS

A. Masonry Lintels: Prefabricated or built-in-place masonry lintels made from bond beam CMUs matching adjacent CMUs in color, texture, and density classification, with reinforcing bars placed as indicated and filled with coarse grout. Cure precast lintels before handling and installing. Temporarily support built-in-place lintels until cured.
2.5 MORTAR AND GROUT MATERIALS

A. Portland Cement: ASTM C150/C150M, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.
 1. Alkali content shall not be more than 0.1 percent when tested according to ASTM C114.

B. Hydrated Lime: ASTM C207, Type S.

C. Portland Cement-Lime Mix: Packaged blend of portland cement and hydrated lime containing no other ingredients.

D. Masonry Cement: ASTM C 91/C 91M.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Cemex S.A.B. de C.V.
 b. Essroc.
 c. Holcim (US) Inc.
 d. Lafarge North America Inc.
 e. Lehigh Hanson; Heidelberg Cement Group.

E. Mortar Pigments: Natural and synthetic iron oxides and chromium oxides, compounded for use in mortar mixes and complying with ASTM C979/C979M. Use only pigments with a record of satisfactory performance in masonry mortar.
 1. Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to the following:
 a. Davis Colors; True Tone Mortar Colors.
 b. Euclid Chemical Company (The); an RPM company.
 c. Lanxess Corporation; Bayferrox Iron Oxide Pigments.
 d. Solomon Colors, Inc; Solomon Colors Mortar Colors.

F. Aggregate for Mortar: ASTM C144.
 1. For mortar that is exposed to view, use washed aggregate consisting of natural sand or crushed stone.
 2. For joints less than 1/4-inch (6 mm) thick, use aggregate graded with 100 percent passing the No. 16 (1.18 mm) sieve.

H. Cold-Weather Admixture: Nonchloride, noncorrosive, accelerating admixture complying with ASTM C494/C494M, Type C, and recommended by manufacturer for use in masonry mortar of composition indicated.
 1. Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to the following:
 a. BASF Aktiengesellschaft; MasterSet FP 20.
 b. Euclid Chemical Company (The); an RPM International company; ACCELGUARD 80.
 c. GCP Applied Technologies Inc., MORSET.

I. Water-Repellent Admixture: Liquid water-repellent mortar admixture intended for use with CMUs containing integral water repellent from same manufacturer.
 a. ACM Chemistries, Inc.; RainBloc for Mortar.
 b. BASF Aktiengesellschaft; MasterPel 235.
 c. Euclid Chemical Company (The); an RPM International company; BLOCKTITE MORTAR ADMIXTURE.
 d. GCP Applied Technologies Inc.; DRY-BLOCK Mortar Admixture.

J. Water: Potable.

2.6 REINFORCEMENT

A. Uncoated-Steel Reinforcing Bars: ASTM A615/A615M or ASTM A996/A996M, Grade 60 (Grade 420).

B. Reinforcing Bar Positioners: Wire units designed to fit into mortar bed joints spanning masonry unit cells and to hold reinforcing bars in center of cells. Units are formed from 0.148-inch (3.77 mm) steel wire, hot-dip galvanized after fabrication. Provide units designed for number of bars indicated.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 b. Heckmann Building Products, Inc.
UNIT MASONRY

C. Masonry-Joint Reinforcement, General: ASTM A951/A951M.
1. Interior Walls: Hot-dip galvanized carbon steel.
2. Exterior Walls: Hot-dip galvanized carbon steel.
3. Wire Size for Side Rods: 0.148-inch (3.77 mm) diameter.
4. Wire Size for Cross Rods: 0.148-inch (3.77 mm) diameter.
5. Wire Size for Veneer Ties: 0.148-inch (3.77 mm) diameter.
6. Spacing of Cross Rods, Tabs, and Cross Ties: Not more than 16 inches (407 mm) o.c.
7. Provide in lengths of not less than 10 feet (3 m), with prefabricated corner and tee units.

2.7 TIES AND ANCHORS

A. General: Ties and anchors shall extend at least 1-1/2 inches (38 mm) into veneer but with at least a 5/8-inch (16 mm) cover on outside face.

B. Materials: Provide ties and anchors specified in this article that are made from materials that comply with the following unless otherwise indicated:
2. Stainless-Steel Wire: ASTM A580/A580M, Type 304.
4. Steel Plates, Shapes, and Bars: ASTM A36/A36M.

C. Corrugated-Metal Ties: Not allowed.

D. Individual Wire Ties: Rectangular units with closed ends and not less than 4 inches (100 mm) wide.
1. Where wythes do not align or are of different materials, use adjustable ties with pintle-and-eye connections having a maximum adjustment of 1-1/4 inches (32 mm).
2. Wire: Fabricate from 3/16-inch- (4.76 mm-) diameter, hot-dip galvanized steel wire.

E. Partition Top Anchors: 0.105-inch- (2.66 mm-) thick metal plate with a 3/8-inch- (9.5 mm-) diameter metal rod 6 inches (152 mm) long welded to plate and with closed-end plastic tube fitted over rod that allows rod to move in and out of tube. Fabricate from steel, hot-dip galvanized after fabrication.

F. Adjustable Masonry-Veneer Anchors:
1. General: Provide anchors that allow vertical adjustment but resist a 100-lbf (445-N) load in both tension and compression perpendicular to plane of wall without deforming or developing play in excess of 1/16 inch (1.5 mm).
2. Fabricate sheet metal anchor sections and other sheet metal parts from 0.105-inch- (2.66 mm-) thick steel sheet, galvanized after fabrication.
3. Fabricate wire ties from 0.187-inch- (4.76 mm-) diameter, hot-dip galvanized-steel wire unless otherwise indicated.
4. Screw-Attached, Masonry-Veneer Anchors: Wire tie and a gasketed sheet metal anchor section, 1-1/4 inches (32 mm) wide by 6 inches (152 mm) long, with screw holes top and bottom; top and bottom ends bent to form pronged legs of length to match thickness of insulation or sheathing; and raised rib-stiffened strap, 5/8 inch (16 mm) wide by 6 inches (152 mm) long, stamped into center to provide a slot between strap and base for inserting wire tie. Self-adhering, modified bituminous gasket fits behind anchor plate and extends beyond pronged legs. Where continuous insulation is shown, provide anchor portion with tabs to prevent crushing of insulation when installed.
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1) Hohmann & Barnard, Inc.
 2) Wire-Bond.
4. Screw-Attached, Masonry-Veneer Anchors: Wire tie and a gasketed sheet metal anchor section, 1-1/4 inches (32 mm) wide by 6 inches (152 mm) long, with screw holes top and bottom; top and bottom ends bent to form pronged legs of length to match thickness of insulation or sheathing; and raised rib-stiffened strap, 5/8 inch (16 mm) wide by 6 inches (152 mm) long, stamped into center to provide a slot between strap and base for inserting wire tie. Self-adhering, modified bituminous gasket fits behind anchor plate and extends beyond pronged legs. Where continuous insulation is shown, provide anchor portion with tabs to prevent crushing of insulation when installed.
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1) Hohmann & Barnard, Inc.
 2) Wire-Bond.
5. Polymer-Coated, Steel Drill Screws for Steel Studs: ASTM C954 except manufactured with hex washer head and neoprene or EPDM washer, No. 10 (4.83 mm) diameter by length required to penetrate steel stud flange with not less than three exposed threads, and with organic polymer coating with salt-spray resistance to red rust of more than 800 hours according to ASTM B117.
2.8 EMBEDDED FLASHING MATERIALS

A. Flexible Flashing: Use the following unless otherwise indicated:
 1. Rubberized-Asphalt Flashing: Composite flashing product consisting of a pliable, adhesive rubberized-asphalt compound, bonded to a high-density, cross-laminated polyethylene film to produce an overall thickness of not less than 0.040 inch (1.02 mm).
 a. Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to the following:
 1) Carlisle Coatings & Waterproofing Inc.; CCW-705-TWF Thru-Wall Flashing.
 3) Heckmann Building Products, Inc.; No. 82 Rubberized-Asphalt Thru-Wall Flashing.
 4) Hohmann & Barnard, Inc.; TeXtroflash.
 5) Polyguard Products, Inc.; Polyguard 400.
 6) W. R. Meadows, Inc.; Air-Shield Thru-Wall Flashing.
 b. Accessories: Provide preformed corners, end dams, other special shapes, and seaming materials produced by flashing manufacturer.

B. Adhesives, Primers, and Seam Tapes for Flashings: Flashing manufacturer’s standard products or products recommended by flashing manufacturer for bonding flashing sheets to each other and to substrates.

C. Termination Bars for Flexible Flashing: Stainless steel bars 0.075 inch by 1 inch (1.90 mm by 25 mm).

2.9 MISCELLANEOUS MASONRY ACCESSORIES

A. Compressible Filler: Premolded filler strips complying with ASTM D1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from neoprene, urethane, or PVC.

B. Preformed Control-Joint Gaskets: Made from styrene-butadiene-rubber compound, complying with ASTM D2000, Designation M2AA-805 or PVC, complying with ASTM D2287, Type PVC-65406 and designed to fit standard sash block and to maintain lateral stability in masonry wall; size and configuration as indicated.

C. Bond-Breaker Strips: Asphalt-saturated felt complying with ASTM D226/D226M, Type I (No. 15 asphalt felt).

D. Weep/Cavity Vent Products: Use the following unless otherwise indicated:
 1. Cellular Plastic Weep/Vent: One-piece, flexible extrusion made from UV-resistant polypropylene copolymer, full height and width of head joint and depth 1/8 inch (3 mm) less than depth of outer wythe, in color selected from manufacturer's standard.
 a. Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to the following:
 1) Heckmann Building Products, Inc.; No. 85 Cell Vent.
 2) Hohmann & Barnard, Inc.; QV Quadro-Vent.
 3) Wire-Bond; #3601 Cell Vent
 4) Mortar Net Solutions; CellVent.

E. Cavity Drainage Material: Free-draining mesh, made from polymer strands that will not degrade within the wall cavity.
 1. Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to the following:
 a. Heckmann Building Products, Inc.; #84 WallDefender.
 b. Hohmann & Barnard, Inc.; Mortar Trap.
 c. Mortar Net Solutions; MortarNet.
 d. Wire-Bond; Cavity Net DT (3611D).
 2. Configuration: Provide one of the following:
 a. Strips, full depth of cavity and 10 inches (250 mm) high, with dovetail-shaped notches 7 inches (175 mm) deep that prevent clogging with mortar droppings.

2.10 MASONRY-CELL FILL

A. Loose-Fill Insulation: Perlite complying with ASTM C549, Type II (surface treated for water repellency and limited moisture absorption) or Type IV (surface treated for water repellency and to limit dust generation).

B. Lightweight-Aggregate Fill: ASTM C331/C331M.
2.11 MASONRY CLEANERS
A. Proprietary Acidic Cleaner: Manufacturer’s standard-strength cleaner designed for removing mortar/grout stains, efflorescence, and other new construction stains from new masonry without discoloring or damaging masonry surfaces. Use product expressly approved for intended use by cleaner manufacturer and manufacturer of masonry units being cleaned.
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 b. EaCo Chem, Inc.
 c. PROSOCO, Inc.

2.12 MORTAR AND GROUT MIXES
A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures unless otherwise indicated.
 1. Do not use calcium chloride in mortar or grout.
 2. Use portland cement-lime or masonry cement mortar unless otherwise indicated.
 3. For exterior masonry, use portland cement-lime or masonry cement mortar.
 4. For reinforced masonry, use portland cement-lime or masonry cement mortar.
 5. Add cold-weather admixture (if used) at same rate for all mortar that will be exposed to view, regardless of weather conditions, to ensure that mortar color is consistent.
B. Preblended, Dry Mortar Mix: Furnish dry mortar ingredients in form of a preblended mix. Measure quantities by weight to ensure accurate proportions, and thoroughly blend ingredients before delivering to Project site.
C. Mortar for Unit Masonry: Comply with ASTM C270, Proportion Specification. Provide the following types of mortar for applications stated unless another type is indicated or needed to provide required compressive strength of masonry.
 1. For masonry below grade or in contact with earth, use Type M.
 2. For reinforced masonry, use Type S.
 3. For exterior, above-grade, load-bearing and nonload-bearing walls and parapet walls; for interior load-bearing walls; for interior nonload-bearing partitions; and for other applications where another type is not indicated, use Type N.
 4. For interior nonload-bearing partitions, Type O may be used instead of Type N.
D. Pigmented Mortar: Use colored cement product or select and proportion pigments with other ingredients to produce color required. Do not add pigments to colored cement products.
 1. Pigments shall not exceed 10 percent of portland cement by weight.
 2. Pigments shall not exceed 5 percent of masonry cement by weight.
 3. Mix to match Architect’s sample.
E. Grout for Unit Masonry: Comply with ASTM C476.
 1. Use grout of type indicated or, if not otherwise indicated, of type (fine or coarse) that will comply with TMS 602/ACI 530.1/ASCE 6 for dimensions of grout spaces and pour height.
 2. Proportion grout in accordance with ASTM C476, Table 1 or paragraph 4.2.2 for specified 28-day compressive strength indicated, but not less than 2000 psi (14 MPa).
 3. Provide grout with a slump of 8 to 11 inches (200 to 280 mm) as measured according to ASTM C143/C143M.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 1. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
 2. Verify that foundations are within tolerances specified.
 3. Verify that reinforcing dowels are properly placed.
 4. Verify that substrates are free of substances that impair mortar bond.
B. Before installation, examine rough-in and built-in construction for piping systems to verify actual locations of piping connections.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL
A. Thickness: Build cavity and composite walls and other masonry construction to full thickness shown. Build single-wythe walls to actual widths of masonry units, using units of widths indicated.
B. Build chases and recesses to accommodate items specified in this and other Sections.
C. Leave openings for equipment to be installed before completing masonry. After installing equipment, complete masonry to match construction immediately adjacent to opening.
D. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.
E. Select and arrange units for exposed unit masonry to produce a uniform blend of colors and textures. Mix units from several pallets or cubes as they are placed.
F. Matching Existing Masonry: Match coursing, bonding, color, and texture of existing masonry.

3.3 TOLERANCES
A. Dimensions and Locations of Elements:
1. For dimensions in cross section or elevation, do not vary by more than plus 1/2 inch (12 mm) or minus 1/4 inch (6 mm).
2. For location of elements in plan, do not vary from that indicated by more than plus or minus 1/2 inch (12 mm).
3. For location of elements in elevation, do not vary from that indicated by more than plus or minus 1/4 inch (6 mm) in a story height or 1/2 inch (12 mm) total.
B. Lines and Levels:
1. For bed joints and top surfaces of bearing walls, do not vary from level by more than 1/4 inch in 10 feet (6 mm in 3 m), or 1/2-inch (12-mm) maximum.
2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2-inch (12 mm) maximum.
3. For vertical lines and surfaces, do not vary from plumb by more than 1/4 inch in 10 feet (6 mm in 3 m), 3/8 inch in 20 feet (9 mm in 6 m), or 1/2-inch (12 mm) maximum.
4. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2-inch (12 mm) maximum.
5. For lines and surfaces, do not vary from straight by more than 1/4 inch in 10 feet (6 mm in 3 m), 3/8 inch in 20 feet (9 mm in 6 m), or 1/2-inch (12-mm) maximum.
6. For vertical alignment of exposed head joints, do not vary from plumb by more than 1/4 inch in 10 feet (6 mm in 3 m), or 1/2-inch (12 mm) maximum.
7. For faces of adjacent exposed masonry units, do not vary from flush alignment by more than 1/16 inch (1.5 mm) except due to warpage of masonry units within tolerances specified for warpage of units.
C. Joints:
1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch (3 mm), with a maximum thickness limited to 1/2 inch (12 mm).
2. For exposed bed joints, do not vary from bed-joint thickness of adjacent courses by more than 1/8 inch (3 mm).
3. For head and collar joints, do not vary from thickness indicated by more than plus 3/8 inch (9 mm) or minus 1/4 inch (6 mm).
4. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch (3 mm). Do not vary from adjacent bed-joint and head-joint thicknesses by more than 1/8 inch (3 mm).
5. For exposed bed joints and head joints of stacked bond, do not vary from a straight line by more than 1/16 inch (1.5 mm) from one masonry unit to the next.
3.4 LAYING MASONRY WALLS

A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.

B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in bond pattern indicated on Drawings; do not use units with less-than-nominal 4-inch (100 mm) horizontal face dimensions at corners or jambs.

C. Lay concealed masonry with all units in a wythe in running bond or bonded by lapping not less than 4 inches (100 mm). Bond and interlock each course of each wythe at corners. Do not use units with less-than-nominal 4-inch (100-mm) horizontal face dimensions at corners or jambs.

D. Stopping and Resuming Work: Stop work by stepping back units in each course from those in course below; do not tooth. When resuming work, clean masonry surfaces that are to receive mortar, and remove loose masonry units and mortar.

E. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.

F. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.

G. Where built-in items are to be embedded in cores of hollow masonry units, place a layer of metal lath, wire mesh, or plastic mesh in the joint below, and rod mortar or grout into core.

H. Fill cores in hollow CMUs with grout 24 inches (600 mm) under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.

I. Build nonload-bearing interior partitions full height of story to underside of solid floor or roof structure above unless otherwise indicated.
 1. Install compressible filler in joint between top of partition and underside of structure above.
 2. Fasten partition top anchors to structure above and build into top of partition. Grout cells of CMUs solidly around plastic tubes of anchors and push tubes down into grout to provide 1/2-inch (13-mm) clearance between end of anchor rod and end of tube. Space anchors 48 inches (1200 mm) o.c. unless otherwise indicated.
 3. Wedge nonload-bearing partitions against structure above with small pieces of tile, slate, or metal. Fill joint with mortar after dead-load deflection of structure above approaches final position.
 4. At fire-rated partitions, treat joint between top of partition and underside of structure above to comply with Section 078443 "Joint Firestopping."

3.5 MORTAR BEDDING AND JOINTING

A. Lay CMUs as follows:
 1. Bed face shells in mortar and make head joints of depth equal to bed joints.
 2. Bed webs in mortar in all courses of piers, columns, and pilasters.
 3. Bed webs in mortar in grouted masonry, including starting course on footings.
 4. Fully bed entire units, including areas under cells, at starting course on footings where cells are not grouted.
 5. Fully bed units and fill cells with mortar at anchors and ties as needed to fully embed anchors and ties in mortar.

B. Lay solid masonry units with completely filled bed and head joints; butter ends with sufficient mortar to fill head joints and shove into place. Do not deeply furrow bed joints or slush head joints.

C. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness unless otherwise indicated.

D. Cut joints flush for masonry walls to receive plaster or other direct-applied finishes (other than paint) unless otherwise indicated.

E. Cut joints flush where indicated to receive waterproofing unless otherwise indicated.

3.6 MASONRY-JOINT REINFORCEMENT

A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch (16 mm) on exterior side of walls, 1/2 inch (13 mm) elsewhere. Lap reinforcement a minimum of 6 inches (150 mm).
 1. Space reinforcement not more than 16 inches (406 mm) o.c.
 2. Space reinforcement not more than 8 inches (203 mm) o.c. in foundation walls and parapet walls.
3. Provide reinforcement not more than 8 inches (203 mm) above and below wall openings and extending 12 inches (305 mm) beyond openings.

B. Interrupt joint reinforcement at control and expansion joints unless otherwise indicated.

C. Provide continuity at wall intersections by using prefabricated T-shaped units.

D. Provide continuity at corners by using prefabricated L-shaped units.

E. Cut and bend reinforcing units as directed by manufacturer for continuity at corners, returns, offsets, column fireproofing, pipe enclosures, and other special conditions.

3.7 CONTROL AND EXPANSION JOINTS

A. General: Install control- and expansion-joint materials in unit masonry as masonry progresses. Do not allow materials to span control and expansion joints without provision to allow for in-plane wall or partition movement.

B. Form control joints in concrete masonry as follows:
 1. Install preformed control-joint gaskets designed to fit standard sash block.

C. Provide horizontal, pressure-relieving joints by either leaving an airspace or inserting a compressible filler of width required for installing sealant and backer rod specified in Section 079200 "Joint Sealants," but not less than 3/8 inch (10 mm).
 1. Locate horizontal, pressure-relieving joints beneath shelf angles supporting masonry.

3.8 LINTELS

A. Install steel lintels where indicated.

B. Provide masonry lintels where shown and where openings of more than 12 inches (305 mm) for brick-size units and 24 inches (610 mm) for block-size units are shown without structural steel or other supporting lintels.

C. Provide minimum bearing of 8 inches (200 mm) at each jamb unless otherwise indicated.

3.9 FLASHING, WEEP HOLES, AND CAVITY VENTS

A. General: Install embedded flashing and weep holes in masonry at shelf angles, lintels, ledges, other obstructions to downward flow of water in wall, and where indicated. Install cavity vents at shelf angles, ledges, and other obstructions to upward flow of air in cavities, and where indicated.

B. Install flashing as follows unless otherwise indicated:
 1. Prepare masonry surfaces so they are smooth and free from projections that could puncture flashing. Where flashing is within mortar joint, place through-wall flashing on sloping bed of mortar and cover with mortar. Before covering with mortar, seal penetrations in flashing with adhesive, sealant, or tape as recommended by flashing manufacturer.
 2. At masonry-veneer walls, extend flashing through veneer, across airspace behind veneer, and up face of sheathing at least 8 inches (200 mm); with upper edge tucked under water-resistant barrier, lapping at least 4 inches (100 mm). Fasten upper edge of flexible flashing to sheathing through termination bar.
 3. At lintels and shelf angles, extend flashing a minimum of 6 inches (150 mm) into masonry at each end. At heads and sills, extend flashing 6 inches (150 mm) at ends and turn up not less than 2 inches (50 mm) to form end dams.
 4. Cut flexible flashing off flush with face of wall after masonry wall construction is completed.

C. Install single-wythe CMU flashing system in bed joints of CMU walls where indicated to comply with manufacturer’s written instructions. Install CMU cell pans with upturned edges located below face shells and webs of CMUs above and with weep spouts aligned with face of wall. Install CMU web covers so that they cover upturned edges of CMU cell pans at CMU webs and extend from face shell to face shell.

D. Install reglets and nailers for flashing and other related construction where they are shown to be built into masonry.

E. Install weep holes in exterior wythes and veneers in head joints of first course of masonry immediately above embedded flashing.
 1. Use specified weep/cavity vent products to form weep holes.
 2. Space weep holes 24 inches (600 mm) o.c. unless otherwise indicated.

F. Place cavity drainage material in airspace behind veneers to comply with configuration requirements for cavity drainage material in "Miscellaneous Masonry Accessories" Article.
G. Install cavity vents in head joints in exterior wythes at spacing indicated. Use specified weep/cavity vent products to form cavity vents.
1. Close cavities off vertically and horizontally with blocking in manner indicated. Install through-wall flashing and weep holes above horizontal blocking.

3.10 REINFORCED UNIT MASONRY INSTALLATION
A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.
1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.
2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and that of other loads that may be placed on them during construction.
B. Placing Reinforcement: Comply with requirements in TMS 602/ACI 530.1/ASCE 6.
C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.
1. Comply with requirements in TMS 602/ACI 530.1/ASCE 6 for cleanouts and for grout placement, including minimum grout space and maximum pour height.
2. Limit height of vertical grout pours to not more than 60 inches (1520 mm).

3.11 FIELD QUALITY CONTROL
A. Testing and Inspecting: Owner will engage special inspectors for structural masonry to perform tests and inspections and prepare reports. All other tests and inspections will be performed by Contractor. Allow inspectors access to scaffolding and work areas as needed to perform tests and inspections. Retesting of materials that fail to comply with specified requirements shall be done at Contractor's expense.
B. Inspections: Special inspections according to Level B in TMS 402/ACI 530/ASCE 5.
1. Begin masonry construction only after inspectors have verified proportions of site-prepared mortar.
2. Place grout only after inspectors have verified compliance of grout spaces and of grades, sizes, and locations of reinforcement.
3. Place grout only after inspectors have verified proportions of site-prepared grout.
C. Testing Prior to Construction: One set of tests.
D. Testing Frequency: One set of tests for each 5000 sq. ft. (464 sq. m) of wall area or portion thereof.
E. Concrete Masonry Unit Test: For each type of unit provided, according to ASTM C140 for compressive strength.
F. Mortar Aggregate Ratio Test (Proportion Specification): For each mix provided, according to ASTM C780.
G. Grout Test (Compressive Strength): For each mix provided, according to ASTM C1019.

3.12 REPAIRING, POINTING, AND CLEANING
A. Remove and replace masonry units that are loose, chipped, broken, stained, or otherwise damaged or that do not match adjoining units. Install new units to match adjoining units; install in fresh mortar, pointed to eliminate evidence of replacement.
B. Pointing: During the tooling of joints, enlarge voids and holes, except weep holes, and completely fill with mortar. Point up joints, including corners, openings, and adjacent construction, to provide a neat, uniform appearance. Prepare joints for sealant application, where indicated.
C. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.
D. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:
1. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.
2. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes. Obtain Architect's approval of sample cleaning before proceeding with cleaning of masonry.
3. Protect adjacent stone and nonmasonry surfaces from contact with cleaner by covering them with liquid strippable masking agent or polyethylene film and waterproof masking tape.
4. Wet wall surfaces with water before applying cleaners; remove cleaners promptly by rinsing surfaces thoroughly with clear water.
5. Clean concrete masonry by applicable cleaning methods indicated in NCMA TEK 8-4A.
6. Clean masonry with a proprietary acidic cleaner applied according to manufacturer’s written instructions.

3.13 MASONRY WASTE DISPOSAL

A. Salvageable Materials: Unless otherwise indicated, excess masonry materials are Contractor’s property. At completion of unit masonry work, remove from Project site.
B. Excess Masonry Waste: Remove excess clean masonry waste that cannot be used as fill, as described above or recycled, and other masonry waste, and legally dispose of off Owner’s property.

END OF SECTION
SECTION 047300
THIN MASONRY VENEER

PART 1 - GENERAL

1.1 SECTION INCLUDES
A. Thin manufactured stone veneer and trim.
B. Reinforcement, anchorages, mortar, grout, and accessories.

1.2 DESIGN / PERFORMANCE REQUIREMENTS – MANUFACTURED STONE VENEER
A. Performance Requirements:
 1. Compressive Strength: Not less than 1800 psi average for 5 specimens and not less than 1500 psi for individual specimen when tested in accordance with ASTM C 39 and ASTM C 192.
 2. Bond Between Manufactured Masonry Unit, Mortar and Backing: Not less than 50 psi when tested in accordance with ASTM C 482 using Type S mortar.
 3. Thermal Resistance: R-value of not less than 0.355 per inch of thickness when tested in accordance with ASTM C 177.
 4. Freeze/Thaw: No disintegration and less than 3 percent weight loss when tested in accordance with ASTM C 67.
 5. Unit Weight: Not more than 15 psf.
 6. Surface Burning Characteristics: Not more than the following when tested in accordance with UL 723:
 a. Flamespread: 25.
 b. Smoke Development: 450.

B. Building Code Compliance:
 2. International Code Council (ICC):
 a. ES Report: ICC ESR 1364
 b. UBC Standard No. 14-1, Kraft Waterproof Building Paper.
 3. Texas Department of Insurance: Product Evaluation - EC 21

1.3 SUBMITTALS
A. Submit under provisions of Section 013000 “Administrative Requirements.”
B. Product Data: Manufacturer’s data sheets on each product to be used, including:
 1. Preparation instructions and recommendations.
 2. Storage and handling requirements and recommendations.
 3. Installation methods.
C. Shop Drawings: Submit drawings depicting proper installation and flashing techniques, including control joint locations.
D. Selection Samples: For each finish product specified, two complete sets of color sample representing manufacturer’s full range of available colors and textures.
E. Verification Samples: For each finish product specified, two samples, minimum size 8 inches (203 mm) square, representing actual product, color, and texture.
F. Manufacturer’s Certificates: Certify products meet or exceed specified requirements.
G. Closeout Submittals: Provide manufacturer’s maintenance instructions that include recommendations for cleaning and repair of components.

1.4 QUALITY ASSURANCE
A. Install thin masonry veneer in accordance with ASTM C-1780
B. Expansion Joints: Provide expansion joints as shown on the Drawings or if not shown, install at frequency and in accordance with details and as recommended by the manufacturer. Confirm locations and frequency with Architect before beginning work.
C. Manufacturer Qualifications: Manufacturer affiliated with MSJC and ACI with a minimum of 5 years documented experience manufacturing and marketing all Manufactured Stone products in this section.

D. Installer Qualifications: Company with documented experience in installation of manufactured masonry of the type specified including at least five projects within a 200 mile (650km) radius of the Project.

E. Mock-Up: Provide a mock-up for evaluation of surface preparation techniques and application workmanship.
 1. Finish panel of size and location designated by Architect.
 2. Do not proceed with remaining work until workmanship, color, texture and pattern are approved by Architect.
 3. Refinish mock-up area as required to produce acceptable work.

1.5 ENVIRONMENTAL REQUIREMENTS

1.6 DELIVERY, STORAGE, AND HANDLING
A. Store products off the ground on pallets in manufacturer’s unopened packaging until ready for installation.
B. Protect materials from precipitation and freezing temperatures. Product with visible frozen moisture should not be installed.
C. Protect materials from rain, moisture, and freezing temperatures.
D. Protect reinforcement and accessories from elements.

1.7 PROJECT CONDITIONS
A. Maintain environmental conditions (temperature, humidity, and ventilation) within limits recommended by manufacturer for optimum results. Do not install products under environmental conditions outside manufacturer’s absolute limits.

1.8 WARRANTY
A. Provide manufacturers 50 year limited warranty against defects in manufacturing.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

2.2 CALCIUM SILICATE MASONRY UNITS
A. General: Provide shapes indicated and as follows for each form of unit required:
 1. Provide units without cores or frogs and with exposed surfaces finished for ends of sills and caps and for similar applications that would otherwise expose unfinished surfaces.

B. Basis of Design, Calcium Silicate Masonry Units: ASTM C 73, size as indicated, and as follows:
 1. Manufacturer: Arriscraft International.
 2. Product: Arris-Tile Renaissance Masonry Units.

C. Provide special shapes for applications requiring CSMU of size, form, color, and texture on exposed surfaces that cannot be produced by sawing.
 1. Inside and outside corners of other than 90 degrees.
 2. Provide special shapes for applications where shapes produced by sawing would result in sawed surfaces being exposed to view.

2.3 ARCHITECTURAL TRIM STONES
A. Trimstones: Size as detailed.
B. Keystones: Size/configuration as detailed.
C. Watertable/Sill Rock Face Texture: Size as detailed.
 1. Provide sloped top surface and drip edge.
2.4 ANCHORAGES
A. Attachment: Nails, screws and other metal supports, of type and size to suit application; to rigidly secure materials in place into structure.

2.5 ACCESSORIES
A. Joint Sealant: Refer to Section 079200 "Joint Sealants."
B. Nailing Strips: Western softwood, preservative treated, sized to masonry joints.
C. Cleaner: As recommended by masonry manufacturer.
D. Metal Flashing:
 1. 24 gage galvanized steel; ASTM A 653.
E. Metal Lath: Diamond patterned steel mesh meeting or exceeding the requirements of ASTM C 847. Minimum 3.4 lb/sq yd for vertical applications.
F. Weep Screed: Provide at bottom of all walls at foundations and above all openings.

2.6 JOB MIXED MORTAR
A. Portland Cement, ASTM C150, Type I or masonry cement (Type S), ASTM C91.
 1. Gray for setting mortar
 2. With colorant added to match predominant masonry color, for pointing mortar and all exposed surfaces.
B. Masonry sand.
C. Lime: ASTM C207.
D. Iron oxide colors to bring mortar to color as selected by Architect.
E. Bonding agent of type and quantity recommended by brick and stone supplier for bonding mortar directly to concrete block walls.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Do not begin installation until substrates have been properly prepared.
B. If substrate preparation is the responsibility of another installer, notify Architect of unsatisfactory preparation before proceeding.

3.2 PREPARATION
A. Clean surfaces thoroughly prior to installation.
B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.
C. Establish lines, levels, and coursing. Protect from disturbance.
D. Scaffolding: Provide, erect, maintain, move, and finally remove scaffolding and staging required for brick and stone installation. Construct and maintain scaffolding in compliance with applicable ordinances, laws, rules and regulations. Scaffolding shall be sufficiently substantial to support workmen and necessary materials and equipment. Provide adequate guard rails for protection of property, workmen, and passersby.

3.3 LATHING
A. Install lath in accordance with ASTM C 1063.
B. Apply metal lath taut, with long dimension perpendicular to supports.
C. Lap ends minimum 1 inch. Secure end laps with tie wire where they occur between supports.
D. Lap sides of diamond mesh lath minimum 1-1/2 inches.
E. Attach metal lath to wood framing using nails of type, size, and spacing as recommended by system manufacturer. Nail penetration into wood studs a minimum of 1 inch at 4 inches on center.
F. Continuously reinforce internal angles with corner mesh, except where the metal lath returns 3 inches from corner to form the angle reinforcement; fasten at perimeter edges only.

G. Place corner bead at external wall corners; fasten at outer edges of lath only.

H. Place 4 inch wide strips of metal lath centered over junctions of dissimilar backing materials. Secure rigidly in place.

3.4 MORTAR MIXING
A. Thoroughly mix mortar ingredients in quantities needed for immediate use in accordance with ASTM C482, Type S.

B. Do not use anti-freeze compounds to lower the freezing point of mortar.

3.5 INSTALLATION
A. Install in accordance with manufacturer’s instructions.

B. General:
1. Walls: Provide masonry with consistent color range, texture, and coursing throughout.
2. Special Shapes: Color to match stones specified.
 a. Provide Stones manufactured specifically for installation at corners where located on the Drawings.
 b. Install quoins on corners if indicated on the Drawings.
3. Mortar Joints:
 a. Tight Fit joints.
 b. Strike all grout joints flush.
 c. Tool all grout joints.
 d. Overgrout all grout joints.
4. Windows, Doors and Wall Openings:
 a. Butt field stones to wall opening.
 b. Install specified trim stones where located on the Contract Drawings.
5. Sills: Install Sills where located on the Drawings.
7. Press the units firmly into position in soft mortar bed, joggle each piece slightly to bond firmly, causing mortar to extrude slightly around edges of units.
8. Install outside corner return units with short and long lengths alternated.
10. Plan work to minimize jobsite cutting. Perform necessary cutting with proper tools to provide uniform edges; take care to prevent breaking unit corners or edges.
11. Remove excess mortar; do not allow mortar to set up on face of units.
12. Point and tool joints before mortar has set.

C. Keep surfaces moist while installing.

D. Poorly attached stones are considered defective work. After set-up, inspect wall for loose stones. Remove and properly replace prior to project close-out.

E. Seal all joints at wall openings and penetrations with a sealant approved for use with masonry products.

3.6 CONTROL/EXPANSION JOINTS
A. Size control joints in accordance with Section 079200 Joint Sealants for sealant performance, but in no case larger than adjacent mortar joints in exposed brick and stone units.

B. Provide expansion joints where shown on the Drawings or as required/recommended by system manufacturer.

3.7 CUTTING AND FITTING
A. Cut and fit for chases, pipes, conduit, sleeves, and grounds. Cooperate with other Sections of work to provide correct size, shape, and location.
3.8 CLEANING AND SEALING
 A. Remove excess mortar and smears.
 B. Replace defective mortar. Match adjacent work.
 C. Clean soiled surfaces with a non-acidic solution which will not harm masonry or adjacent materials. Consult masonry manufacturer for acceptable cleaners. Leave surfaces thoroughly clean and free of all mortar and other soiling.
 D. Use non-metallic tools in cleaning operations.

3.9 PROTECTION
 A. Protect finished work from rain and work on either side of the wall during and for 48 hours following installation.
 B. Protect installed products until completion of project.
 C. Touch-up, repair or replace damaged products before Substantial Completion.

END OF SECTION
SECTION 055000
METAL FABRICATIONS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Steel framing and supports for countertops.
 2. Steel tube reinforcement for low partitions.
 3. Steel framing and supports for mechanical and electrical equipment.
 4. Steel framing and supports for applications where framing and supports are not specified in other Sections.
 5. Miscellaneous steel trim including .

 B. Products furnished, but not installed, under this Section include the following:
 1. Loose steel lintels.
 2. Anchor bolts, steel pipe sleeves, slotted-channel inserts, and wedge-type inserts indicated to be cast into concrete or built into unit masonry.
 3. Steel weld plates and angles for casting into concrete for applications where they are not specified in other Sections.

1.2 COORDINATION
 A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers’ written recommendations to ensure that shop primers and topcoats are compatible with one another.

 B. Coordinate installation of metal fabrications that are anchored to or that receive other work. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

1.3 ACTION SUBMITTALS
 A. Product Data: For the following:
 1. Paint products.

 B. Shop Drawings: Show fabrication and installation details. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items. Provide Shop Drawings for all items listed in summary above:
 1. Include shop drawings and structural analysis data signed and sealed by the qualified professional engineer licensed to practice in the location of the project, demonstrating the design and connections will meet all indicated and code required loads.

1.4 QUALITY ASSURANCE
 A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

1.5 FIELD CONDITIONS
 A. Field Measurements: Verify actual locations of walls and other construction contiguous with metal fabrications by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 METALS
 A. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.

 B. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
2.2 FASTENERS

A. General: Unless otherwise indicated, provide Type 316 stainless-steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B 633 or ASTM F 1941 (ASTM F 1941M), Class Fe/Zn 5, at exterior walls. Select fasteners for type, grade, and class required.

B. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6); with hex nuts, ASTM A 563 (ASTM A 563M); and, where indicated, flat washers.

C. Stainless-Steel Bolts and Nuts: Regular hexagon-head annealed stainless-steel bolts, ASTM F 593 (ASTM F 738M); with hex nuts, ASTM F 594 (ASTM F 836M); and, where indicated, flat washers; Alloy Group 2 (A4).

D. Anchor Bolts: ASTM F 1554, Grade 36, of dimensions indicated; with nuts, ASTM A 563 (ASTM A 563M); and, where indicated, flat washers.
 1. Hot-dip galvanize or provide mechanically deposited, zinc coating where item being fastened is indicated to be galvanized.

E. Anchors, General: Anchors capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488/E 488M, conducted by a qualified independent testing agency.

F. Post-Installed Anchors: Torque-controlled expansion anchors.
 1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941 (ASTM F 1941M), Class Fe/Zn 5, unless otherwise indicated.

2.3 MISCELLANEOUS MATERIALS

A. Shop Primers: Provide primers that comply with Section 099123 Interior Painting.

B. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107/C 1107M. Provide grout specifically recommended by manufacturer for interior and exterior applications.

2.4 FABRICATION, GENERAL

A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.

B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch (1 mm) unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.

C. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.

D. Form exposed work with accurate angles and surfaces and straight edges.

E. Weld corners and seams continuously to comply with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.

F. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners or welds where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) fasteners unless otherwise indicated. Locate joints where least conspicuous.

G. Fabricate seams and other connections that are exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.
H. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items.
I. Provide for anchorage of type indicated; coordinate with supporting structure. Space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.

2.5 MISCELLANEOUS FRAMING AND SUPPORTS
A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.
B. Fabricate units from steel shapes, plates, and bars of welded construction unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction.
C. Prime miscellaneous framing and supports with primer specified in Section 099123 “Interior Painting” where indicated.

2.6 MISCELLANEOUS STEEL TRIM
A. Unless otherwise indicated, fabricate units from steel shapes, plates, and bars of profiles shown with continuously welded joints and smooth exposed edges. Miter corners and use concealed field splices where possible.
B. Provide cutouts, fittings, and anchorages as needed to coordinate assembly and installation with other work.
 1. Provide with integrally welded steel strap anchors for embedding in concrete or masonry construction.
C. Galvanize exterior miscellaneous steel trim.
D. Prime miscellaneous steel trim with zinc-rich primer.

2.7 LOOSE STEEL LINTELS
A. Fabricate loose steel lintels from steel angles and shapes of size indicated for openings and recesses in masonry walls and partitions at locations indicated. Fabricate in single lengths for each opening unless otherwise indicated. Weld adjoining members together to form a single unit where indicated.
B. Size loose lintels to provide bearing length at each side of openings equal to 1/12 of clear span, but not less than 8 inches (200 mm) unless otherwise indicated.
C. Galvanize loose steel lintels located in exterior walls.
D. Prime loose steel lintels located in exterior walls with zinc-rich primer.

2.8 FINISHES, GENERAL
A. Finish metal fabrications after assembly.
B. Finish exposed surfaces to remove tool and die marks and stretch lines, and to blend into surrounding surface.

2.9 STEEL AND IRON FINISHES
A. Shop prime iron and steel items unless they are to be embedded in concrete, sprayed-on fireproofing, or masonry, or unless otherwise indicated.
 1. Shop prime with primers specified in Section 099123 "Interior Painting" unless zinc-rich primer is indicated.
B. Preparation for Shop Priming: Prepare surfaces to comply with SSPC-SP 6/NACE No. 3, "Commercial Blast Cleaning."
PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.

B. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.

C. Field Welding: Comply with the following requirements:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.

D. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for use with concrete and masonry inserts, toggle bolts, through bolts, lag screws, wood screws, and other connectors.

3.2 INSTALLING MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Install framing and supports to comply with requirements of items being supported, including manufacturers’ written instructions and requirements indicated on Shop Drawings.

3.3 ADJUSTING AND CLEANING

A. Touchup Painting: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint are specified in Section 099123 "Interior Painting."

END OF SECTION
SECTION 061053
MISCELLANEOUS ROUGH CARPENTRY

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Rooftop equipment bases and support curbs.
 2. Wood blocking and nailers.
 3. Wood furring.
 4. Plywood backing panels.

1.2 DEFINITIONS
A. Boards or Strips: Lumber of less than 2 inches nominal (38 mm actual) size in least dimension.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained.
 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.
 3. For fire-retardant treatments, include physical properties of treated lumber both before and after exposure to elevated temperatures, based on testing by a qualified independent testing agency according to ASTM D 5664.
 4. For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to Project site.

1.4 INFORMATIONAL SUBMITTALS
A. Evaluation Reports: For the following, from ICC-ES:
 1. Preservative-treated wood.
 2. Fire-retardant-treated wood.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Stack lumber flat with spacers beneath and between each bundle to provide air circulation. Protect lumber from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL
A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, provide lumber that complies with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.
 1. Factory mark each piece of lumber with grade stamp of grading agency.
 2. For exposed lumber indicated to receive a stained or natural finish, mark grade stamp on end or back of each piece.
 3. Dress lumber, S4S, unless otherwise indicated.
B. Maximum Moisture Content of Lumber: 15 percent unless otherwise indicated.
2.2 WOOD-PRESERVATIVE-TREATED MATERIALS

A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2.
 1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium. Do not use inorganic boron (SBX) for sill plates.

B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or does not comply with requirements for untreated material.

C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.
 1. For exposed lumber indicated to receive a stained or natural finish, mark end or back of each piece.

D. Application: Treat items indicated on Drawings, and the following:
 1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
 2. Wood sills, sleepers, blocking, furring, and similar concealed members in contact with masonry or concrete.
 3. Wood framing and furring attached directly to the interior of below-grade exterior masonry or concrete walls.
 4. Wood framing members that are less than 18 inches (460 mm) above the ground in crawlspaces or unexcavated areas.
 5. Wood floor plates that are installed over concrete slabs-on-grade.

2.3 FIRE-RETARDANT-TREATED MATERIALS

A. General: Where fire-retardant-treated materials are indicated, materials shall comply with requirements in this article, that are acceptable to authorities having jurisdiction, and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.

B. Fire-Retardant-Treated Lumber and Plywood by Pressure Process: Products with a flame-spread index of 25 or less when tested according to ASTM E 84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet (3.2 m) beyond the centerline of the burners at any time during the test.
 1. Treatment shall not promote corrosion of metal fasteners.
 2. Exterior Type: Treated materials shall comply with requirements specified above for fire-retardant-treated lumber and plywood by pressure process after being subjected to accelerated weathering according to ASTM D 2898. Use for exterior locations and where indicated.
 3. Interior Type A: Treated materials shall have a moisture content of 28 percent or less when tested according to ASTM D 3201 at 92 percent relative humidity. Use where exterior type is not indicated.
 4. Design Value Adjustment Factors: Treated lumber shall be tested according to ASTM D 5664, and design value adjustment factors shall be calculated according to ASTM D 6841.

C. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Kiln-dry plywood after treatment to a maximum moisture content of 15 percent.

D. Identify fire-retardant-treated wood with appropriate classification marking of qualified testing agency.
 1. For exposed lumber indicated to receive a stained or natural finish, mark end or back of each piece.

E. For exposed items indicated to receive a stained or natural finish, chemical formulations shall not bleed through, contain colorants, or otherwise adversely affect finishes.

F. Application: Treat all miscellaneous carpentry unless otherwise indicated.

2.4 MISCELLANEOUS LUMBER

A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:
 1. Blocking.
 2. Nailers.
 3. Rooftop equipment bases and support curbs.
 4. Furring.
 5. Other concealed locations.
B. Miscellaneous Lumber Items: Construction or No. 2 grade lumber of any species.
 1. Mixed southern pine or southern pine; SPIB.
 2. Spruce-pine-fir; NLGA.
 3. Western woods; WCLIB or WWPA.
 4. Northern species; NLGA.
 5. Eastern softwoods; NeLMA.

C. For blocking and nailers used for attachment of other construction, select and cut lumber to eliminate knots
 and other defects that will interfere with attachment of other work.

D. For furring strips for installing plywood or hardboard paneling, select boards with no knots capable of
 producing bent-over nails and damage to paneling.

2.5 PLYWOOD BACKING PANELS

A. Equipment Backing Panels: Plywood, DOC PS 1, Exterior, A-C, fire-retardant treated, in thickness
 indicated or, if not indicated, not less than 3/4-inch (19-mm) nominal thickness.

2.6 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article
 for material and manufacture.
 1. Where carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in
 area of high relative humidity, provide fasteners of Type 304 stainless steel.

B. Nails, Brads, and Staples: ASTM F 1667.

C. Screws for Fastening to Metal Framing: ASTM C 1002 or ASTM C 954, length as recommended by screw
 manufacturer for material being fastened.

D. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having
 jurisdiction, based on ICC-ES AC70.

E. Post-Installed Anchors: Fastener systems with an evaluation report acceptable to authorities having
 jurisdiction, based on ICC-ES AC01 or ICC-ES AC193 as appropriate for the substrate.
 1. Material: Stainless steel with bolts and nuts complying with ASTM F 593 and ASTM F 594, Alloy
 Group 1 or 2 (ASTM F 738M and ASTM F 836M, Grade A1 or A4).

2.7 MISCELLANEOUS MATERIALS

A. Adhesives for Gluing Furring to Concrete or Masonry: Formulation complying with ASTM D 3498 that is
 approved for use indicated by adhesive manufacturer.

B. Flexible Flashing: Composite, self-adhesive, flashing product consisting of a pliable, butyl rubber or
 rubberized-asphalt compound, bonded to a high-density polyethylene film, aluminum foil, or spunbonded
 polyolefin to produce an overall thickness of not less than 0.025 inch (0.6 mm).

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Framing Standard: Comply with AF&PA’s WCD 1, "Details for Conventional Wood Frame Construction,"
 unless otherwise indicated.

B. Set carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit carpentry
 accurately to other construction. Locate furring, nailers, blocking, grounds, and similar supports to comply
 with requirements for attaching other construction.

C. Install plywood backing panels by fastening to studs; coordinate locations with utilities requiring backing
 panels. Install fire-retardant-treated plywood backing panels with classification marking of testing agency
 exposed to view.

D. Do not splice structural members between supports unless otherwise indicated.

E. Provide blocking and framing as indicated and as required to support facing materials, fixtures, specialty
 items, and trim.
 1. Provide metal clips for fastening gypsum board or lath at corners and intersections where framing
 or blocking does not provide a surface for fastening edges of panels. Space clips not more than
 16 inches (406 mm) o.c.
F. Sort and select lumber so that natural characteristics do not interfere with installation or with fastening other materials to lumber. Do not use materials with defects that interfere with function of member or pieces that are too small to use with minimum number of joints or optimum joint arrangement.

G. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.
 1. Use inorganic boron for items that are continuously protected from liquid water.
 2. Use copper naphthenate for items not continuously protected from liquid water.

H. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.

I. Securely attach carpentry work to substrate by anchoring and fastening as indicated, complying with the following:
 1. Table 2304.9.1, "Fastening Schedule," in ICC’s International Building Code.
 2. ICC-ES evaluation report for fastener.

J. Use steel common nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood. Drive nails snug but do not countersink nail heads unless otherwise indicated.

3.2 WOOD BLOCKING AND NAILER INSTALLATION
 A. Install where indicated and where required for attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved.
 B. Attach items to substrates to support applied loading. Recess bolts and nuts flush with surfaces unless otherwise indicated.

3.3 WOOD FURRING INSTALLATION
 A. Install level and plumb with closure strips at edges and openings. Shim with wood as required for tolerance of finish work.
 B. Furring to Receive Plywood or Hardboard Paneling: Install 1-by-3-inch nominal- (19-by-63-mm actual-) size furring horizontally and vertically at 24 inches (610 mm) o.c.
 C. Furring to Receive Gypsum Board: Install 1-by-2-inch nominal- (19-by-38-mm actual-) size furring vertically at 16 inches (406 mm) o.c.

3.4 PROTECTION
 A. Protect wood that has been treated with inorganic boron (SBX) from weather. If, despite protection, inorganic boron-treated wood becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.
 B. Protect miscellaneous rough carpentry from weather. If, despite protection, miscellaneous rough carpentry becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

END OF SECTION
SECTION 064116.13
PLASTIC-LAMINATE-CLAD MILLWORK

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
1. Plastic-laminate-clad architectural millwork.
2. Wood furring, blocking, shims, and hanging strips for installing plastic-laminate-clad architectural
 millwork that are not concealed within other construction.

1.2 COORDINATION
A. Coordinate sizes and locations of framing, blocking, furring, reinforcements, and other related units of
 Work specified in other Sections to support loads imposed by installed and fully loaded millwork.

1.3 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings:
 1. Include plans, elevations, sections, and attachment details.
 2. Show large-scale details.
 3. Show locations and sizes of furring, blocking, and hanging strips, including concealed blocking and
 reinforcement specified in other Sections.
C. Samples for Verification: For the following:
 1. Plastic Laminates: 8 by 10 inches (200 by 250 mm), for each type, color, pattern, and surface finish
 required.
 a. Provide one sample applied to core material with specified edge material applied to one
 edge.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For manufacturer.
B. Product Certificates: For each type of product.
 1. High-pressure decorative laminate.
 2. Adhesives.
C. Field quality-control reports.

1.6 QUALITY ASSURANCE
A. Manufacturer’s Qualifications: Employs skilled workers who custom fabricate products similar to those
 required for this Project and whose products have a record of successful in-service performance.
B. Installer Qualifications: Manufacturer of products.

1.7 DELIVERY, STORAGE, AND HANDLING
A. Do not deliver millwork until painting and similar finish operations that might damage architectural millwork
 have been completed in installation areas. Store millwork in installation areas or in areas where
 environmental conditions comply with requirements specified in "Field Conditions" Article.

1.8 FIELD CONDITIONS
A. Environmental Limitations: Do not deliver or install millwork until building is enclosed, wet-work is
 complete, and HVAC system is operating and maintaining temperature between 60 and 90 deg F (16 and
 32 deg C) and relative humidity between 43 and 70 percent during the remainder of the construction period.
B. Field Measurements: Where millwork are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication, and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
 1. Locate concealed framing, blocking, and reinforcements that support millwork by field measurements before being enclosed/concealed by construction, and indicate measurements on Shop Drawings.

C. Established Dimensions: Where millwork are indicated to fit to other construction, establish dimensions for areas where millwork are to fit. Provide allowance for trimming at site, and coordinate construction to ensure that actual dimensions correspond to established dimensions.

PART 2 - PRODUCTS

2.1 PLASTIC-LAMINATE-CLAD ARCHITECTURAL MILLWORK
 A. Quality Standard: Unless otherwise indicated, comply with the Architectural Woodwork Standards for grades of millwork indicated for construction, finishes, installation, and other requirements.
 1. The Contract Documents contain requirements that are more stringent than the referenced quality standard. Comply with requirements of Contract Documents in addition to those of the referenced quality standard.
 B. Architectural Woodwork Standards Grade: Custom.
 C. High-Pressure Decorative Laminate: NEMA LD 3, grades as indicated or if not indicated, as required by quality standard.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Abet Laminati Inc.
 b. Formica Corporation.
 c. Lamin-Art, Inc.
 d. Pionite; a Panolam Industries International, Inc. brand.
 e. Wilsonart.
 2. Basis-of-Design Product: As scheduled.
 D. Laminate Cladding for Exposed Surfaces:
 1. Horizontal Surfaces: Grade HGS.
 2. Postformed Surfaces: Grade HGP.
 3. Vertical Surfaces: Grade VGS.
 4. Pattern Direction: As indicated.
 E. Colors, Patterns, and Finishes: As scheduled

2.2 WOOD MATERIALS
 A. Wood Products: Provide materials that comply with requirements of referenced quality standard for each type of architectural millwork and quality grade specified unless otherwise indicated.
 1. Wood Moisture Content: 5 to 10 percent.
 B. Composite Wood and Agrifiber Products: Provide materials that comply with requirements of referenced quality standard for each type of architectural millwork and quality grade specified unless otherwise indicated.
 1. Medium-Density Fiberboard (MDF): ANSI A208.2, Grade 130.

2.3 MISCELLANEOUS MATERIALS
 A. Furring, Blocking, Shims, and Hanging Strips: Softwood or hardwood lumber, kiln-dried to less than 15 percent moisture content.
 B. Anchors: Select material, type, size, and finish required for each substrate for secure anchorage. Provide metal expansion sleeves or expansion bolts for post-installed anchors. Use nonferrous-metal or hot-dip galvanized anchors and inserts at inside face of exterior walls and at floors.
 C. Adhesive for Bonding Plastic Laminate: Unpigmented contact cement.
 1. Adhesive for Bonding Edges: Hot-melt adhesive or adhesive specified above for faces.
2.4 FABRICATION
 A. Fabricate architectural millwork to dimensions, profiles, and details indicated.
 B. Complete fabrication, including assembly, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.

PART 3 - EXECUTION

3.1 PREPARATION
 A. Before installation, condition millwork to humidity conditions in installation areas for not less than 72 hours.

3.2 INSTALLATION
 A. Architectural Woodwork Standards Grade: Install millwork to comply with quality standard grade of item to be installed.
 B. Assemble millwork and complete fabrication at Project site to extent that it was not completed in the shop.
 C. Anchor millwork to anchors or blocking built in or directly attached to substrates. Secure with wafer-head millwork installation screws.
 D. Install millwork level, plumb, and true in line to a tolerance of 1/8 inch in 96 inches (3 mm in 2400 mm) using concealed shims.
 1. Scribe and cut millwork to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.

3.3 ADJUSTING AND CLEANING
 A. Repair damaged and defective millwork, where possible, to eliminate functional and visual defects. Where not possible to repair, replace architectural millwork. Adjust joinery for uniform appearance.
 B. Clean millwork on exposed and semiexposed surfaces.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Vapor-permeable, fluid-applied air barriers.

1.2 DEFINITIONS
 A. Air-Barrier Material: A primary element that provides a continuous barrier to the movement of air.
 B. Air-Barrier Accessory: A transitional component of the air barrier that provides continuity.
 C. Air-Barrier Assembly: The collection of air-barrier materials and accessories applied to an opaque wall, including joints and junctions to abutting construction, to control air movement through the wall.

1.3 PREINSTALLATION MEETINGS
 A. Preinstallation Conference: Conduct conference at Project site.
 1. Review air-barrier requirements and installation, special details, mockups, air-leakage and bond testing, air-barrier protection, and work scheduling that covers air barriers.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include manufacturer’s written instructions for evaluating, preparing, and treating each substrate; technical data; dry film thickness; and tested physical and performance properties of products.

1.5 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For Installer.
 B. Product Certificates: From air-barrier manufacturer, certifying compatibility of air barriers and accessory materials with Project materials that connect to or that come in contact with the barrier.
 C. Field quality-control reports.

1.6 QUALITY ASSURANCE
 A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.7 DELIVERY, STORAGE, AND HANDLING
 A. Remove and replace liquid materials that cannot be applied within their stated shelf life.
 B. Protect stored materials from direct sunlight.

1.8 FIELD CONDITIONS
 A. Environmental Limitations: Apply air barrier within the range of ambient and substrate temperatures recommended in writing by air-barrier manufacturer.
 1. Protect substrates from environmental conditions that affect air-barrier performance.
 2. Do not apply air barrier to a damp or wet substrate or during snow, rain, fog, or mist.

PART 2 - PRODUCTS

2.1 MATERIALS
 A. Source Limitations: Obtain primary air-barrier materials and air-barrier accessories from single source from single manufacturer.
 B. VOC Content: 100 g/L or less.
2.2 PERFORMANCE REQUIREMENTS

A. Air-Barrier Performance: Air-barrier assembly and seals with adjacent construction shall be capable of performing as a continuous air barrier and as a liquid-water drainage plane flashed to discharge to the exterior incidental condensation or water penetration. Air-barrier assemblies shall be capable of accommodating substrate movement and of sealing substrate expansion and control joints, construction material changes, penetrations, tie-ins to installed waterproofing, and transitions at perimeter conditions without deterioration and air leakage exceeding specified limits.

B. Air-Barrier Assembly Air Leakage: Maximum 0.04 cfm/sq. ft. of surface area at 1.57 lbf/sq. ft. (0.2 L/s x sq. m of surface area at 75 Pa), when tested according to ASTM E 2357.

2.3 MEDIUM-BUILD AIR BARRIERS, VAPOR PERMEABLE

A. Medium-Build, Vapor-Permeable Air Barrier: Synthetic polymer material with an installed dry film thickness, according to manufacturer’s written instructions, of 17 to 30 mils (0.4 to 0.8 mm) over smooth, void-free substrates.

1. Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to the following:
 b. GCP Applied Technologies Inc.; Perm-A-Barrier VPL 50 (VOC: 48 g/L)
 c. Henry Company; Air-Bloc 17.
 d. Hohmann & Barnard, Inc.; Enviro-Barrier VP (VOC: 0 g/L).
 e. Tremco Inc, an RPM International company; ExoAir 230 (VOC: 35 g/L).

2. Physical and Performance Properties:
 a. Air Permeance: Maximum 0.004 cfm/sq. ft. of surface area at 1.57-lbf/sq. ft. (0.02 L/s x sq. m of surface area at 75-Pa) pressure difference; ASTM E 2178.
 b. Vapor Permeance: Minimum 10 perms (580 ng/Pa x s x sq. m); ASTM E 96/E 96M, Water Method, Procedure B.
 c. Ultimate Elongation: Minimum 250 percent; ASTM D 412, Die C.
 d. Adhesion to Substrate: Minimum 16 lbf/sq. in. (110 kPa) when tested according to ASTM D 4541.
 e. Fire Propagation Characteristics: Passes NFPA 285 testing as part of an approved assembly.
 f. UV Resistance: Can be exposed to sunlight for 180 days according to manufacturer’s written instructions.

2.4 ACCESSORY MATERIALS

A. Requirement: Provide primers, transition strips, termination strips, joint reinforcing fabric and strips, joint sealants, counterflashing strips, flashing sheets and metal termination bars, termination mastic, substrate patching materials, adhesives, tapes, foam sealants, lap sealants, and other accessory materials that are recommended in writing by air-barrier manufacturer to produce a complete air-barrier assembly and that are compatible with primary air-barrier material and adjacent construction to which they may seal.

B. Primer: Liquid waterborne primer recommended for substrate by air-barrier material manufacturer.

C. Stainless-Steel Sheet: ASTM A 240/A 240M, Type 304, 0.0187 inch (0.5 mm) thick, and Series 300 stainless-steel fasteners.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
 1. Verify that substrates are sound and free of oil, grease, dirt, excess mortar, or other contaminants.
 2. Verify that substrates have cured and aged for minimum time recommended in writing by air-barrier manufacturer.
 3. Verify that substrates are visibly dry and free of moisture.
 4. Verify that masonry joints are flush and completely filled with mortar.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 SURFACE PREPARATION

A. Clean, prepare, treat, fill, and seal substrate and joints and cracks in substrate according to manufacturer’s written instructions and details. Provide clean, dust-free, and dry substrate for air-barrier application.

B. Mask off adjoining surfaces not covered by air barrier to prevent spillage and overspray affecting other construction.

C. Remove grease, oil, bitumen, form-release agents, paints, curing compounds, and other penetrating contaminants or film-forming coatings from concrete.

D. Remove excess mortar from masonry ties, shelf angles, and other obstructions.

E. At changes in substrate plane, apply sealant or termination mastic beads at sharp corners and edges to form a smooth transition from one plane to another.

F. Cover gaps in substrate plane and form a smooth transition from one substrate plane to another with stainless-steel sheet mechanically fastened to structural framing to provide continuous support for air barrier.

G. Bridge isolation joints and discontinuous wall-to-wall, deck-to-wall, and deck-to-deck joints with air-barrier accessory material that accommodates joint movement according to manufacturer’s written instructions and details.

3.3 ACCESSORIES INSTALLATION

A. Install accessory materials according to air-barrier manufacturer’s written instructions and details to form a seal with adjacent construction and ensure continuity of air and water barrier.

1. Coordinate the installation of air barrier with installation of roofing membrane and base flashing to ensure continuity of air barrier with roofing membrane.

2. Install transition strip on roofing membrane or base flashing so that a minimum of 3 inches (75 mm) of coverage is achieved over each substrate.

3. Unless manufacturer recommends in writing against priming, apply primer to substrates at required rate and allow it to dry.

4. Apply primer to substrates at required rate and allow it to dry. Limit priming to areas that will be covered by air-barrier material on same day. Reprime areas exposed for more than 24 hours.

B. Connect and seal exterior wall air-barrier material continuously to roofing-membrane air barrier, concrete below-grade structures, floor-to-floor construction, exterior glazing and window systems, glazed curtain-wall systems, storefront systems, exterior louvers, exterior door framing, and other construction used in exterior wall openings, using accessory materials.

C. At end of each working day, seal top edge of strips and transition strips to substrate with termination mastic.

D. Apply joint sealants forming part of air-barrier assembly within manufacturer’s recommended application temperature ranges. Consult manufacturer when sealant cannot be applied within these temperature ranges.

E. Wall Openings: Prime concealed, perimeter frame surfaces of windows, curtain walls, storefronts, and doors. Apply transition strip so that a minimum of 3 inches (75 mm) of coverage is achieved over each substrate. Maintain 3 inches (75 mm) of full contact over firm bearing to perimeter frames, with not less than 1 inch (25 mm) of full contact.

1. Transition Strip: Roll firmly to enhance adhesion.

F. Fill gaps in perimeter frame surfaces of windows, curtain walls, storefronts, and doors, and miscellaneous penetrations of air-barrier material with foam sealant.

G. Seal strips and transition strips around masonry reinforcing or ties and penetrations with termination mastic.

H. Seal top of through-wall flashings to air barrier with an additional 6-inch- (150-mm-) wide, transition strip.

I. Seal exposed edges of strips at seams, cuts, penetrations, and terminations not concealed by metal counterflashings or ending in reglets with termination mastic.

J. Repair punctures, voids, and deficient lapped seams in strips and transition strips. Slit and flatten fishmouths and blisters. Patch with transition strips extending 6 inches (150 mm) beyond repaired areas in strip direction.
3.4 PRIMARY AIR-BARRIER MATERIAL INSTALLATION

A. Apply air-barrier material to form a seal with strips and transition strips and to achieve a continuous air barrier according to air-barrier manufacturer’s written instructions and details. Apply air-barrier material within manufacturer’s recommended application temperature ranges.
1. Unless manufacturer recommends in writing against priming, apply primer to substrates at required rate and allow it to dry.
2. Limit priming to areas that will be covered by air-barrier material on same day. Reprime areas exposed for more than 24 hours.
3. Where multiple prime coats are needed to achieve required bond, allow adequate drying time between coats.

B. Medium-Build Air Barriers: Apply continuous unbroken air-barrier material to substrates according to the following thickness. Apply an increased thickness of air-barrier material in full contact around protrusions such as masonry ties.
1. Vapor-Permeable, Medium-Build Air Barrier: Total dry film thickness as recommended in writing by manufacturer to comply with performance requirements, applied in one or more equal coats. Apply additional material as needed to achieve void- and pinhole-free surface, but do not exceed thickness on which required vapor permeability is based.

C. Do not cover air barrier until it has been tested and inspected by testing agency.
D. Correct deficiencies in or remove air barrier that does not comply with requirements; repair substrates and reapply air-barrier components.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Inspections: Air-barrier materials, accessories, and installation are subject to inspection for compliance with requirements. Inspections may include the following:
1. Continuity of air-barrier system has been achieved throughout the building envelope with no gaps or holes.
2. Air-barrier dry film thickness.
3. Continuous structural support of air-barrier system has been provided.
4. Masonry and concrete surfaces are smooth, clean, and free of cavities, protrusions, and mortar droppings.
5. Site conditions for application temperature and dryness of substrates have been maintained.
6. Maximum exposure time of materials to UV deterioration has not been exceeded.
7. Surfaces have been primed, if applicable.
8. Laps in strips and transition strips have complied with minimum requirements and have been shingled in the correct direction (or mastic has been applied on exposed edges), with no fishmouths.
9. Strips and transition strips have been firmly adhered to substrate.
10. Compatible materials have been used.
11. Transitions at changes in direction and structural support at gaps have been provided.
12. Connections between assemblies (air-barrier and sealants) have complied with requirements for cleanliness, surface preparation and priming, structural support, integrity, and continuity of seal.
13. All penetrations have been sealed.
C. Tests: As determined by testing agency from among the following tests:
1. Air-Leakage-Location Testing: Air-barrier assemblies will be tested for evidence of air leakage according to ASTM E 1186, chamber pressurization or depressurization with smoke tracers.
D. Air barriers will be considered defective if they do not pass tests and inspections.
1. Apply additional air-barrier material, according to manufacturer’s written instructions, where inspection results indicate insufficient thickness.
2. Remove and replace deficient air-barrier components for retesting as specified above.
E. Repair damage to air barriers caused by testing; follow manufacturer’s written instructions.
F. Prepare test and inspection reports.
3.6 CLEANING AND PROTECTION

A. Protect air-barrier system from damage during application and remainder of construction period, according to manufacturer’s written instructions.
 1. Protect air barrier from exposure to UV light and harmful weather exposure as recommended in writing by manufacturer. If exposed to these conditions for longer than recommended, remove and replace air barrier or install additional, full-thickness, air-barrier application after repairing and preparing the overexposed materials according to air-barrier manufacturer’s written instructions.
 2. Protect air barrier from contact with incompatible materials and sealants not approved by air-barrier manufacturer.

B. Clean spills, stains, and soiling from construction that would be exposed in the completed work using cleaning agents and procedures recommended in writing by manufacturer of affected construction.

C. Remove masking materials after installation.

END OF SECTION
SECTION 073113

ASPHALT SHINGLES

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
1. Asphalt shingles.
2. Underlayment.
3. Ridge vents.
4. Metal flashing and trim.

1.2 DEFINITION
A. Roofing Terminology: See ASTM D 1079 and glossary of NRCA’s “The NRCA Roofing and Waterproofing Manual” for definitions of terms related to roofing work in this Section.

1.3 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: For sheet metal flashing and trim.
1. Include plans, elevations, sections, and attachment details.
2. Detail fabrication and installation layouts, expansion-joint locations, and keyed details. Distinguish between shop- and field-assembled work.
3. Include identification of material, thickness, weight, and finish for each item and location in Project.
4. Include details for forming, including profiles, shapes, seams, and dimensions.
5. Include details for joining, supporting, and securing, including layout and spacing of fasteners, cleats, clips, and other attachments. Include pattern of seams.
6. Include details of termination points and assemblies.
7. Include details of expansion joints and expansion-joint covers, including showing direction of expansion and contraction from fixed points.
8. Include details of roof-penetration flashing.
9. Include details of edge conditions, including eaves, ridges, valleys, rakes, crickets, and counterflashings as applicable.
10. Include details of special conditions.
11. Include details of connections to adjoining work.
12. Detail formed flashing and trim at scale of not less than 1-1/2 inches per 12 inches (1:10).

1.5 INFORMATIONAL SUBMITTALS
A. Product Test Reports: For each type of asphalt shingle and underlayment product indicated, for tests performed by manufacturer and witnessed by a qualified testing agency.
B. Evaluation Reports: For high-temperature, self-adhering sheet underlayment, from ICC-ES or other testing and inspecting agency acceptable to authorities having jurisdiction, indicating that product is suitable for intended use under applicable building codes.
C. Sample Warranty: For manufacturer’s warranty.

1.6 CLOSEOUT SUBMITTALS
A. Maintenance Data: For asphalt shingles to include in maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Asphalt Shingles: 100 sq. ft. (9.3 sq. m) of each type, in unbroken bundles.
1.8 QUALITY ASSURANCE
A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.
B. Mock-Up: Provide a mock-up for evaluation of surface preparation techniques and application workmanship.
 1. Finish areas designated by architect
 2. Do not proceed with remaining work until workmanship, color and pattern are approved by Architect.
 3. Rework Mock-Up area as required to produce acceptable work.

1.9 DELIVERY, STORAGE, AND HANDLING
A. Store roofing materials in a dry, well-ventilated location protected from weather, sunlight, and moisture according to manufacturer’s written instructions.
B. Store underlayment rolls on end on pallets or other raised surfaces. Do not double stack rolls.
C. Protect unused roofing materials from weather, sunlight, and moisture when left overnight or when roofing work is not in progress.
D. Handle, store, and place roofing materials in a manner to prevent damage to roof deck or structural supporting members.

1.10 FIELD CONDITIONS
A. Environmental Limitations: Install self-adhering sheet underlayment within the range of ambient and substrate temperatures recommended in writing by manufacturer.

1.11 WARRANTY
A. Manufacturer’s Warranty: Manufacturer agrees to repair or replace asphalt shingles that fail within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Manufacturing defects.
 2. Material Warranty Period: 50-year, transferable from date of Substantial Completion, prorated, with first 10 years nonprorated.
 3. Algae-Resistance Warranty Period: Asphalt shingles will not discolor for 15 years from date of Substantial Completion.
 4. Workmanship Warranty Period: 25 years from date of Substantial Completion.
B. Roofing Installer’s Warranty: Signed by Installer, in which Installer agrees to repair or replace components of asphalt-shingle roofing that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS
2.1 GLASS-FIBER-REINFORCED ASPHALT SHINGLES
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. GAF/Elk Materials Corporation.
 c. TAMKO Building Products, Inc.
 3. Strip Size: Manufacturer’s standard.
 5. Color and Blends: As selected by Architect from manufacturer’s full range.
B. Hip and Ridge Shingles: Manufacturer’s standard units to match asphalt shingles.
2.2 UNDERLAYMENT MATERIALS

A. Self-Adhering Sheet Underlayment, High Temperature (for use at hips, valleys, ridges, and in cold climates eaves): Minimum of 40-mil- (1.0-mm-) thick; with slip-resisting, polymer-film-reinforced or glass-reinforced top surface laminated to layer of butyl or SBS-modified asphalt adhesive; with release backing; cold applied; and evaluated and documented to be suitable for use for intended purpose under applicable codes by a testing and inspecting agency acceptable to authorities having jurisdiction.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carlisle Residential; a division of Carlisle Construction Products.
 b. GAF Materials Corporation.
 c. GCP Applied Technologies Inc.
 d. Owens Corning.
 e. Protecto Wrap Company.
 f. TAMKO Building Products, Inc.

2. Thermal Stability: Stable after testing at 240 deg F (116 deg C) according to ASTM D 1970/D 1970M.

3. Low-Temperature Flexibility: Passes after testing at minus 20 deg F (29 deg C) according to ASTM D 1970/D 1970M.

2.3 ACCESSORIES

A. Roofing Nails: ASTM F 1667; aluminum, stainless-steel, copper, or hot-dip galvanized-steel wire shingle nails, minimum 0.120-inch- (3-mm-) diameter, sharp-pointed, with a minimum 3/8-inch- (9.5-mm-) diameter flat head and of sufficient length to penetrate 3/4 inch (19 mm) into solid wood decking or extend at least 1/8 inch (3 mm) through OSB or plywood sheathing.

1. Shank: Barbed.

2. Where nails are in contact with metal flashing, use nails made from same metal as flashing.

B. Felt-Underlayment Nails: Aluminum, stainless-steel, or hot-dip galvanized-steel wire with low-profile capped heads or disc caps, 1-inch (25-mm) minimum diameter.

2.4 METAL FLASHING AND TRIM

A. General: Comply with requirements in Section 076200 "Sheet Metal Flashing and Trim."

B. Fabricate sheet metal flashing and trim to comply with recommendations in SMACNA’s "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of the item.

1. Apron Flashings: Fabricate with lower flange a minimum of 4 inches (100 mm) over and 4 inches (100 mm) beyond each side of downslope asphalt shingles and 6 inches (150 mm) up the vertical surface.

2. Step Flashings: Fabricate with a headlap of 2 inches (50 mm) and a minimum extension of 4 inches (100 mm) over the underlying asphalt shingle and up the vertical surface.

3. Drip Edges: Fabricate in lengths not exceeding 10 feet (3 m) with 2-inch (50-mm) roof-deck flange and 1-1/2-inch (38-mm) fascia flange with 3/8-inch (9.5-mm) drip at lower edge.

4. Kick Out Flashing: Provide to direct water away from face of building.

C. Vent Pipe Flashings: ASTM B 749, Type L51121, at least 1/16 inch (1.6 mm) thick. Provide lead sleeve sized to slip over and turn down into pipe, soldered to skirt at slope of roof, and extending at least 4 inches (100 mm) from pipe onto roof.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

1. Examine roof sheathing to verify that sheathing joints are supported by framing and blocking or metal clips and that installation is within flatness tolerances.

2. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and completely anchored; and that provisions have been made for flashings and penetrations through asphalt shingles.

B. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 UNDERLAYMENT INSTALLATION

A. General: Comply with underlayment manufacturer’s written installation instructions applicable to products and applications indicated unless more stringent requirements apply.

B. Self-Adhering Sheet Underlayment: Install, wrinkle free, on roof deck. Comply with low-temperature installation restrictions of underlayment manufacturer if applicable. Install lapped in direction that sheds water. Lap sides not less than 3-1/2 inches (89 mm). Lap ends not less than 6 inches (150 mm) staggered 24 inches (600 mm) between courses. Roll laps with roller. Cover underlayment within seven days.
 1. Prime concrete and masonry surfaces to receive self-adhering sheet underlayment.
 2. Eaves: Extend from edges of eaves 24 inches (600 mm) beyond interior face of exterior wall.
 3. Valleys: Extend from lowest to highest point 18 inches (450 mm) on each side.
 4. Hips: Extend 18 inches (450 mm) on each side.
 5. Ridges: Extend 36 inches (914 mm) on each side.

C. Concealed Valley Lining: For woven valleys. Comply with NRCA’s "NRCA Guidelines for Asphalt Shingle Roof Systems." Install underlayment centered in valley and fastened to roof deck.
 1. Lap roof-deck underlayment over valley underlayment at least 6 inches (150 mm).
 2. Install a centered in valley. Lap ends of strips at least 12 inches (300 mm) in direction to shed water, and seal with asphalt roofing cement. Fasten to roof deck with roofing nails.

3.3 METAL FLASHING INSTALLATION

A. General: Install metal flashings and other sheet metal to comply with requirements in Section 076200 "Sheet Metal Flashing and Trim."
 1. Install metal flashings according to recommendations in ARMA’s "Residential Asphalt Roofing Manual" and NRCA’s "NRCA Guidelines for Asphalt Shingle Roof Systems."

B. Apron Flashings: Extend lower flange over and beyond each side of downslope asphalt shingles and up the vertical surface.

C. Step Flashings: Install with a headlap of 2 inches (50 mm) and extend over the underlying asphalt shingle and up the vertical surface. Fasten to roof deck only.

D. Cricket or Backer Flashings: Install against the roof-penetrating element extending concealed flange beneath upslope asphalt shingles and beyond each side.

E. Rake Drip Edges: Install rake drip-edge flashings over underlayment and fasten to roof deck.

F. Eave Drip Edges: Install eave drip-edge flashings below underlayment and fasten to roof sheathing.

G. Pipe Flashings: Form flashing around pipe penetrations and asphalt shingles. Fasten and seal to asphalt shingles as recommended by manufacturer.

3.4 ASPHALT-SHINGLE INSTALLATION

A. General: Install asphalt shingles according to manufacturer’s written instructions, recommendations in ARMA’s "Residential Asphalt Roofing Manual," and recommendations in NRCA’s "NRCA Guidelines for Asphalt Shingle Roof Systems."

B. Install starter strip along lowest roof edge, consisting of an asphalt-shingle strip at least 7 inches (175 mm) wide with self-sealing strip face up at roof edge.
 1. Install starter strip along rake edge.

C. Install first and remaining courses of asphalt shingles stair-stepping diagonally across roof deck with manufacturer’s recommended offset pattern at succeeding courses, maintaining uniform exposure.

D. Install first and remaining courses of asphalt shingles stair-stepping diagonally across roof deck with 5-inch (125-mm) offset pattern at succeeding courses, maintaining uniform exposure.

E. Fasten asphalt-shingle strips with a minimum of six roofing nails located according to manufacturer’s written instructions.
 1. Where roof slope is less than 4:12, seal asphalt shingles with asphalt roofing cement spots.
 2. When ambient temperature during installation is below 50 deg F (10 deg C), seal asphalt shingles with asphalt roofing cement spots.
F. Woven Valleys: Extend succeeding asphalt-shingle courses from both sides of valley 12 inches (300 mm) beyond center of valley, weaving intersecting shingle-strip courses over each other. Use one-piece shingle strips without joints in valley.
 1. Do not nail asphalt shingles within 6 inches (150 mm) of valley center.

G. Hip and Ridge Shingles: Maintain same exposure of cap shingles as roofing shingle exposure. Lap cap shingles at ridges to shed water away from direction of prevailing winds. Fasten with roofing nails of sufficient length to penetrate sheathing.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Formed roof-drainage sheet metal fabrications.
 2. Formed low-slope roof sheet metal fabrications.

1.2 COORDINATION
A. Coordinate sheet metal flashing and trim layout and seams with sizes and locations of penetrations to be flashed, and joints and seams in adjacent materials.
B. Coordinate sheet metal flashing and trim installation with adjoining roofing and wall materials, joints, and seams to provide leakproof, secure, and noncorrosive installation.

1.3 ACTION SUBMITTALS
A. Product Data: For each of the following
 1. Underlayment materials.
B. Shop Drawings: For sheet metal flashing and trim.
 1. Delegated Design: Provide shop drawings signed and sealed by a structural engineer licensed to practice in the location of the project, indicating ability of system and attachment to supporting construction to resist indicated or code required loads.
 2. Include plans, elevations, sections, and attachment details.
 3. Detail fabrication and installation layouts, expansion-joint locations, and keyed details. Distinguish between shop- and field-assembled Work.
 4. Include identification of material, thickness, weight, and finish for each item and location in Project.
 5. Include details for forming, including profiles, shapes, seams, and dimensions.
 6. Include details for joining, supporting, and securing, including layout and spacing of fasteners, cleats, clips, and other attachments. Include pattern of seams.
 7. Include details of termination points and assemblies.
 8. Include details of expansion joints and expansion-joint covers, including showing direction of expansion and contraction from fixed points.
 9. Include details of roof-penetration flashing.
 10. Include details of edge conditions, including eaves, ridges, valleys, rakes, cricket, flashings, and counterflashings.
 11. Include details of special conditions.
 12. Include details of connections to adjoining work.
 13. Detail formed flashing and trim at scale of not less than 1-1/2 inches per 12 inches (1:10).

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For fabricator.
B. Product Test Reports: For each product, for tests performed by a qualified testing agency.
C. Evaluation Reports: For copings and roof edge flashing, from an agency acceptable to authority having jurisdiction showing compliance with ANSI/SPRI/FM 4435/ES-1.
D. Sample Warranty: For special warranty.

1.5 QUALITY ASSURANCE
A. Fabricator Qualifications: Employs skilled workers who custom fabricate sheet metal flashing and trim similar to that required for this Project and whose products have a record of successful in-service performance.
1.6 DELIVERY, STORAGE, AND HANDLING
A. Do not store sheet metal flashing and trim materials in contact with other materials that might cause staining, denting, or other surface damage.
 1. Store sheet metal flashing and trim materials away from uncured concrete and masonry.
 2. Protect stored sheet metal flashing and trim from contact with water.
B. Protect strippable protective covering on sheet metal flashing and trim from exposure to sunlight and high humidity, except to extent necessary for period of sheet metal flashing and trim installation.

1.7 WARRANTY
A. Special Warranty on Finishes: Manufacturer agrees to repair finish or replace sheet metal flashing and trim that shows evidence of deterioration of factory-applied finishes within specified warranty period.
 1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Delta units when tested in accordance with ASTM D2244.
 b. Chalking in excess of a No. 8 rating when tested in accordance with ASTM D4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 2. Finish Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. General: Sheet metal flashing and trim assemblies, including cleats, anchors, and fasteners, shall withstand wind loads, structural movement, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Completed sheet metal flashing and trim shall not rattle, leak, or loosen, and shall remain watertight.

B. Sheet Metal Standard for Flashing and Trim: Comply with NRCA§ "The NRCA Roofing Manual: Architectural Metal Flashing, Condensation and Air Leakage Control, and Reroofing" and SMACNA§ "Architectural Sheet Metal Manual" requirements for dimensions and profiles shown unless more stringent requirements are indicated.

C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes to prevent buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 SHEET METALS
A. General: Protect mechanical and other finishes on exposed surfaces from damage by applying strippable, temporary protective film before shipping.

B. Stainless Steel Sheet: ASTM A240/A240M, Type 304, dead soft, fully annealed; with smooth, flat surface.
 1. Finish: ASTM A480/A480M, No. 2D (dull, cold rolled).
 a. Surface Preparation: Remove tool and die marks and stretch lines, or blend into finish.
 b. Polished Finishes: Grind and polish surfaces to produce uniform finish, free of cross scratches.
 1) Run grain of directional finishes with long dimension of each piece.
 2) When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.

C. Metallic-Coated Steel Sheet: Provide zinc-coated (galvanized) steel sheet in accordance with ASTM A653/A653M, G90 (Z275) coating designation or aluminum-zinc alloy-coated steel sheet in accordance with ASTM A792/A792M, Class AZ50 (Class AZM150) coating designation, Grade 40 (Grade 275); pre-painted by coil-coating process to comply with ASTM A755/A755M.
 1. Surface: Smooth, flat.
 2. Exposed Coil-Coated Finish:
 a. Two-Coat Fluoropolymer: AAMA 621. Fluoropolymer finish containing not less than 70 percent polyvinylidene fluoride (PVDF) resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers’ written instructions.
3. Color: As selected by Architect from manufacturer's full range.
4. Concealed Finish: Pretreat with manufacturer's standard white or light-colored acrylic or polyester backer finish, consisting of prime coat and wash coat with minimum total dry film thickness of 0.5 mil (0.013 mm).

2.3 UNDERLAYMENT MATERIALS

A. Self-Adhering, High-Temperature Sheet Underlayment: Minimum 30 mils (0.76 mm) thick, consisting of a slip-resistant polyethylene- or polypropylene-film top surface laminated to a layer of butyl- or SBS-modified asphalt adhesive, with release-paper backing; specifically designed to withstand high metal temperatures beneath metal roofing. Provide primer in accordance with underlayment manufacturer's written instructions.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. GCP Applied Technologies Inc.; Ultra.
 b. Polyguard Products, Inc.; Deck Guard HT.

2. Source Limitations: Obtain underlayment from single source from single manufacturer.

3. Low-Temperature Flexibility: ASTM D1970/D1970M; passes after testing at minus 20 deg F (29 deg C) or lower.

2.4 MISCELLANEOUS MATERIALS

A. General: Provide materials and types of fasteners, solder, protective coatings, sealants, and other miscellaneous items as required for complete sheet metal flashing and trim installation and as recommended by manufacturer of primary sheet metal or manufactured item unless otherwise indicated.

B. Fasteners: Wood screws, annular threaded nails, self-tapping screws, self-locking rivets and bolts, and other suitable fasteners designed to withstand design loads and recommended by manufacturer of primary sheet metal.

1. General: Blind fasteners or self-drilling screws, gasketed, with hex-washer head.
 a. Exposed Fasteners: Heads matching color of sheet metal using plastic caps or factory-applied coating. Provide metal-backed EPDM or PVC sealing washers under heads of exposed fasteners bearing on weather side of metal.
 b. Blind Fasteners: High-strength aluminum or stainless steel rivets suitable for metal being fastened.
 c. Spikes and Ferrules: Same material as gutter; with spike with ferrule matching internal gutter width.

2. Fasteners for Zinc-Coated (Galvanized) or Aluminum-Zinc Alloy-Coated Steel Sheet: Series 300 stainless steel or hot-dip galvanized steel in accordance with ASTM A153/A153M or ASTM F2329.

C. Elastomeric Sealant: ASTM C920, elastomeric silicone polymer sealant; of type, grade, class, and use classifications required to seal joints in sheet metal flashing and trim and remain watertight.

D. Butyl Sealant: ASTM C1311, single-component, solvent-release butyl rubber sealant; polyisobutylene plasticized; heavy bodied for hooked-type expansion joints with limited movement.

2.5 FABRICATION, GENERAL

A. Custom fabricate sheet metal flashing and trim to comply with details indicated and recommendations in cited sheet metal standard that apply to design, dimensions, geometry, metal thickness, and other characteristics of item required.

1. Fabricate sheet metal flashing and trim in shop to greatest extent possible.
2. Fabricate sheet metal flashing and trim in thickness or weight needed to comply with performance requirements, but not less than that specified for each application and metal.
3. Verify shapes and dimensions of surfaces to be covered and obtain field measurements for accurate fit before shop fabrication.
4. Form sheet metal flashing and trim to fit substrates without excessive oil-canning, buckling, and tool marks; true to line, levels, and slopes; and with exposed edges folded back to form hems.
5. Conceal fasteners and expansion provisions where possible. Do not use exposed fasteners on faces exposed to view.

B. Fabrication Tolerances:

1. Fabricate sheet metal flashing and trim that is capable of installation to a tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines indicated on Drawings and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.
C. Expansion Provisions: Form metal for thermal expansion of exposed flashing and trim.
 1. Form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled
 with butyl sealant concealed within joints.

D. Sealant Joints: Where movable, nonexpansion-type joints are required, form metal in accordance with
 cited sheet metal standard to provide for proper installation of elastomeric sealant.

E. Fabricate cleats and attachment devices from same material as accessory being anchored or from
 compatible, noncorrosive metal.

F. Fabricate cleats and attachment devices of sizes as recommended by cited sheet metal standard and by
 FM Global Property Loss Prevention Data Sheet 1-49 for application, but not less than thickness of metal
 being secured.

G. Seams:
 1. Fabricate nonmoving seams with flat-lock seams. Form seams and seal with elastomeric sealant
 unless otherwise recommended by sealant manufacturer for intended use.

H. Do not use graphite pencils to mark metal surfaces.

2.6 ROOF-DRAINAGE SHEET METAL FABRICATIONS

A. Parapet Scuppers: Fabricate scuppers to dimensions required, with closure flange trim to exterior, 4-inch-
 (100-mm-) wide wall flanges to interior, and base extending 4 inches (100 mm) beyond cant or tapered
 strip into field of roof. Fabricate from the following materials:
 1. Stainless Steel: 0.019 inch (0.48 mm) thick.
 2. Galvanized Steel: 0.028 inch (0.71 mm) thick.

2.7 LOW-SLOPE ROOF SHEET METAL FABRICATIONS

A. Base Flashing: Shop fabricate interior and exterior corners. Fabricate from the following materials:
 1. Galvanized Steel: 0.028 inch (0.71 mm) thick.
 2. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch (0.71 mm) thick.

B. Counterflashing: Shop fabricate interior and exterior corners. Fabricate from the following materials:
 1. Galvanized Steel: 0.022 inch (0.56 mm) thick.
 2. Aluminum-Zinc Alloy-Coated Steel: 0.022 inch (0.56 mm) thick.

C. Flashing Receivers: Fabricate from the following materials:
 1. Galvanized Steel: 0.022 inch (0.56 mm) thick.
 2. Aluminum-Zinc Alloy-Coated Steel: 0.022 inch (0.56 mm) thick.

D. Roof-Penetration Flashing: Fabricate from the following materials:
 1. Stainless Steel: 0.019 inch (0.48 mm) thick.

E. Roof-Drain Flashing: Fabricate from the following materials:
 1. Stainless Steel: 0.016 inch (0.40 mm) thick.

2.8 MISCELLANEOUS SHEET METAL FABRICATIONS

A. Equipment Support Flashing: Fabricate from the following materials:
 1. Galvanized Steel: 0.028 inch (0.71 mm) thick.
 2. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch (0.71 mm) thick.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with installer present, for compliance with requirements for
 installation tolerances, substrate, and other conditions affecting performance of the Work.
 1. Verify compliance with requirements for installation tolerances of substrates.
 2. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.
 3. Verify that air- or water-resistant barriers have been installed over sheathing or backing substrate
 to prevent air infiltration or water penetration.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION OF UNDERLAMENT

A. Self-Adhering, High-Temperature Sheet Underlayment:
1. Install self-adhering, high-temperature sheet underlayment; wrinkle free.
2. Prime substrate if recommended by underlayment manufacturer.
3. Comply with temperature restrictions of underlayment manufacturer for installation; use primer for installing underlayment at low temperatures.
4. Apply in shingle fashion to shed water, with end laps of not less than 6 inches (150 mm) staggered 24 inches (600 mm) between courses.
5. Overlap side edges not less than 3-1/2 inches (90 mm). Roll laps and edges with roller.
6. Roll laps and edges with roller.
7. Cover underlayment within 14 days.

3.3 INSTALLATION, GENERAL

A. Install sheet metal flashing and trim to comply with details indicated and recommendations of cited sheet metal standard that apply to installation characteristics required unless otherwise indicated on Drawings.
1. Install fasteners, protective coatings, separators, sealants, and other miscellaneous items as required to complete sheet metal flashing and trim system.
2. Install sheet metal flashing and trim true to line, levels, and slopes. Provide uniform, neat seams with minimum exposure of welds.
3. Anchor sheet metal flashing and trim and other components of the Work securely in place, with provisions for thermal and structural movement.
4. Install sheet metal flashing and trim to fit substrates and to result in watertight performance.
5. Install continuous cleats with fasteners spaced not more than 12 inches (300 mm) o.c.
6. Space individual cleats not more than 12 inches (300 mm) apart. Attach each cleat with at least two fasteners. Bend tabs over fasteners.
7. Install exposed sheet metal flashing and trim with limited oil-canning, and free of buckling and tool marks.
8. Do not field cut sheet metal flashing and trim by torch.
9. Do not use graphite pencils to mark metal surfaces.

B. Metal Protection: Where dissimilar metals contact each other, or where metal contacts pressure-treated wood or other corrosive substrates, protect against galvanic action or corrosion by painting contact surfaces with bituminous coating or by other permanent separation as recommended by sheet metal manufacturer or cited sheet metal standard.
1. Underlayment: Where installing sheet metal flashing and trim directly on cementitious or wood substrates, install underlayment and cover with slip sheet.

C. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim.
1. Space movement joints at maximum of 10 feet (3 m) with no joints within 24 inches (600 mm) of corner or intersection.
2. Form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with sealant concealed within joints.

D. Fasteners: Use fastener sizes that penetrate wood blocking or sheathing not less than 1-1/4 inches (32 mm) for nails and not less than 3/4 inch (19 mm) for wood screws.

E. Conceal fasteners and expansion provisions where possible in exposed work and locate to minimize possibility of leakage. Cover and seal fasteners and anchors as required for a tight installation.

F. Seal joints as required for watertight construction.
1. Use sealant-filled joints unless otherwise indicated.
 a. Embed hooked flanges of joint members not less than 1 inch (25 mm) into sealant.
 b. Form joints to completely conceal sealant.
 c. When ambient temperature at time of installation is between 40 and 70 deg F (4 and 21 deg C), set joint members for 50 percent movement each way.
 d. Adjust setting proportionately for installation at higher ambient temperatures.
 1) Do not install sealant-type joints at temperatures below 40 deg F (4 deg C).
2. Prepare joints and apply sealants to comply with requirements in Section 079200 "Joint Sealants."

3.4 INSTALLATION OF ROOF-DRAINAGE SYSTEM

A. Install sheet metal roof-drainage items to produce complete roof-drainage system in accordance with cited sheet metal standard unless otherwise indicated. Coordinate installation of roof perimeter flashing with installation of roof-drainage system.
B. Parapet Scuppers:
1. Continuously support scupper, set to correct elevation, and seal flanges to interior wall face, over
 cants or tapered edge strips, and under roofing membrane.
2. Anchor scupper closure trim flange to exterior wall and seal with elastomeric sealant to scupper.
3. Seal with elastomeric sealant exterior wall scupper flanges into back of conductor head.

C. Expansion-Joint Covers: Install expansion-joint covers at locations and of configuration indicated on
 Drawings. Lap joints minimum of 4 inches (100 mm) in direction of water flow.

3.5 INSTALLATION OF ROOF FLASHINGS

A. Install sheet metal flashing and trim to comply with performance requirements and cited sheet metal
 standard.
 1. Provide concealed fasteners where possible, and set units true to line, levels, and slopes.
 2. Install work with laps, joints, and seams that are permanently watertight and weather resistant.

B. Counterflushing: Coordinate installation of counterflushing with installation of base flashing.
 1. Insert counterflushing in reglets or receivers and fit tightly to base flashing.
 2. Extend counterflushing 4 inches (100 mm) over base flashing.
 3. Lap counterflushing joints minimum of 4 inches (100 mm).
 4. Secure in waterproof manner by means of snap-in installation and sealant or lead wedges and
 sealant unless otherwise indicated.

C. Roof-Penetration Flashing: Coordinate installation of roof-penetration flashing with installation of roofing
 and other items penetrating roof. Seal with elastomeric sealant and clamp flashing to pipes that penetrate
 roof.

3.6 INSTALLATION OF MISCELLANEOUS FLASHING

A. Equipment Support Flashing:
 1. Coordinate installation of equipment support flashing with installation of roofing and equipment.
 2. Weld or seal flashing with elastomeric sealant to equipment support member.

3.7 INSTALLATION TOLERANCES

A. Installation Tolerances: Shim and align sheet metal flashing and trim within installed tolerance of 1/4 inch
 in 20 feet (6 mm in 6 m) on slope and location lines indicated on Drawings and within 1/8-inch (3-mm)
 offset of adjoining faces and of alignment of matching profiles.

3.8 CLEANING

A. Clean off excess sealants.

3.9 PROTECTION

A. Remove temporary protective coverings and strippable films as sheet metal flashing and trim are installed
 unless otherwise indicated in manufacturer's written installation instructions.

B. On completion of sheet metal flashing and trim installation, remove unused materials and clean finished
 surfaces as recommended in writing by sheet metal flashing and trim manufacturer.

C. Maintain sheet metal flashing and trim in clean condition during construction.

D. Replace sheet metal flashing and trim that have been damaged or that have deteriorated beyond
 successful repair by finish touchup or similar minor repair procedures, as determined by Architect.

END OF SECTION
SECTION 076210
FLEXIBLE FLASHING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Formed Products: Concealed flashing within wall assemblies to protect and shed incidental water to
 the exterior that is not specified as part of the air/moisture barrier system.

1.2 PERFORMANCE REQUIREMENTS
A. General: Flashing and trim assemblies as indicated shall withstand structural movement, thermally induced
 movement, and exposure to weather without failure due to defective manufacture, fabrication, installation,
 or other defects in construction. Completed sheet metal flashing and trim shall not rattle, leak, or loosen,
 and shall remain watertight.
B. Thermal Movements: Provide sheet metal flashing and trim that allows for thermal movements from ambient
 and surface temperature changes.
 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated. Include construction details, material descriptions,
 dimensions of individual components and profiles, and finishes for each manufactured product and
 accessory.
 1. Submit documentation of compatibility with air/moisture barrier.
B. Shop Drawings: Show fabrication and installation layouts of sheet metal flashing and trim, including plans,
 elevations, expansion-joint locations, and keyed details. Distinguish between shop- and field-assembled
 work.

1.4 DELIVERY, STORAGE, AND HANDLING
A. Do not store flashing materials in contact with other materials that might cause staining, denting, or other
 surface damage. Store flashing materials away from uncured concrete and masonry.
B. Protect strippable protective covering on sheet metal flashing and trim from exposure to sunlight and high
 humidity, except to the extent necessary for the period of sheet metal flashing and trim installation.

PART 2 - PRODUCTS

2.1 FLEXIBLE FLASHING
A. Self-Adhesive flexible flashing product consisting of a pliable, adhesive rubberized-asphalt compound,
 bonded to a high-density, cross-laminated polyethylene film to produce an overall thickness of not less than
 40 mils.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into
 the Work include, but are not limited to, the following:
 a. Advanced Building Products Inc.; Strip-N-Flash.
 b. Carlisle Coatings & Waterproofing; CCW-705 Air & Vapor Barrier Strips.
 d. Henry; Blueskin SA

2.2 HIGH TEMPERATURE FLASHING
A. Self-Adhering, High-Temperature Sheet: Minimum 30 to 40 mils (0.76 to 1.0 mm) thick, consisting of slip-
 resisting polyethylene-film top surface laminated to layer of butyl or SBS-modified asphalt adhesive, with
 release-paper backing; cold applied. Provide primer when recommended by manufacturer.
 2. Low-Temperature Flexibility: ASTM D 1970; passes after testing at minus 20 deg F.
3. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Carlisle Coatings & Waterproofing Inc.; CCW WIP 300HT.
 b. GCP Applied Technologies Inc.; Ultra.
 c. Henry Company; Blueskin PE200 HT.
 d. Owens Corning; WeatherLock Metal High Temperature Underlayment.

2.3 MISCELLANEOUS MATERIALS
 A. General: Provide materials and types of fasteners, separators, sealants, and other miscellaneous items as required for complete metal flashing installation and recommended by manufacturer of primary sheet metal or manufactured item unless otherwise indicated.
 B. Elastomeric Sealant: ASTM C 920, elastomeric silicone polymer sealant; low modulus; of type, grade, class, and use classifications required to seal joints in sheet metal flashing and trim and remain watertight.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates, areas, and conditions, with Installer present, to verify actual locations, dimensions and other conditions affecting performance of the Work.
 1. Verify compliance with requirements for installation tolerances of substrates.
 2. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.
 B. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FLASHING INSTALLATION
 A. General: Install as indicated on Drawings and per Manufacturer’s recommendations.
 B. Self-Adhering Sheet Flashing: Install self-adhering sheet flashing, wrinkle free. Apply primer if required by flashing manufacturer. Comply with temperature restrictions of flashing manufacturer for installation. Apply in shingle fashion to shed water, with end laps of not less than 6 inches (150 mm) staggered 24 inches (600 mm) between courses. Overlap side edges not less than 3-1/2 inches (90 mm). Roll laps with roller. Cover flashing with subsequent construction within 14 days.
 C. Location:
 1. Flexible Flashing: As indicated on drawings, or at all exterior windows, doors or other penetrations where high temperature flashing is not required.
 2. High Temperature Flashing: As indicated on drawings, or at all locations where flashing will be in contact with metal coping or metal panels where high temperatures exist.

END OF SECTION
SECTION 079200

JOINT SEALANTS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Nonstaining silicone joint sealants.
 2. Urethane joint sealants.
 3. Mildew-resistant joint sealants.
 4. Butyl joint sealants.
 5. Latex joint sealants.

1.2 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS
A. Product Data: For each joint-sealant product.
B. Samples for Initial Selection: Manufacturer’s color charts consisting of strips of cured sealants showing the full range of colors available for each product exposed to view.
C. Joint-Sealant Schedule: Include the following information:
 1. Joint-sealant application, joint location, and designation.
 2. Joint-sealant manufacturer and product name.

1.4 INFORMATIONAL SUBMITTALS
A. Product Test Reports: For each kind of joint sealant, for tests performed by manufacturer and witnessed by a qualified testing agency.
B. Preconstruction Laboratory Test Reports: From sealant manufacturer, indicating the following:
 1. Materials forming joint substrates and joint-sealant backings have been tested for compatibility and adhesion with joint sealants.
 2. Interpretation of test results and written recommendations for primers and substrate preparation are needed for adhesion.
C. Preconstruction Field-Adhesion-Test Reports: Indicate which sealants and joint preparation methods resulted in optimum adhesion to joint substrates based on testing specified in "Preconstruction Testing" Article.
D. Product Certificates:
 1. Certifying the non-metallic plumbing piping system and the fire sprinkler piping system manufacturers evaluated and approved the joint sealant products for installation with or near its piping system.
 2. Certifying the joint sealant products comply with NFPA 13 requirements for material compatibility with non-metallic pipe and tubing.
E. Field-Adhesion-Test Reports: For each sealant application tested.
F. Sample Warranties: For special warranties.

1.5 QUALITY ASSURANCE
A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.
B. Product Testing: Test joint sealants using a qualified testing agency.
 1. Testing Agency Qualifications: Qualified according to ASTM C 1021 to conduct the testing indicated.
C. Mockups: Install sealant in mockups of assemblies specified in other Sections that are indicated to receive joint sealants specified in this Section. Use materials and installation methods specified in this Section.
1.6 PRECONSTRUCTION TESTING

A. Preconstruction Laboratory Testing: Submit to joint-sealant manufacturers, for testing indicated below, samples of materials that will contact or affect joint sealants.

1. Adhesion Testing: Use ASTM C 794 to determine whether priming and other specific joint preparation techniques are required to obtain rapid, optimum adhesion of joint sealants to joint substrates.
2. Compatibility Testing: Use ASTM C 1087 to determine sealant compatibility when in contact with glazing and gasket materials.
3. Stain Testing: Use ASTM C 1248 to determine stain potential of sealant when in contact with masonry substrates.
4. Submit manufacturer’s recommended number of pieces of each type of material, including joint substrates, joint-sealant backings, and miscellaneous materials.
5. Schedule sufficient time for testing and analyzing results to prevent delaying the Work.
6. For materials failing tests, obtain joint-sealant manufacturer’s written instructions for corrective measures, including use of specially formulated primers.
7. Testing will not be required if joint-sealant manufacturers submit data that are based on previous testing, not older than 24 months, of sealant products for adhesion to, staining of, and compatibility with joint substrates and other materials matching those submitted.

B. Preconstruction Field-Adhesion Testing: Before installing sealants, field test their adhesion to Project joint substrates as follows:

1. Locate test joints where indicated on Project or, if not indicated, as directed by Architect.
2. Conduct field tests for each kind of sealant and joint substrate.
3. Notify Architect seven days in advance of dates and times when test joints will be erected.
4. Arrange for tests to take place with joint-sealant manufacturer’s technical representative present.
 1) For joints with dissimilar substrates, verify adhesion to each substrate separately; extend cut along one side, verifying adhesion to opposite side. Repeat procedure for opposite side.
4. Report whether sealant failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each product and joint substrate. For sealants that fail adhesively, retest until satisfactory adhesion is obtained.
6. Evaluation of Preconstruction Field-Adhesion-Test Results: Sealants not evidencing adhesive failure from testing, in absence of other indications of noncompliance with requirements, will be considered satisfactory. Do not use sealants that fail to adhere to joint substrates during testing.

1.7 FIELD CONDITIONS

A. Do not proceed with installation of joint sealants under the following conditions:

1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F (5 deg C).
2. When joint substrates are wet.
3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.8 COORDINATION

A. Ensure joint sealant products are coordinated and compatible with the non-metallic plumbing piping system and the fire sprinkler piping system.

1.9 WARRANTY

A. Special Installer Warranty: Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.

1. Warranty Period: Two years from date of Substantial Completion.
B. Special Manufacturer’s Warranty: Manufacturer agrees to furnish joint sealants to repair or replace those joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 1. Warranty Period: From date of Substantial Completion.
 a. Urethane Sealants: 10 years.
 b. Silicone Sealants: 20 years.

C. Special warranties specified in this article exclude deterioration or failure of joint sealants from the following:
 1. Movement of the structure caused by stresses on the sealant exceeding sealant manufacturer’s written specifications for sealant elongation and compression.
 2. Disintegration of joint substrates from causes exceeding design specifications.
 3. Mechanical damage caused by individuals, tools, or other outside agents.
 4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 JOINT SEALANTS, GENERAL
 A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.
 1. For penetrations involving CPVC piping, provide through-penetration firestop systems which include materials that have been tested to be compatible with CPVC piping.
 B. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer’s full range.

2.2 NONSTAINING SILICONE JOINT SEALANTS
 A. Nonstaining Joint Sealants: No staining of substrates when tested according to ASTM C 1248.
 B. Silicone, Nonstaining, S, NS, 50, NT: Nonstaining, single-component, nonsag, plus 50 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 50, Use NT.
 1. Products: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Dow Corning Corporation; 795 Silicone Building Sealant (VOC: 28 g/L).
 b. GE Construction Sealants; Momentive Performance Materials Inc; SCS9000 SilPruf NB (VOC: 37 g/L).
 c. Pecora Corporation; 864NST (VOC: <100 g/L).
 d. Sika Corporation Industry Products; Sikasil WS-295 FPS (VOC: 37 g/L)
 e. Tremco Inc., Tremco CS&W Group; Spectrem 2 (VOC: 42 g/L).

2.3 URETHANE JOINT SEALANTS
 A. Urethane, S, NS, 25, NT: Single-component, nonsag, nontraffic-use, plus 25 percent and minus 25 percent movement capability, urethane joint sealant; ASTM C 920, Type S, Grade NS, Class 25, Use NT.
 1. Products: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. BASF Aktiengesellschaft; MasterSeal TX1 (VOC: 36 g/L).
 b. C.R. Laurence Co, Inc.; CRL M64 (VOC: 9 g/L).
 c. Pecora Corporation; DynaTrol I-XL (VOC: <50 g/L).
 d. Sika Corporation Industry Products; Sikaflex Textured Sealant.
 e. Tremco Inc., Tremco CS&W Group; Vulkem 116 (49 g/L).
 B. Urethane, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C 920, Type S, Grade P, Class 25, Uses T and NT.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. BASF Aktiengesellschaft; MasterSeal SL 1 (VOC: 104 g/L).
 b. Pecora Corporation; Urexpan NR-201 (VOC: <50 g/L).
 c. Sika Corporation Industry Products; Sikaflex 1c SL (VOC: 40 g/L).
C. Urethane, M, P, 50, T, NT: Multicomponent, pourable, plus 50 percent and minus 50 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C 920, Type M, Grade P, Class 50, Uses T and NT.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. LymTal International, Inc.; Iso-Flex 888QC.

2.4 MILDEW-RESISTANT JOINT SEALANTS

A. Mildew-Resistant Joint Sealants: Formulated for prolonged exposure to humidity with fungicide to prevent mold and mildew growth.

B. Silicone, Mildew Resistant, Acid Curing, S, NS, 25, NT: Mildew-resistant, single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, acid-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 25, Use NT.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. C.R. Laurence Co, Inc.; CRL 33S Silicone (VOC: 30 g/L).
 b. Dow Corning Corporation; 786 Silicone Sealant (VOC: 33 g/L).
 c. GE Construction Sealants; Momentive Performance Materials Inc.; SCS1700 Sanitary (VOC: 20 g/L).
 d. Pecora Corporation; Pecora 898NST (VOC: 50 g/L).
 e. Sika Corporation Industry Products; Sikasil GP (VOC: 29 g/L).
 f. Soudal Accumetric; Silirub RTV1 (VOC: 30 g/L).
 g. Tremco Inc., Tremco CS&W Group; Tremsil 200 (VOC: 1 g/L).

2.5 BUTYL JOINT SEALANTS

A. Butyl-Rubber-Based Joint Sealants: ASTM C 1311.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. C.R. Laurence Co, Inc.; CRL 777 Butyl Rubber (VOC: 240 g/L).
 b. Pecora Corporation; BC-158 (VOC: <250 g/L).
 c. Tremco Incorporated; Tremflex 834 (VOC: 31 g/L).

2.6 LATEX JOINT SEALANTS

A. Acrylic Latex: Acrylic latex or siliconized acrylic latex, ASTM C 834, Type OP, Grade NF.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. C.R. Laurence Co, Inc.; CRL 321 (VOC: 22 g/L).
 b. Pecora Corporation; AC-20 (VOC: 20 g/L).
 c. Tremco Incorporated; Tremflex 834 (VOC: 31 g/L).

2.7 JOINT-SEALANT BACKING

A. Sealant Backing Material, General: Nonstaining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Alcot Plastics Ltd.; Alcot Backer Rod.
 b. BASF Aktiengesellschaft; MasterSeal 920.

B. Cylindrical Sealant Backings: ASTM C 1330, Type C (closed-cell material with a surface skin), and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.

C. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint. Provide self-adhesive tape where applicable.

2.8 MISCELLANEOUS MATERIALS

A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer’s written instructions and the following requirements:
 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.
 2. Clean porous joint substrate surfaces by brushing, grinding, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include the following:
 a. Concrete.
 b. Masonry.
 c. Unglazed surfaces of ceramic tile.
 3. Remove laitance and form-release agents from concrete.
 4. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous joint substrates include the following:
 a. Metal.
 b. Glass.
 c. Porcelain enamel.
B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer’s written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.
C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS
A. General: Comply with joint-sealant manufacturer’s written installation instructions for products and applications indicated, unless more stringent requirements apply.
B. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.
C. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 1. Do not leave gaps between ends of sealant backings.
 2. Do not stretch, twist, puncture, or tear sealant backings.
 3. Remove absorbent sealant backings that have become wet before sealant application, and replace them with dry materials.
D. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.

E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 1. Place sealants so they directly contact and fully wet joint substrates.
 2. Completely fill recesses in each joint configuration.
 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

F. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 1. Remove excess sealant from surfaces adjacent to joints.
 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 3. Provide concave joint profile per Figure 8A in ASTM C 1193 unless otherwise indicated.
 4. Provide flush joint profile at locations indicated on Drawings according to Figure 8B in ASTM C 1193.
 5. Provide recessed joint configuration of recess depth and at locations indicated on Drawings according to Figure 8C in ASTM C 1193.
 a. Use masking tape to protect surfaces adjacent to recessed tooled joints.

3.4 FIELD QUALITY CONTROL

A. Field-Adhesion Testing: Field test joint-sealant adhesion to joint substrates as follows:
 1. Extent of Testing: Test completed and cured sealant joints as follows:
 a. Perform 10 tests for the first 1000 feet (300 m) of joint length for each kind of sealant and joint substrate.
 b. Perform one test for each 1000 feet (300 m) of joint length thereafter or one test per each floor per elevation.
 a. For joints with dissimilar substrates, verify adhesion to each substrate separately; extend cut along one side, verifying adhesion to opposite side. Repeat procedure for opposite side.
 3. Inspect tested joints and report on the following:
 a. Whether sealants filled joint cavities and are free of voids.
 b. Whether sealant dimensions and configurations comply with specified requirements.
 c. Whether sealants in joints connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each kind of product and joint substrate. Compare these results to determine if adhesion complies with sealant manufacturer's field-adhesion hand-pull test criteria.
 4. Record test results in a field-adhesion-test log. Include dates when sealants were installed, names of persons who installed sealants, test dates, test locations, whether joints were primed, adhesion results and percent elongations, sealant material, sealant configuration, and sealant dimensions.
 5. Repair sealants pulled from test area by applying new sealants following same procedures used originally to seal joints. Ensure that original sealant surfaces are clean and that new sealant contacts original sealant.

B. Evaluation of Field-Adhesion-Test Results: Sealants not evidencing adhesive failure from testing or noncompliance with other indicated requirements will be considered satisfactory. Remove sealants that fail to adhere to joint substrates during testing or to comply with other requirements. Retest failed applications until test results prove sealants comply with indicated requirements.

3.5 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.
3.6 PROTECTION
A. Protect joint sealants during and after curing period from contact with contaminating substances and from
damage resulting from construction operations or other causes so sealants are without deterioration or
damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut
out, remove, and repair damaged or deteriorated joint sealants immediately so installations with repaired
areas are indistinguishable from original work.

3.7 JOINT-SEALANT SCHEDULE
A. Joint-Sealant Application: Exterior joints in horizontal traffic surfaces.
 1. Joint Locations:
 a. Isolation and contraction joints in cast-in-place concrete slabs.
 b. Joints between different materials listed above.
 c. Other joints as indicated on Drawings.
 3. Joint-Sealant Color: As selected by Architect from manufacturer’s full range of colors.

 1. Joint Locations:
 a. Control and expansion joints in unit masonry.
 b. Perimeter joints between materials listed above and frames of openings.
 c. Control and expansion joints in overhead surfaces.
 d. Other joints as indicated on Drawings.
 2. Joint Sealant: Silicone, nonstaining, S, NS, 50, NT.
 3. Joint-Sealant Color: As selected by Architect from manufacturer’s full range of colors.

C. Joint-Sealant Application: Interior joints in horizontal traffic surfaces.
 1. Joint Locations:
 b. Control and expansion joints in ceramic tile flooring.
 c. Other joints as indicated on Drawings.
 3. Joint-Sealant Color: As selected by Architect from manufacturer’s full range of colors.

 1. Joint Locations:
 a. Control and expansion joints on exposed interior surfaces of exterior walls.
 b. Ceramic tile control and expansion joints.
 c. Vertical joints on exposed surfaces of walls and partitions.
 d. Other joints as indicated on Drawings.
 2. Joint Sealant: Urethane, S, NS, 25, NT.
 3. Joint-Sealant Color: As selected by Architect from manufacturer’s full range of colors.

E. Joint-Sealant Application: Interior joints in vertical surfaces and horizontal nontraffic surfaces not subject to
 significant movement.
 1. Joint Locations:
 a. Control joints on exposed interior surfaces of exterior walls.
 b. Perimeter joints between interior wall surfaces and frames of interior doors.
 c. Other joints as indicated on Drawings.
 3. Joint-Sealant Color: As selected by Architect from manufacturer’s full range of colors.

F. Joint-Sealant Application: Mildew-resistant interior joints in vertical surfaces and horizontal nontraffic
 surfaces.
 1. Joint Locations:
 a. Joints between plumbing fixtures and adjoining walls, floors, and counters.
 b. Tile control and expansion joints where indicated.
 c. Other joints as indicated on Drawings.
 2. Joint Sealant: Silicone, mildew resistant, acid curing, S, NS, 25, NT.
 3. Joint-Sealant Color: As selected by Architect from manufacturer’s full range of colors.
G. Joint-Sealant Application: Concealed mastics.
 1. Joint Locations:
 a. Aluminum thresholds.
 b. Sill plates.
 c. Other joints as indicated on Drawings.
 3. Joint-Sealant Color: As selected by Architect from manufacturer’s full range of colors.

END OF SECTION
SECTION 079219
ACOUSTICAL JOINT SEALANTS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes acoustical joint sealants.

1.2 ACTION SUBMITTALS
A. Product Data: For each acoustical joint sealant.
B. Samples for Initial Selection: Manufacturer's color charts consisting of strips of cured sealants showing the full range of colors available for each product exposed to view.
C. Acoustical-Joint-Sealant Schedule: Include the following information:
 1. Joint-sealant application, joint location, and designation.
 2. Joint-sealant manufacturer and product name.

1.3 INFORMATIONAL SUBMITTALS
A. Product Test Reports: For each kind of acoustical joint sealant, for tests performed by manufacturer and witnessed by a qualified testing agency.
B. Sample Warranties: For special warranties.

1.4 COORDINATION
A. Ensure joint sealant products are coordinated and compatible with the non-metallic plumbing piping system and the fire sprinkler piping system.

1.5 WARRANTY
A. Special Installer's Warranty: Installer agrees to repair or replace acoustical joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 1. Warranty Period: Two years from date of Substantial Completion.
B. Special Manufacturer's Warranty: Manufacturer agrees to furnish acoustical joint sealants to repair or replace those joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 1. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Provide acoustical joint-sealant products that effectively reduce airborne sound transmission through perimeter joints and openings in building construction, as demonstrated by testing representative assemblies according to ASTM E 90.
B. Compatibility: Provide sealants composed of components that are compatible with each other, substrates forming openings, and items penetrating sealant under conditions of service and application.
 1. For penetrations involving CPVC piping, provide sealants which include materials that have been tested to be compatible with CPVC piping.
2.2 ACOUSTICAL JOINT SEALANTS

A. Acoustical Sealant for Exposed and Concealed Joints: Manufacturer’s standard nonsag, paintable, nonstaining latex acoustical sealant complying with ASTM C 834.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Franklin International; Titebond GREENchoice Professional Acoustical Smoke & Sound Sealant.
 b. GE Construction Sealants; Momentive Performance Materials Inc.
 c. Grabber Construction Products.
 d. Hilti, Inc.
 e. OSI Sealants; Henkel Corporation.
 f. Pecora Corporation; Pecora AIS-919 Acoustical and Insulation Latex Sealant.
 g. United States Gypsum Company; SHEETROCK Acoustical Sealant

2. Colors of Exposed Acoustical Joint Sealants: As selected by Architect from manufacturer’s full range of colors.

2.3 MISCELLANEOUS MATERIALS

A. Primer: Material recommended by acoustical-joint-sealant manufacturer where required for adhesion of sealant to joint substrates.

B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.

C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine joints indicated to receive acoustical joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing acoustical joint sealants to comply with joint-sealant manufacturer’s written instructions.

B. Joint Priming: Prime joint substrates where recommended by acoustical-joint-sealant manufacturer. Apply primer to comply with joint-sealant manufacturer’s written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF ACOUSTICAL JOINT SEALANTS

A. Comply with acoustical joint-sealant manufacturer’s written installation instructions unless more stringent requirements apply.

B. STC-Rated Assemblies: Seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical joint sealant. Install acoustical joint sealants at both faces of partitions, at perimeters, and through penetrations. Comply with ASTM C 919, ASTM C 1193, and manufacturer’s written recommendations for closing off sound-flanking paths around or through assemblies, including sealing partitions to underside of floor slabs above acoustical ceilings.

C. Acoustical Ceiling Areas: Apply acoustical joint sealant at perimeter edge moldings of acoustical ceiling areas in a continuous ribbon concealed on back of vertical legs of moldings before they are installed.
3.4 CLEANING
A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of acoustical joint sealants and of products in which joints occur.

3.5 PROTECTION
A. Protect acoustical joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out, remove, and repair damaged or deteriorated acoustical joint sealants immediately so installations with repaired areas are indistinguishable from original work.

END OF SECTION
SECTION 081113
HOLLOW METAL FRAMES

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes:
 1. Interior standard steel frames.

1.2 DEFINITIONS
A. Minimum Thickness: Minimum thickness of base metal without coatings according to NAAMM-HMMA 803 or SDI A250.8.

1.3 COORDINATION
A. Coordinate anchorage installation for hollow-metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.

B. Coordinate requirements for installation of door hardware, electrified door hardware, and access control and security systems.

1.4 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, core descriptions, fire-resistance ratings, temperature-rise ratings, and finishes.

B. Shop Drawings: Include the following:
 1. Elevations of each door type.
 2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
 4. Locations of reinforcement and preparations for hardware.
 5. Details of each different wall opening condition.
 6. Details of electrical raceway and preparation for electrified hardware, access control systems, and security systems.
 7. Details of anchorages, joints, field splices, and connections.
 8. Details of accessories.
 9. Details of moldings, removable stops, and glazing.

C. Product Schedule: For hollow-metal frames, prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with final door hardware schedule.

1.6 INFORMATIONAL SUBMITTALS
A. Product Test Reports: For each type of fire-rated hollow-metal frame assembly and/or tests performed by a qualified testing agency indicating compliance with performance requirements.

B. Field quality control reports.

1.7 DELIVERY, STORAGE, AND HANDLING
A. Deliver hollow-metal doors and frames palletized, packaged, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic.
 1. Provide additional protection to prevent damage to factory-finished units.

B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.
C. Store hollow-metal frames vertically under cover at Project site with head up. Place on minimum 4-inch (102-mm-) high wood blocking. Provide minimum 1/4-inch (6-mm) space between each stacked door to permit air circulation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

1. Manufacturers: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Ceco Door; ASSA ABLOY.
 b. Curries Company; ASSA ABLOY.
 c. DE LA FONTAINE.
 d. Fleming Door Products Ltd.; Assa Abloy Group Company.
 e. Gensteel Doors, Inc.
 f. Hollow Metal Xpress.
 g. Mesker Door Inc.
 h. Republic Doors and Frames.
 i. Steelcraft; an Allegion brand.

2.2 PERFORMANCE REQUIREMENTS

A. Fire-Rated Door Assemblies: Assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for fire-protection ratings indicated on Drawings, based on testing at positive pressure according to NFPA 252 or UL 10C.

2.3 INTERIOR STANDARD FRAMES

A. Construct hollow-metal frames to comply with standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.

B. Heavy-Duty Frames: SDI A250.8, Level 2; SDI A250.4, Level B.
 1. Frames:
 a. Materials: Uncoated steel sheet, minimum thickness of 0.053 inch (1.3 mm).
 b. Sidelite Frames: Fabricated from same thickness material as adjacent door frame.
 c. Construction: Face welded.
 2. Exposed Finish: Prime.

2.4 FRAME ANCHORS

A. Jamb Anchors:
 1. Type: Anchors of minimum size and type required by applicable door and frame standard, and suitable for performance level indicated.
 2. Quantity: Minimum of three anchors per jamb, with one additional anchor for frames with no floor anchor. Provide one additional anchor for each 24 inches (610 mm) of frame height above 7 feet (2.1 m).
 3. Postinstalled Expansion Anchor: Minimum 3/8-inch (9.5-mm-) diameter bolts with expansion shields or inserts, with manufacturer’s standard pipe spacer.

B. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor.

C. Floor Anchors for Concrete Slabs with Underlayment: Adjustable-type anchors with extension clips, allowing not less than 2-inch (51-mm) height adjustment. Terminate bottom of frames at top of underlayment.

D. Material: ASTM A 879/A 879M, Commercial Steel (CS), 04Z (12G) coating designation; mill phosphatized.
 1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M; hot-dip galvanized according to ASTM A 153/A 153M, Class B.

2.5 MATERIALS

A. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B; suitable for exposed applications.

B. Hot-Rolled Steel Sheet: ASTM A 1011/A 1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.

C. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B.
D. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.

E. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollow-metal frames of type indicated.

F. Mineral-Fiber Insulation: ASTM C 665, Type I (blankets without membrane facing); consisting of fibers manufactured from slag or rock wool; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively; passing ASTM E 136 for combustion characteristics.

G. Glazing: Comply with requirements in Section 088000 "Glazing."

2.6 FABRICATION

A. Hollow-Metal Frames: Fabricate in one piece except where handling and shipping limitations require multiple sections. Where frames are fabricated in sections, provide alignment plates or angles at each joint, fabricated of metal of same or greater thickness as frames.
1. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
2. Door Silencers: Except on weather-stripped frames, drill stops to receive door silencers as follows. Keep holes clear during construction.
 a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
 b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.

B. Hardware Preparation: Factory prepare frames to receive templated mortised hardware, and electrical wiring; include cutouts, reinforcement, mortising, drilling, and tapping according to SDI A250.6, the Door Hardware Schedule, and templates.

2.7 STEEL FINISHES

A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.
1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with SDI A250.10; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

PART 3 - EXECUTION

3.1 PREPARATION

A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces. Touch up factory-applied finishes where spreaders are removed.

B. Drill and tap doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.

3.2 INSTALLATION

A. General: Install hollow-metal frames plumb, rigid, properly aligned, and securely fastened in place. Comply with approved Shop Drawings and with manufacturer's written instructions.

B. Hollow-Metal Frames: Comply with SDI A250.11.
1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces without damage to completed Work.
 a. Where frames are fabricated in sections, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces. Touch-up finishes.
 b. Install frames with removable stops located on secure side of opening.
2. Fire-Rated Openings: Install frames according to NFPA 80.
3. Floor Anchors: Secure with postinstalled expansion anchors.
 a. Floor anchors may be set with power-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.
4. Solidly pack mineral-fiber insulation inside frames.
5. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout or mortar.
6. In-Place Concrete or Masonry Construction: Secure frames in place with postinstalled expansion anchors. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.
7. Installation Tolerances: Adjust hollow-metal frames to the following tolerances:
 a. Squareness: Plus or minus 1/16 inch (1.6 mm), measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 b. Alignment: Plus or minus 1/16 inch (1.6 mm), measured at jambs on a horizontal line parallel to plane of wall.
 c. Twist: Plus or minus 1/16 inch (1.6 mm), measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 d. Plumbness: Plus or minus 1/16 inch (1.6 mm), measured at jambs at floor.

C. Glazing: Comply with installation requirements in Section 088000 “Glazing” and with hollow-metal manufacturer’s written instructions.

3.3 FIELD QUALITY CONTROL

A. Inspection Agency: Engage a qualified inspector to perform inspections and to furnish reports to Architect.
B. Repair or remove and replace installations where inspections indicate that they do not comply with specified requirements.
C. Reinspect repaired or replaced installations to determine if replaced or repaired door assembly installations comply with specified requirements.
D. Prepare and submit separate inspection report for each fire-rated door assembly indicating compliance with each item listed in NFPA 80.

3.4 CLEANING AND TOUCHUP

A. Touchup Painting: Cleaning and touchup painting of abraded areas of paint are specified in painting Sections.

END OF SECTION
SECTION 081416
FLUSH WOOD DOORS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
1. Five-ply flush wood veneer-faced doors for transparent finish.
2. Factory finishing flush wood doors.
3. Factory fitting flush wood doors to frames and factory machining for hardware.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product, including the following:
1. Door core materials and construction.
2. Door edge construction
3. Door face type and characteristics.
4. Factory-machining criteria.
5. Factory-finishing specifications.
B. Shop Drawings: Indicate location, size, and hand of each door; elevation of each type of door; construction details not covered in Product Data; and the following:
1. Door schedule indicating door location, type, size, fire protection rating, and swing.
2. Door elevations, dimension and locations of hardware, lite and louver cutouts, and glazing thicknesses.
3. Details of electrical raceway and preparation for electrified hardware, access control systems, and security systems.
4. Dimensions and locations of blocking for hardware attachment.
5. Dimensions and locations of mortises and holes for hardware.
6. Clearances and undercuts.
7. Requirements for veneer matching.
8. Doors to be factory finished and application requirements.

C. Samples for Verification:
1. Factory finishes applied to actual door face materials, approximately 8 by 10 inches (200 by 250 mm), for each material and finish. For each wood species and transparent finish, provide set of three Samples showing typical range of color and grain to be expected in finished Work.

1.3 INFORMATIONAL SUBMITTALS
A. Qualification Data: For door inspector.
1. Fire-Rated Door Inspector: Submit documentation of compliance with NFPA 80, Section 5.2.3.1.
2. Egress Door Inspector: Submit documentation of compliance with NFPA 101, Section 7.2.1.15.4.
3. Submit copy of DHI’s Fire and Egress Door Assembly Inspector (FDAI) certificate.
B. Field quality-control reports.
C. Sample Warranty: For special warranty.

1.4 CLOSEOUT SUBMITTALS
A. Special warranties.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Comply with requirements of referenced standard and manufacturer’s written instructions.
B. Package doors individually in plastic bags or cardboard cartons.
C. Mark each door on bottom rail with opening number used on Shop Drawings.
1.6 FIELD CONDITIONS
A. Environmental Limitations: Do not deliver or install doors until building is enclosed and weathertight, wet work is complete, and HVAC system is operating and maintaining temperature between 60 and 90 deg F (16 and 32 deg C) and relative humidity between 25 and 55 percent during remainder of construction period.

1.7 WARRANTY
A. Special Warranty: Manufacturer agrees to repair or replace doors that fail in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Delamination of veneer.
 b. Warping (bow, cup, or twist) more than 1/4 inch (6.4 mm) in a 42-by-84-inch (1067-by-2134-mm) section.
 c. Telegraphing of core construction in face veneers exceeding 0.01 inch in a 3-inch (0.25 mm) span in a 76.2-mm span.
2. Warranty shall also include installation and finishing that may be required due to repair or replacement of defective doors.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Source Limitations: Obtain flush wood doors from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS
A. Fire-Rated Wood Door Assemblies: Assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction, for fire-protection ratings indicated on Drawings, based on testing at positive pressure in accordance with UL 10C .

2.3 FLUSH WOOD DOORS, GENERAL
A. Quality Standard: In addition to requirements specified, comply with AWI/AWMAC/WI 5 "Architectural Woodwork Standards" and WDMA I.S. 1A.
 1. The Contract Documents contain requirements that are more stringent than the referenced quality standard. Comply with the Contract Documents in addition to those of the referenced quality standard.

2.4 FIVE-PLY FLUSH WOOD VENEER-FACED DOORS FOR TRANSPARENT FINISH
A. Interior Doors:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Eggers Industries.
 b. Lambton Doors.
 c. Oshkosh Door Company.
 d. VT Industries Inc.
 2. Performance Grade:
 a. WDMA I.S. 1A Heavy Duty unless otherwise indicated on Drawings.
 b. WDMA I.S. 1A Extra Heavy Duty: Public toilets, janitor closets, exits, and where indicated on Drawings.
 3. Architectural Woodwork Standards Grade: Custom.
 4. Faces: Single-ply wood veneer not less than 1/50 inch (0.508 mm) thick.
 a. Species and Cut: As scheduled.
 b. Match between Veneer Leaves: Book match unless otherwise indicated.
 c. Assembly of Veneer Leaves on Door Faces: Center-balance match.
 d. Pair and Set Match: Provide for doors hung in same opening or separated only by mullions.
 5. Exposed Vertical and Top Edges: Same species as faces or a compatible species - Architectural Woodwork Standards edge Type A.
 a. Fire-Rated Single Doors: Provide edge construction with intumescent seals concealed by outer stile. Comply with specified requirements for exposed vertical edges.
 a. Blocking: Provide wood blocking in particleboard-core doors as needed to eliminate through-bolting hardware.
 b. Provide doors with glued-wood-stave or WDMA I.S. 10 structural-composite-lumber cores instead of particleboard cores for doors scheduled to receive exit devices in Section 087100 "Door Hardware."
7. Core for Fire-Rated Doors: As required to achieve fire-protection rating indicated on Drawings.
8. Construction: Five plies, hot-pressed bonded (vertical and horizontal edging is bonded to core), with entire unit abrasive planed before veneering.

2.5 FABRICATION
 A. Factory fit doors to suit frame-opening sizes indicated.
 1. Comply with clearance requirements of referenced quality standard for fitting unless otherwise indicated.
 2. Comply with NFPA 80 requirements for fire-rated doors.
 B. Factory machine doors for hardware that is not surface applied.
 1. Locate hardware to comply with DHI-WDHS-3.
 2. Comply with final hardware schedules, door frame Shop Drawings, BHMA-156.115-W, and hardware templates.
 3. Coordinate with hardware mortises in metal frames, to verify dimensions and alignment before factory machining.
 4. For doors scheduled to receive electrified locksets, provide factory-installed raceway and wiring to accommodate specified hardware.

2.6 FACTORY FINISHING
 A. Comply with referenced quality standard for factory finishing.
 1. Complete fabrication, including fitting doors for openings and machining for hardware that is not surface applied, before finishing.
 2. Finish faces, all four edges, edges of cutouts, and mortises.
 3. Stains and fillers may be omitted on bottom edges, edges of cutouts, and mortises.
 B. Factory finish doors.
 C. Transparent Finish:
 1. Architectural Woodwork Standards Grade: Custom.
 4. Effect: Semifilled finish, produced by applying an additional finish coat to partially fill the wood pores.
 5. Sheen: Satin.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine doors and installed door frames, with Installer present, before hanging doors.
 1. Verify that installed frames comply with indicated requirements for type, size, location, and swing characteristics and have been installed with level heads and plumb jambs.
 2. Reject doors with defects.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Hardware: For installation, see University of North Texas Design and Construction Guidelines
 B. Install doors to comply with manufacturer’s written instructions and referenced quality standard, and as indicated.
 C. Factory-Fitted Doors: Align in frames for uniform clearance at each edge.
 D. Factory-Finished Doors: Restore finish before installation if fitting or machining is required at Project site.
3.3 FIELD QUALITY CONTROL
A. Inspection Agency: Engage a qualified inspector to perform inspections and to furnish reports to Architect.
B. Inspections:
 1. Fire-Rated Door Inspections: Inspect each fire-rated door in accordance with NFPA 80, Section 5.2.
 2. Egress Door Inspections: Inspect each door equipped with panic hardware, each door equipped with fire exit hardware, each door located in an exit enclosure, each electrically controlled egress door, and each door equipped with special locking arrangements in accordance with NFPA 101, Section 7.2.1.15.
C. Repair or remove and replace installations where inspections indicate that they do not comply with specified requirements.
D. Reinspect repaired or replaced installations to determine if replaced or repaired door assembly installations comply with specified requirements.
E. Prepare and submit separate inspection report for each fire-rated door assembly indicating compliance with each item listed in NFPA 80.

3.4 ADJUSTING
A. Operation: Rehang or replace doors that do not swing or operate freely.
B. Finished Doors: Replace doors that are damaged or that do not comply with requirements. Doors may be repaired or refinished if Work complies with requirements and shows no evidence of repair or refinishing.

END OF SECTION
SECTION 083113
ACCESS DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes access doors and frames for walls and ceilings.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.
 B. Product Schedule: For access doors and frames.

1.3 INFORMATIONAL SUBMITTALS
A. Qualification Data: For testing and inspecting agency.
 1. Fire-Rated Door Inspector: Submit documentation of compliance with NFPA 80, section 5.2.3.1.

1.4 CLOSEOUT SUBMITTALS
A. Record Documents: For fire-rated doors, list of applicable room name and number in which access door is located.

1.5 QUALITY ASSURANCE
A. Fire-Rated Door Inspector Qualifications: Inspector for field quality control inspections of fire-rated door assemblies shall meet the qualifications set forth in NFPA 80, section 5.2.3.1 and the following:
 1. Door and Hardware Institute Fire and Egress Door Assembly Inspector (FDAI) certification.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Fire-Rated Access Doors and Frames: Assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency, for fire-protection and temperature-rise limit ratings indicated, according to NFPA 252 or UL 10B.

2.2 ACCESS DOORS AND FRAMES
A. Flush Access Doors with Concealed Flanges:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Acudor Products, Inc.
 b. Babcock-Davis.
 c. J. L. Industries; a division of Activar Construction Products Group.
 e. Larsen's Manufacturing Company.
 f. Milcor Inc.
 g. Nystrom, Inc.
 2. Description: Face of door flush with frame; with concealed flange for gypsum board installation and concealed hinge.
 3. Locations: Wall and ceiling.
 4. Door Size: As indicated.
 5. Uncoated Steel Sheet for Door: Nominal 0.060 inch (1.52 mm), 16 gage, factory primed.
 6. Stainless Steel Sheet for Door: Nominal 0.062 inch (1.59 mm), 16 gage, ASTM A480/A480M No. 4 finish.
 7. Frame Material: Same material and thickness as door.
 8. Latch and Lock: Cam latch, screwdriver operated.
2.3 FIRE-RATED ACCESS DOORS AND FRAMES

A. Fire-Rated, Flush Access Doors with Concealed Flanges:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products
 that may be incorporated into the Work include, but are not limited to, the following:
 a. Acudor Products, Inc.
 b. Babcock-Davis.
 c. J. L. Industries; a division of Activar Construction Products Group.
 e. Larsen’s Manufacturing Company.
 f. Milcor Inc.
 g. Nystrom, Inc.
 2. Description: Door face flush with frame, with a core of mineral-fiber insulation enclosed in sheet
 metal; with concealed flange for gypsum board installation, self-closing door, and concealed hinge.
 3. Locations: Wall.
 4. Door Size: As indicated.
 5. Fire-Resistance Rating: Not less than that of adjacent construction.
 6. Temperature-Rise Rating: 450 deg F (250 deg C) at the end of 30 minutes.
 7. Uncoated Steel Sheet for Door: Nominal 0.036 inch (0.91 mm), 20 gage, factory primed.
 8. Frame Material: Same material, thickness, and finish as door.

2.4 MATERIALS

A. Steel Plates, Shapes, and Bars: ASTM A36/A36M.
B. Steel Sheet: Uncoated or electrolytic zinc coated, ASTM A879/A879M, with cold-rolled steel sheet
 substrate complying with ASTM A1008/A1008M, Commercial Steel (CS), exposed.
C. Frame Anchors: Same material as door face.
D. Inserts, Bolts, and Anchor Fasteners: Hot-dip galvanized steel according to ASTM A153/A153M or
 ASTM F2329.

2.5 FABRICATION

A. General: Provide access door and frame assemblies manufactured as integral units ready for installation.
B. Metal Surfaces: For metal surfaces exposed to view in the completed Work, provide materials with
 smooth, flat surfaces without blemishes. Do not use materials with exposed pitting, seam marks, roller
 marks, rolled trade names, or roughness.
C. Doors and Frames: Grind exposed welds smooth and flush with adjacent surfaces. Furnish mounting
 holes, attachment devices and fasteners of type required to secure access doors to types of supports
 indicated.
 1. For concealed flanges with drywall bead, provide edge trim for gypsum panels securely attached to
 perimeter of frames.
D. Latch and Lock Hardware:
 1. Quantity: Furnish number of latches and locks required to hold doors tightly closed.

2.6 FINISHES

A. Comply with NAAMM® "Metal Finishes Manual for Architectural and Metal Products" for recommendations
 for applying and designating finishes.
B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary
 protective covering before shipping.
C. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in
 appearance of adjoining components are acceptable if they are within the range of approved Samples and
 are assembled or installed to minimize contrast.
D. Painted Finishes: Comply with coating manufacturer’s written instructions for cleaning, conversion coating,
 and applying and baking finish.
 1. Factory Primed: Apply manufacturer’s standard, lead- and chromate-free, universal primer
 immediately after surface preparation and pretreatment.
E. Stainless Steel Finishes:
1. Surface Preparation: Remove tool and die marks and stretch lines, or blend into finish.
2. Polished Finish: ASTM A480/A480M No. 4 finish. Grind and polish surfaces to produce uniform finish, free of cross scratches.
3. Run grain of directional finishes with long dimension of each piece.
 a. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Comply with manufacturer’s written instructions for installing access doors and frames.

3.3 FIELD QUALITY CONTROL
A. Inspection Agency: Owner will engage a qualified inspector to perform inspections and to furnish reports to Architect.
B. Inspections:
 1. Fire-Rated Door Inspections: Inspect each fire-rated access door in accordance with NFPA 80, section 5.2.
C. Repair or remove and replace installations where inspections indicate that they do not comply with specified requirements.
D. Reinspect repaired or replaced installations to determine if replaced or repaired door assembly installations comply with specified requirements.
E. Prepare and submit separate inspection report for each fire-rated access door indicating compliance with each item listed in NFPA 80.

3.4 ADJUSTING
A. Adjust doors and hardware, after installation, for proper operation.

3.5 SCHEDULE
A. Provide access doors where indicated and in the following locations:
 1. Access required by code.
 2. Access required for servicing operable, adjustable, or resettable fire suppression, plumbing, mechanical, electrical, life safety, security, and communication systems.
B. Sizes: Provide the following unless noted otherwise:
 1. Ceilings and Soffits: 24 inches by 24 inches minimum.
 2. Toilet Rooms: 12 inches by 12 inches minimum at each fixture chase wall.
C. Materials:
 1. Uncoated steel sheet unless noted otherwise.
 2. Stainless Steel:
 a. Toilet rooms.
 b. Walls scheduled to receive tile finish, epoxy paint, or FRP panels.

END OF SECTION
SECTION 084113
ALUMINUM-FRAMED STOREFRONTS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Storefront framing.

1.2 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
B. Shop Drawings: For aluminum-framed storefronts. Include plans, elevations, sections, full-size details, and attachments to other work.
 1. Include details of provisions for assembly expansion and contraction and for draining moisture occurring within the assembly to the exterior.
 2. Include full-size isometric details of each type of vertical-to-horizontal intersection of aluminum-framed storefronts, showing the following:
 a. Joinery, including concealed welds.
 b. Anchorage.
 c. Expansion provisions.
 d. Glazing.
 e. Flashing and drainage.
 3. Show connection to and continuity with adjacent thermal, weather, air, and vapor barriers.
C. Samples for Verification: For each type of exposed finish required, in manufacturer’s standard sizes.
D. Delegated-Design Submittal: For aluminum-framed storefronts indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Installer and field testing agency.
B. Product Test Reports: For aluminum-framed storefronts, for tests performed by a qualified testing agency.
C. Sample Warranties: For special warranties.

1.5 CLOSEOUT SUBMITTALS
A. Maintenance Data: For aluminum-framed storefronts to include in maintenance manuals.

1.6 QUALITY ASSURANCE
A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.
B. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.
 1. Do not change intended aesthetic effects, as judged solely by Architect, except with Architect’s approval. If changes are proposed, submit comprehensive explanatory data to Architect for review.

1.7 WARRANTY
A. Special Warranty: Manufacturer agrees to repair or replace components of aluminum-framed that do not comply with requirements or that fail in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Structural failures, including, but not limited to, excessive deflection.
 b. Noise or vibration created by wind and thermal and structural movements.
 c. Deterioration of metals and other materials beyond normal weathering.
 d. Water penetration through fixed glazing and framing areas.
 e. Failure of operating components.

2. Warranty Period: Two years from date of Substantial Completion.

B. Special Finish Warranty: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.
 1. Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 2. Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain all components of aluminum-framed storefront system, including framing and accessories, from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer to design aluminum-framed storefronts.

B. General Performance: Comply with performance requirements specified, as determined by testing of aluminum-framed storefronts representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.

 1. Aluminum-framed storefronts shall withstand movements of supporting structure, including, but not limited to, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads.
 2. Failure also includes the following:
 a. Thermal stresses transferring to building structure.
 b. Glass breakage.
 c. Noise or vibration created by wind and thermal and structural movements.
 d. Loosening or weakening of fasteners, attachments, and other components.
 e. Failure of operating units.

2.3 STOREFRONT SYSTEMS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Arcadia, Inc.
 2. Kawneer North America; an Alcoa company.
 3. Leed Himmel Industries, Inc.
 4. Oldcastle BuildingEnvelope.
 5. Pittco Architectural Metals, Inc.
 6. Tubelite Inc.
 7. U.S. Aluminum; a brand of C.R. Laurence.

B. Framing Members: Manufacturer’s extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.

 1. Framing Construction: Nonthermal.
 2. Glazing System: Retained mechanically with gaskets on four sides.
 5. Fabrication Method: Field-fabricated stick system.
 6. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 7. Steel Reinforcement: As required by manufacturer.

C. Backer Plates: Manufacturer’s standard, continuous backer plates for framing members, if not integral, where framing abuts adjacent construction.
D. Brackets and Reinforcements: Manufacturer’s standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.

2.4 GLAZING
A. Glazing: Comply with Section 088000 "Glazing."
B. Glazing Gaskets: Manufacturer’s standard sealed-corner pressure-glazing system of black, resilient elastomeric glazing gaskets, setting blocks, and shims or spacers.
C. Glazing Sealants: As recommended by manufacturer.

2.5 MATERIALS
A. Sheet and Plate: ASTM B 209 (ASTM B 209M).
B. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221 (ASTM B 221M).
C. Extruded Structural Pipe and Tubes: ASTM B 429/B 429M.
D. Structural Profiles: ASTM B 308/B 308M.
E. Steel Reinforcement:
 1. Structural Shapes, Plates, and Bars: ASTM A 36/A 36M.
 2. Cold-Rolled Sheet and Strip: ASTM A 1008/A 1008M.
 3. Hot-Rolled Sheet and Strip: ASTM A 1011/A 1011M.
 4. Primer: Manufacturer’s standard zinc-rich, corrosion-resistant primer complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods according to recommendations in SSPC-SP COM, and prepare surfaces according to applicable SSPC standard.

2.6 ACCESSORIES
A. Fasteners and Accessories: Manufacturer’s standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.
 1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
 2. Reinforce members as required to receive fastener threads.
 3. Use exposed fasteners with countersunk Phillips screw heads, fabricated from 300 series stainless steel.
B. Anchors: Three-way adjustable anchors with minimum adjustment of 1 inch (25.4 mm) that accommodate fabrication and installation tolerances in material and finish compatible with adjoining materials and recommended by manufacturer.
 1. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts complying with ASTM A 123/A 123M or ASTM A 153/A 153M requirements.
C. Concealed Flashing: Dead-soft, 0.018-inch- (0.457-mm-) thick stainless steel, complying with ASTM A 240/A 240M, of type recommended by manufacturer.
D. Bituminous Paint: Cold-applied asphalt-mastic paint containing no asbestos, formulated for 30-mil (0.762-mm) thickness per coat.
E. Rigid PVC Filler.

2.7 FABRICATION
A. Form or extrude aluminum shapes before finishing.
B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.
C. Fabricate components that, when assembled, have the following characteristics:
 1. Profiles that are sharp, straight, and free of defects or deformations.
 2. Accurately fitted joints with ends coped or mitered.
 3. Physical and thermal isolation of glazing from framing members.
 4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 5. Provisions for field replacement of glazing from interior.
 6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.
D. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.
E. Storefront Framing: Fabricate components for assembly using screw-spline system.
F. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.8 BRAKE METAL
A. Material: Extruded Aluminum.
B. Thickness: 0.090 inches (2.38mm) unless noted otherwise.
C. Finish: Matt storefront.
D. Texture: Smooth.
E. Profile: As indicated.

2.9 ALUMINUM FINISHES
A. Color Anodic Finish: AAMA 611, AA-M12C22A32/A34, Class II, 0.010 mm or thicker.
 1. Color: Dark bronze.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. General:
 1. Comply with manufacturer’s written instructions.
 2. Do not install damaged components.
 3. Fit joints to produce hairline joints free of burrs and distortion.
 4. Rigidly secure nonmovement joints.
 5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
 6. Seal perimeter and other joints watertight unless otherwise indicated.
B. Metal Protection:
 1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with materials recommended by manufacturer for this purpose or by installing nonconductive spacers.
 2. Where aluminum is in contact with concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.
C. Set continuous sill members and flashing in full sealant bed, as specified in Section 079200 "Joint Sealants," to produce weathertight installation.
D. Install components plumb and true in alignment with established lines and grades.
E. Install glazing as specified in Section 088000 "Glazing."

3.3 ERECTION TOLERANCES
A. Erection Tolerances: Install aluminum-framed storefronts to comply with the following maximum tolerances:
 1. Plumb: 1/8 inch in 10 feet (3.2 mm in 3 m); 1/4 inch in 40 feet (6.35 mm in 12.2 m).
 2. Level: 1/8 inch in 20 feet (3.2 mm in 6 m); 1/4 inch in 40 feet (6.35 mm in 12.2 m).
 3. Alignment:
 a. Where surfaces abut in line or are separated by reveal or protruding element up to 1/2 inch (12.7 mm) wide, limit offset from true alignment to 1/16 inch (1.6 mm).
 b. Where surfaces are separated by reveal or protruding element from 1/2 to 1 inch (12.7 to 25.4 mm) wide, limit offset from true alignment to 1/8 inch (3.2 mm).
 c. Where surfaces are separated by reveal or protruding element of 1 inch (25.4 mm) wide or more, limit offset from true alignment to 1/4 inch (6 mm).
4. Location: Limit variation from plane to 1/8 inch in 12 feet (3.2 mm in 3.6 m); 1/2 inch (12.7 mm) over total length.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Aluminum-framed storefronts will be considered defective if they do not pass tests and inspections.
C. Prepare test and inspection reports.

END OF SECTION
SECTION 08 71 10
DOOR HARDWARE

PART 1 – GENERAL

1.1 SCOPE OF WORK

A. Provide door hardware as required to comply with current city or jurisdiction building code and with the current editions of the Americans with Disabilities Act Accessibility Guidelines (ADAAG) and Texas Accessibility Standards (TAS).
 1. Contractor shall have a qualified Hardware Consultant to prepare a complete hardware schedule for each door, complete with all hardware including weatherstripping, thresholds, locksets, closers, etc.
 2. General Contractor shall review and verify that all hardware for this project is in compliance with handicapped accessibility requirements before ordering and installation of any hardware; and shall notify the Architect and the Owner’s Representative in writing of changes in hardware required for compliance with those requirements.

1.2 RELATED WORK

A. The following Sections contain requirements that relate to work under this Section:
 1. Section 081113 – Hollow Metal Doors and Frames.
 2. Section 081416 – Flush Wood Doors.

1.3 REFERENCE STANDARDS

A. Builders Hardware Manufacturers Association (BHMA):
 1. BHMA A156.1, American National Standard for Butts and Hinges; 1988.
 4. BHMA A156.8, American National Standard for Door Controls -Overhead Stops and Holders; 1994.

B. Door and Hardware Institute (DHI), Recommended Locations for Architectural Hardware for Standard Steel Doors and Frames, 1990.

D. Underwriters Laboratories (UL): UL10C, Positive Pressure Fire Tests of Door Assemblies

1.4 QUALITY ASSURANCE

A. Manufacturer: Obtain each kind of hardware (latch and lock sets, hinges, closures, etc.) from only one manufacturer. Style and finish of hardware shall as specified.

B. Installer Qualifications: A minimum 3 years documented experience installing both standard and electrified door hardware similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance
2. Provide a qualified hardware consultant to prepare hardware shop drawings and advise in writing of any additional hardware revisions needed to comply with the current adopted Building Code. Experienced commercial door hardware distributors with a minimum 5 years documented experience supplying both mechanical and electromechanical hardware installations comparable in material, design, and extent to that indicated for this Project. Supplier recognized as a factory direct distributor by the manufacturers of the primary materials with a warehousing facility in Project's vicinity. Supplier to have on staff a certified Architectural Hardware Consultant (AHC) available during the course of the Work to consult with Contractor, Architect, and Owner concerning both standard and electromechanical door hardware and keying.

C. Fire Door Hardware (refer to drawing for doors that require fire-rated hardware): Tested for compliance with NFPA 80.

1. Listing in current classification publications of the following agencies will be considered evidence of acceptable testing:
 a. Underwriters Laboratories Inc. (UL).
 b. Warnock Hersey International Inc. (WHI).
 c. Factory Mutual System (FM).
 d. Other agencies acceptable to authorities having jurisdiction.

2. Provide permanent labels on all hardware indicating the listing agency and conditions of the listing.

3. Conform to current adopted building code requirements for installation of fire door hardware, fire door frames and anchorage, and for exit door hardware.

D. Keying Conference: Conduct conference to comply with requirements in Division 01 Section "Project Meetings." Keying conference to incorporate the following criteria into the final keying schedule document:

1. Function of building, purpose of each area and degree of security required.
2. Plans for existing and future key system expansion.
3. Requirements for key control storage and software.
4. Installation of permanent keys, cylinder cores and software.
5. Address and requirements for delivery of keys.

E. Pre-Submittal Conference: Conduct coordination conference in compliance with requirements in Division 01 Section "Project Meetings" with attendance by representatives of Supplier(s), Installer(s), and Contractor(s) to review proper methods and the procedures for receiving, handling, and installing door hardware.

1. Prior to installation of door hardware, conduct a project specific training meeting to instruct the installing contractors’ personnel on the proper installation and adjustment of their respective products. Product training to be attended by installers of door hardware (including electromechanical hardware) for aluminum, hollow metal and wood doors. Training will include the use of installation manuals, hardware schedules, templates and physical product samples as required.
2. Inspect and discuss electrical roughing-in, power supply connections, and other preparatory work performed by other trades.
3. Review sequence of operation narratives for each unique access controlled opening.
4. Review and finalize construction schedule and verify availability of materials.
5. Review the required inspecting, testing, commissioning, and demonstration procedures

F. At completion of installation, provide written documentation that components were applied to manufacturer's instructions and recommendations and according to approved schedule.

1.5 SUBMITTALS

A. Manufacturer's Data: Catalogue "cuts" showing design and operation for each item of hardware selected. Include instructions for installation and for maintenance of operating parts and exposed finishes.
1. Show each cut sheet for each hardware type.
2. Show cut sheet for Electronic Access Control Hardware.
B. Hardware Schedule: Submit six (6) copies of the hardware schedule showing Hardware Set numbers, door numbers and all special details required for a complete door hardware installation. Coordinate the final Door Hardware Schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.

1. Format: Comply with scheduling sequence and vertical format in DHI’s “Sequence and Format for the Hardware Schedule.”

2. Organization: Organize the Door Hardware Schedule into door hardware sets indicating complete designations of every item required for each door or opening. Organize door hardware sets in same order as in the Door Hardware Sets at the end of Part 3. Submittals that do not follow the same format and order as the Door Hardware Sets will be rejected and subject to resubmission.

3. Content: Include the following information:
 a. Type, style, function, size, label, hand, and finish of each door hardware item.
 b. Manufacturer of each item.
 c. Fastenings and other pertinent information.
 d. Location of door hardware set, cross-referenced to Drawings, both on floor plans and in door and frame schedule.
 e. Explanation of abbreviations, symbols, and codes contained in schedule.
 f. Mounting locations for door hardware.
 g. Door and frame sizes and materials.
 h. Warranty information for each product.

4. Submittal Sequence: Submit the final Door Hardware Schedule at earliest possible date, particularly where approval of the Door Hardware Schedule must precede fabrication of other work that is critical in the Project construction schedule. Include Product Data, Samples, Shop Drawings of other work affected by door hardware, and other information essential to the coordinated review of the Door Hardware Schedule.

C. Keying Schedule: After a keying meeting with the owner has taken place prepare a separate keying schedule detailing final instructions. Submit the keying schedule in electronic format. Include keying system explanation, door numbers, key set symbols, hardware set numbers and special instructions. Owner must approve submitted keying schedule prior to the ordering of permanent cylinders/cores.

D. Informational Submittals:
 1. Product Test Reports: Indicating compliance with cycle testing requirements, based on evaluation of comprehensive tests performed by manufacturer and witnessed by a qualified independent testing agency.

E. Operating and Maintenance Manuals: Provide manufacturers operating and maintenance manuals for each item comprising the complete door hardware installation in quantity as required in Division 01, Closeout Submittals.

F. Templates: Furnish hardware templates to each fabricator of doors, frames and other work to be factory prepared for the installation of hardware.

1.6 PRODUCT HANDLING

A. Packaging and Labeling: Furnish hardware with the required screws, bolts, and fastening, same finish as hardware item, necessary for its installation, packed in the same package with the hardware. Legibly mark and label each package indicating the part of the work of which it is intended. Each marking shall correspond to the number shown on the approved hardware schedule.
1.7 WARRANTY

A. General Warranty: Reference Division 01, General Requirements. Special warranties specified in this Article shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.

B. Warranty Period: Written warranty, executed by manufacturer(s), agreeing to repair or replace components of standard and electrified door hardware that fails in materials or workmanship within specified warranty period after final acceptance by the Owner. Failures include, but are not limited to, the following:

1. Structural failures including excessive deflection, cracking, or breakage.
2. Faulty operation of the hardware.
3. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
4. Electrical component defects and failures within the systems operation.

C. Standard Warranty Period: One year from date of Substantial Completion, unless otherwise indicated.

D. Special Warranty Periods:

1. Ten years for mortise locks and latches.
2. Five years for exit hardware.
3. Twenty five years for manual surface door closer bodies.
4. Twenty five years for manual surface door closer bodies.
5. Twenty five years for manual surface door closer bodies.

1.8 MAINTENANCE SERVICE

A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of door hardware.

PART 2 – PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers noted below are deemed acceptable in accordance with Section 01 60 00 – Product Requirements. (G.C. is required to match the existing building standard for hardware. If this is not possible then a similar item is to be presented to the owner for approval.)

2. Best (www.bestaccess.com).
3. Falcon (us.allegion.com/brands/falcon).
7. LCN (us.allegion.com/brands/lcn).

2.2 MATERIALS

A. Butt Hinges: 4-1/2 x 4-1/2, (USP for interior doors, corrosion-resistant for exterior doors and interior doors subject to high humidity), non-removable pin, 1-1/2 pair per door unless noted otherwise in this Section. Provide ball bearing hinge where door closer is noted on the drawings.

B. Lever Locksets and Latchsets:

1. Cylindrical hardware shall be used in all lockset and latchset applications, and shall meet the following requirements.
2. All locksets and latchsets shall be Extra-Heavy Duty Commercial Grade 1, ANSI A156.2, UL-listed, with interchangeable core cylinders and ADA-compliant levers. Satin Chrome finish unless noted otherwise in this Specification Section.
3. Performance specifications:
 a. Extra heavy-duty cylindrical type, with 2-3/4" backset, or greater as specified.
 b. Levers shall be zinc material construction, with contour angle return. Levers shall be available in tactile design for identification of hazardous areas.
 c. Thru-bolt mounting studs to prevent chassis rotation.
 d. Self-contained spring return mechanism within rose assembly, for safety during maintenance and repair. Independent lever operation and separate return spring assemblies to prevent lever droop (sag).
 e. Deadlocking latch must be all metal construction, with minimum 9/16" latchbolt throw, and optional 3/4" throw.
 f. Keyed lever is removable only after core is removed by control key, for added security (no keeper access hole).
 g. Stainless lever sleeves for increased chassis strength.
 h. Roses shall be 3-1/2" minimum diameter convex.
 i. Supply with 4-7/8" curved lip strike (ANSI A115.2).
 j. All locksets and cores shall be interchangeable core cylinders by a single manufacturer, in order to maintain the complete housing and core warranty.
4. Typical lock functions, refer to door schedule for individual door locking functions and locations:
 a. Passage Latch (ANSI F75): Both levers always unlocked.
 b. Bath/Bedroom Privacy Lock (ANSI F76): Push-button locking. Can be opened from outside with small screwdriver. Turning inside lever or closing door releases button.
 c. Storeroom Lock (ANSI F86): Outside lever fixed, with entrance by key only. Inside lever always unlocked.
 d. Entrance/Office Lock (ANSI F82): Push-button inside locking, unlocked from outside with key or by turning inside lever which releases button.
 e. Classroom Lock (ANSI F84): Outside lever locked and unlocked by key. Inside lever always unlocked.
 f. Entrance Lock (ANSI F109): Turn/push-button inside locking, unlocked from outside with key until button is manually unlocked or by turning inside lever which releases button.
 g. Store Lock (ANSI F91): Key in either lever locks or unlocks both levers.
 h. Exit Lock (ANSI F89): Outside lever always fixed. Inside lever always unlocked. Provide blank plate outside where noted.
 i. Vestibule Lock (ANSI F88): Latch retracted by key from outside when outside lever is locked by key or inside lever. Inside lever always unlocked.
 j. Corridor Lock (ANSI F90): Locked or unlocked by key from outside. Push-button locking from inside. Turning inside lever or closing door releases button. When outside lever is locked by key, it can only be unlocked by key. Inside lever always unlocked.
 k. Classroom Security Lock: Key in either lever locks or unlocks outside lever. Inside lever always unlocked.
 l. Hospital Privacy Lock: Push-button locking. Unlocked from outside by turning emergency turn-button. Turning inside lever or closing door releases button.
C. Flush Bolts and Surface Bolts: ANSI/BHMA A156.3 and A156.16, Grade 1, certified.
 1. Flush bolts to be furnished with top rod of sufficient length to allow bolt retraction device location approximately six feet from the floor.
 2. Furnish dust proof strikes for bottom bolts.
 3. Surface bolts to be minimum 8” in length and U.L. listed for labeled fire doors and U.L. listed for windstorm components where applicable.
 4. Provide related accessories (mounting brackets, strikes, coordinators, etc.) as required for appropriate installation and operation.

5. Manufacturers:
 a. Rockwood Products; ASSA ABLOY Architectural Door Accessories (RO).
 b. Trimco (TC).

D. Door Push Plates and Pulls: ANSI/BHMA A156.6 certified door pushes and pulls of type and design specified in the Hardware Sets. Coordinate and provide proper width and height as required where conflicting hardware dictates.
 1. Push/Pull Plates: Minimum .050 inch thick, size as indicated in hardware sets, with beveled edges, secured with exposed screws unless otherwise indicated.
 2. Door Pull and Push Bar Design: Size, shape, and material as indicated in the hardware sets. Minimum clearance of 2 1/2-inches from face of door unless otherwise indicated.
 3. Offset Pull Design: Size, shape, and material as indicated in the hardware sets. Minimum clearance of 2 1/2-inches from face of door and offset of 90 degrees unless otherwise indicated.
 4. Fasteners: Provide manufacturer's designated fastener type as indicated in Hardware Sets.

5. Manufacturers:
 a. Rockwood Products; ASSA ABLOY Architectural Door Accessories (RO).
 b. Trimco (TC).

E. Exit Devices (where scheduled on the drawings):
 1. All exit devices shall be UL-listed compatible with interchangeable core cylinders noted in Article 2.2 paragraph B above. Satin Stainless Steel finish unless noted otherwise in this Specification Section.
 2. Performance Specifications:
 b. Rim or surface mounting type shall be preferred.
 c. Minimum 2” width brass touch bar of matching finish.
 d. Outside keyed trim shall be lever operated, where applicable.
 e. Outside keyed trim supplied with cylinder.
 f. Omit Hex-Key dogging at fire label doors.
 3. Per Building Code requirements, doors to Electrical Rooms with equipment rated 1,200 Amp or more, shall be equipped with panic hardware or fire exit hardware.

F. Closers: all closers must meet handicap access requirements and be fully adjustable to comply with Federal (ADAAG) standards and State (TAS) standards. Interior closer cover color to match door frame color.
 1. Standard Regular Arm Closers shall be installed on the interior room side of doors which open into the room from interior public spaces or corridors or lobbies.
 2. Parallel Arm Installation Closers shall be installed on the interior building side of doors which open out to the exterior of the building or interior side of doors which open out to the interior warehouse space, interior public space, corridor or lobby.

G. Door Stops: Unless noted otherwise in the Hardware Sets listed in Article 4.1 below, all doors shall be provided with door stop types as follows:
 1. Interior doors:
 a. Provide wall-mounted door stops inside rooms where the doors open into the room; such as offices, storage rooms, restrooms, stairwells, etc.
 b. Wall stops are not permitted in office corridors, lobbies, offices or conference rooms where appearance is important.
1) Where wall stops are not permitted per the above sub-paragraph or will not work (typically at doors where the floor plan does not have a wall in the correct location to permit a wall stop to function properly), provide “stop arms” on the door closer to act as a door stop at all lobbies, corridors, and conference rooms.

H. Weatherstripping (at exterior doors only): 1-1/4” overall width, at door head and jambs, with extruded closed cell sponge neoprene insert, Type II Grade C.
 1. Clear anodized aluminum finish, paint to match door frame.

I. Rain drip (at exterior doors only): Overhead rain drip with slotted holes, typically 4” longer than the door width (3'-4” for single standard 3'-0’ door). Approximately 2-1/2” wall projection.
 1. Clear anodized aluminum finish, paint to match door frame.

J. Door Sweep: with vinyl inserts, 2” overall height, mounted on outside of all exterior doors.
 1. Clear anodized aluminum finish, paint to match door.

K. Door Silencers: Furnish and install three (3) rubber door silencers, in strike side of all interior door frames. Provide six (6) door silencers at frames for double doors.

L. Door Viewer (if required): One-way, 190 degree viewer with optical glass, UL-listed for fire door installation.

2.3 FIRE-RATED HARDWARE

A. Fire-Rated Hardware: Provide UL-listed and approved hardware for fire-labeled assemblies in compliance with NFPA 80.
 1. Confirm that hardware provided conforms to fire tested assembly (coordinate with doors provided).
 2. Where exit devices are provided on fire-rated doors, provide door with UL fire door label indicating "Fire Door to be Equipped with Fire Exit Hardware", and provide door hardware with UL exit device label indicating "Fire Exit Hardware".

B. Hinges at Fire-Rated Assemblies: Steel base material only.

C. Latchbolts and Deadbolts: 3/4” minimum throw or as required for fire rated assembly label.

D. Closers: Bolted (not screwed) to door reinforcement or through-bolted with sex-nut fasteners.

E. Smoke Seals: Provide UL listed and labeled smoke seals at all fire rated door assemblies.

F. Signage: Do not install signage on glazing material of fire doors, or on the surface of fire doors so as to impair or otherwise interfere with the proper operation of the doors.
 1. Mechanical attachment of signage is not permitted.

2.4 KEYING

A. All doors shall be keyed and locked per Owner’s requirements, with sub-masters and a master key.

B. Establish temporary construction cores for exterior locks during the construction period. These cores are to remain in place until as directed to be removed by the Owner.
PART 3 – EXECUTION

3.1 INSTALLATION

A. Install each hardware item in compliance with the manufacturer's instructions and recommendations. Wherever cutting and fitting is required to install hardware onto or into surfaces which are later to be painted or finished in another way, install each item completely and then remove and store in a secure place during the finish application. After completion of the finishes, reinstall each item. Do not install surface mounted items until finishes have been completed on the substrate.

B. Set units level, plumb and true to line and location. Adjust and reinforce the attachment substrate as necessary for proper installation and operation.

C. Furnish and install all hardware to be in compliance with current Federal and State Accessibility Standards.

D. Location of Hardware (Contractor shall verify dimensions noted below with manufacturer's standard heights above finish floor, and notify Architect of any discrepancies):
 3. Push Plate: 45” A.F.F. to center of plate.
 5. Top Hinge: To manufacturer's standard, but not greater than 10” from head of frame to centerline of hinge.
 6. Bottom Hinge: To manufacturer's standard, but not greater than 12” A.F.F. to centerline of hinge.
 8. When wood doors are used with hollow metal frames, hinge location on door is governed by location of hinge preparation on frame.

3.2 PROTECTION, ADJUSTMENT AND CLEANING

A. Remove or properly protect hardware until painting is completed. Protect all hardware stored on construction site in a covered and dry place. Protect exposed hardware installed on doors during the construction phase. Install any and all hardware at the latest possible time frame. Provide protection for hardware until project closeout.

B. Before project closeout, properly adjust and check each operating item of hardware and each door, and lubricate moving parts with type lubrication recommended by manufacturer (graphite type is not other recommended).

C. Clean adjacent surfaces soiled by door hardware installation.

D. Clean operating items as necessary to restore proper finish. Provide final protection and maintain conditions that ensure door hardware is without damage or deterioration at time of owner occupancy.

PART 4 – HARDWARE SCHEDULES

4.1 HARDWARE SCHEDULE

A. Refer to the Door Schedule on the Architectural Drawings for all door hardware required for doors on this project. However, the hardware supplier shall make his own take off. Hardware for a complete installation is required for all doors, regardless of if they are specifically mentioned on the Drawings. Discrepancies, conflicting hardware and missing items should be brought to the attention of the architect with corrections made prior to the bidding process. Omitted items not included in a hardware set should be scheduled with the appropriate additional hardware required for proper application and functionality.
b. The supplier is responsible for handing and sizing all products and providing the correct option for the appropriate door type and material where more than one is presented in the hardware sets. Quantities listed are for each pair of doors, or for each single door.

HWS-1.0

<table>
<thead>
<tr>
<th>Item</th>
<th>Model/Details</th>
<th>Finish/Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hinge (heavy weight)</td>
<td>T4A3786 4-1/2" x 4-1/2"</td>
<td>US26D MK</td>
</tr>
<tr>
<td>1 Push Plate</td>
<td>70C-RKW</td>
<td>US32D RO</td>
</tr>
<tr>
<td>1 Pull Plate</td>
<td>107x70C</td>
<td>US32D RO</td>
</tr>
<tr>
<td>1 Door Closer</td>
<td>4040XP REG TBWMS</td>
<td>AL LC</td>
</tr>
<tr>
<td>1 Kick Plate</td>
<td>K1050 10" x 2" LDW</td>
<td>US32D RO</td>
</tr>
<tr>
<td>1 Wall Stop</td>
<td>406</td>
<td>US32D RO</td>
</tr>
<tr>
<td>3 Silencer</td>
<td>608-RKW</td>
<td>RO</td>
</tr>
</tbody>
</table>

Notes: Provide Qty of Hinges for Building Standard Door Height.

HWS-2.0

<table>
<thead>
<tr>
<th>Item</th>
<th>Model/Details</th>
<th>Finish/Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Hinge</td>
<td>TA2714 4-1/2" x 4-1/2"</td>
<td>US26D MK</td>
</tr>
<tr>
<td>2 Flush Bolt</td>
<td>555</td>
<td>US26D RO</td>
</tr>
<tr>
<td>1 Dust Proof Strike</td>
<td>570</td>
<td>US26D RO</td>
</tr>
<tr>
<td>1 Cylindrical Lock</td>
<td>9K37D 15D</td>
<td>626 BE</td>
</tr>
<tr>
<td>1 Cylindrical Lock</td>
<td>9K301DT 15D</td>
<td>626 BE</td>
</tr>
<tr>
<td>2 Door Closer</td>
<td>4040XP H TBWMS (PA Arm)</td>
<td>DKBRZ LC</td>
</tr>
<tr>
<td>2 Wall Stop</td>
<td>406</td>
<td>US32D RO</td>
</tr>
<tr>
<td>1 Gasketing</td>
<td>S773BL 17'</td>
<td>PE</td>
</tr>
<tr>
<td>1 Astragal</td>
<td>305CS</td>
<td>PE</td>
</tr>
</tbody>
</table>

Notes: Mount Closer for 90 degree Hold Open
Provide Qty of Hinges for Building Standard Door Height.

HWS-3.0

<table>
<thead>
<tr>
<th>Item</th>
<th>Model/Details</th>
<th>Finish/Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hinge</td>
<td>TA2714 4-1/2" x 4-1/2"</td>
<td>US26D MK</td>
</tr>
<tr>
<td>1 Privacy Lock</td>
<td>L9040 07A L283-712</td>
<td>626 SC</td>
</tr>
<tr>
<td>1 Door Closer</td>
<td>4040XP REG TBWMS</td>
<td>AL LC</td>
</tr>
<tr>
<td>1 Kick Plate</td>
<td>K1050 10" x 2" LDW</td>
<td>US32D RO</td>
</tr>
<tr>
<td>1 Wall Stop</td>
<td>406</td>
<td>US32D RO</td>
</tr>
<tr>
<td>1 Gasketing</td>
<td>S773BL 17'</td>
<td>PE</td>
</tr>
</tbody>
</table>

Notes: Provide Qty of Hinges for Building Standard Door Height.
Doors: 194

<table>
<thead>
<tr>
<th>Item</th>
<th>Model/Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinge (heavy weight)</td>
<td>T4A3786 4-1/2" x 4-1/2" US26D MK</td>
</tr>
<tr>
<td>Rim Exit Device</td>
<td>99L 996L (Std) SNB US26D VD</td>
</tr>
<tr>
<td>Cylinder</td>
<td>12E-72 626 BE</td>
</tr>
<tr>
<td>Door Closer</td>
<td>4040XP H TBWMS (PA Arm) DKBRZ LC</td>
</tr>
<tr>
<td>Kick Plate</td>
<td>K1050 10" x 2" LDW US32D RO</td>
</tr>
<tr>
<td>Gasketing</td>
<td>S773BL 17" PE</td>
</tr>
</tbody>
</table>

Notes: Mount Closer for 90 degree Hold Open
Provide Qty of Hinges for Building Standard Door Height.

END OF SECTION
SECTION 088000
GLAZING

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes:
 1. Glass for interior windows.
 2. Glazing sealants and accessories.

1.2 DEFINITIONS
A. Glass Manufacturers: Firms that produce primary glass, fabricated glass, or both, as defined in referenced glazing publications.
B. Glass Thicknesses: Indicated by thickness designations in millimeters according to ASTM C 1036.

1.3 COORDINATION
A. Coordinate glazing channel dimensions to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.

1.4 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.
 1. Review and finalize construction schedule and verify availability of materials, Installer’s personnel, equipment, and facilities needed to make progress and avoid delays.
 2. Review temporary protection requirements for glazing during and after installation.

1.5 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Glass Samples: For each type of glass product other than clear monolithic vision glass; 12 inches (300 mm) square.
C. Delegated Design: Provide shop drawings signed and sealed by a structural engineer licensed to practice in the location of the project, indicating ability of system and attachment to supporting construction to resist indicated or code required loads.

1.6 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Installer.
B. Product Certificates: For glass.

1.7 QUALITY ASSURANCE
A. Installer Qualifications: A qualified installer who employs glass installers for this Project who are certified under the National Glass Association’s Certified Glass Installer Program.
B. Glass Testing Agency Qualifications: A qualified independent testing agency accredited according to the NFRC CAP 1 Certification Agency Program.
C. Sealant Testing Agency Qualifications: An independent testing agency qualified according to ASTM C 1021 to conduct the testing indicated.

1.8 DELIVERY, STORAGE, AND HANDLING
A. Protect glazing materials according to manufacturer’s written instructions. Prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.
1.9 FIELD CONDITIONS
A. Environmental Limitations: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.
 1. Do not install glazing sealants when ambient and substrate temperature conditions are outside limits permitted by sealant manufacturer or are below 40 deg F (4.4 deg C).

PART 2 - PRODUCTS
2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Guardian Industries Corp.; SunGuard.
 3. Oldcastle BuildingEnvelope™.
 5. Vitro.
B. Source Limitations for Glass: Obtain from single source from single manufacturer for each glass type.
C. Source Limitations for Glazing Accessories: Obtain from single source from single manufacturer for each product and installation method.

2.2 PERFORMANCE REQUIREMENTS
A. General: Installed glazing systems shall withstand normal thermal movement and wind and impact loads (where applicable) without failure, including loss or glass breakage attributable to the following: defective manufacture, fabrication, or installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; or other defects in construction.
B. Delegated Design: Engage a qualified professional engineer to design glazing.
C. Safety Glazing: Where safety glazing is indicated, provide glazing that complies with 16 CFR 1201, Category II.
D. Thermal and Optical Performance Properties: Provide glass with performance properties specified, as indicated in manufacturer’s published test data, based on procedures indicated below:
 1. For monolithic-glass lites, properties are based on units with lites 6 mm thick.
 2. U-Factors: Center-of-glazing values, according to NFRC 100 and based on LBL® WINDOW 5.2 computer program, expressed as Btu/sq. ft. x h x deg F (W/sq. m x K).
 3. Solar Heat-Gain Coefficient and Visible Transmittance: Center-of-glazing values, according to NFRC 200 and based on LBL® WINDOW 5.2 computer program.
 4. Visible Reflectance: Center-of-glazing values, according to NFRC 300.

2.3 GLASS PRODUCTS, GENERAL
A. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below unless more stringent requirements are indicated. See these publications for glazing terms not otherwise defined in this Section or in referenced standards.
 1. GANA Publications: "Glazing Manual."
B. Safety Glazing Labeling: Where safety glazing is indicated, permanently mark glazing with certification label of the SGCC or another certification agency acceptable to authorities having jurisdiction. Label shall indicate manufacturer’s name, type of glass, thickness, and safety glazing standard with which glass complies.
C. Thickness: Where glass thickness is indicated, it is a minimum. Provide glass that complies with performance requirements and is not less than the thickness indicated.
D. Strength: Where annealed float glass is indicated, provide annealed float glass, heat-strengthened float glass, or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where heat-strengthened float glass is indicated, provide heat-strengthened float glass or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where fully tempered float glass is indicated, provide fully tempered float glass.
2.4 GLASS PRODUCTS
 A. Clear Annealed Float Glass: ASTM C 1036, Type I, Class 1 (clear), Quality-Q3.
 B. Fully Tempered Float Glass: ASTM C 1048, Kind FT (fully tempered), Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.
 1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.
 C. Heat-Strengthened Float Glass: ASTM C 1048, Kind HS (heat strengthened), Type I, Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.
 1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.

2.5 GLAZING SEALANTS
 A. General:
 1. Compatibility: Compatible with one another and with other materials they contact, including glass products, seals of insulating-glass units, and glazing channel substrates, under conditions of service and application, as demonstrated by sealant manufacturer based on testing and field experience.
 2. Suitability: Comply with sealant and glass manufacturers’ written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.
 3. Colors of Exposed Glazing Sealants: As selected by Architect from manufacturer’s full range.
 B. Glazing Sealant: Neutral-curing silicone glazing sealant complying with ASTM C 920, Type S, Grade NS, Class 100/50, Use NT.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Dow Corning Corporation; 790.
 b. GE Advanced Materials - Silicones; SilPruf LM SCS2700.
 c. Bondaflex Sil 290.
 d. Pecora Corporation; 890NST.
 e. Sikasil WS-290.
 f. Tremco Incorporated; Spectrem 1

2.6 GLAZING TAPES
 A. Back-Bedding Mastic Glazing Tapes: Preformed, butyl-based, 100 percent solids elastomeric tape; nonstaining and nonmigrating in contact with nonporous surfaces; with or without spacer rod as recommended in writing by tape and glass manufacturers for application indicated; and complying with ASTM C 1281 and AAMA 800 for products indicated below:
 1. AAMA 804.3 tape, where indicated.
 2. AAMA 806.3 tape, for glazing applications in which tape is subject to continuous pressure.
 3. AAMA 807.3 tape, for glazing applications in which tape is not subject to continuous pressure.

2.7 MISCELLANEOUS GLAZING MATERIALS
 A. General: Provide products of material, size, and shape complying with referenced glazing standard, with requirements of manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.
 B. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.
 C. Setting Blocks: Elastomeric material with a Shore, Type A durometer hardness of 85, plus or minus 5.
 D. Spacers: Elastomeric blocks or continuous extrusions of hardness required by glass manufacturer to maintain glass lites in place for installation indicated.
 E. Edge Blocks: Elastomeric material of hardness needed to limit glass lateral movement (sidewalking).
 F. Cylindrical Glazing Sealant Backing: ASTM C 1330, Type O (open-cell material), of size and density to control glazing sealant depth and otherwise produce optimum glazing sealant performance.
2.8 FABRICATION OF GLAZING UNITS

A. Fabricate glazing units in sizes required to fit openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.
 1. Allow for thermal movements from ambient and surface temperature changes acting on glass framing members and glazing components.
 a. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

B. Clean-cut or flat-grind vertical edges of butt-glazed monolithic lites to produce square edges with slight chamfers at junctions of edges and faces.

C. Grind smooth and polish exposed glass edges and corners.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine framing, glazing channels, and stops, with Installer present, for compliance with the following:
 1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
 2. Presence and functioning of weep systems.
 3. Minimum required face and edge clearances.
 4. Effective sealing between joints of glass-framing members.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.

B. Examine glazing units to locate exterior and interior surfaces. Label or mark units as needed so that exterior and interior surfaces are readily identifiable. Do not use materials that leave visible marks in the completed Work.

3.3 GLAZING, GENERAL

A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.

B. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass includes glass with edge damage or other imperfections that, when installed, could weaken glass, impair performance, or impair appearance.

C. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.

D. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

E. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

F. Provide spacers for glass lites where length plus width is larger than 50 inches (1270 mm).
 1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances, unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.
 2. Provide 1/8-inch (3-mm) minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.

G. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.

H. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.
I. Where wedge-shaped gaskets are driven into one side of channel to pressurize sealant or gasket on opposite side, provide adequate anchorage so gasket cannot walk out when installation is subjected to movement.

J. Square cut wedge-shaped gaskets at corners and install gaskets in a manner recommended by gasket manufacturer to prevent corners from pulling away; seal corner joints and butt joints with sealant recommended by gasket manufacturer.

3.4 TAPE GLAZING
A. Position tapes on fixed stops so that, when compressed by glass, their exposed edges are flush with or protrude slightly above sightline of stops.
B. Install tapes continuously, but not necessarily in one continuous length. Do not stretch tapes to make them fit opening.
C. Cover vertical framing joints by applying tapes to heads and sills first, then to jambs. Cover horizontal framing joints by applying tapes to jambs, then to heads and sills.
D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.
E. Do not remove release paper from tape until right before each glazing unit is installed.
F. Apply heel bead of elastomeric sealant.
G. Center glass lites in openings on setting blocks, and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.
H. Apply cap bead of elastomeric sealant over exposed edge of tape.

3.5 GASKET GLAZING (DRY)
A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.
B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.
C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.
D. Installation with Pressure-Glazing Stops: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket. Install dense compression gaskets and pressure-glazing stops, applying pressure uniformly to compression gaskets. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.
E. Install gaskets so they protrude past face of glazing stops.

3.6 CLEANING AND PROTECTION
A. Immediately after installation remove nonpermanent labels and clean surfaces.
B. Protect glass from contact with contaminating substances resulting from construction operations. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains.
1. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer. Remove and replace glass that cannot be cleaned without damage to coatings.
C. Remove and replace glass that is damaged during construction period.
D. Wash glass on both exposed surfaces not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended in writing by glass manufacturer.
3.7 MONOLITHIC GLASS SCHEDULE

A. Glass Type: Clear fully tempered float glass.
 1. Minimum Thickness: 6 mm.
 2. Safety glazing required.

END OF SECTION
SECTION 089119
FIXED LOUVERS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Fixed extruded-aluminum louvers.

1.2 DEFINITIONS
 A. Louver Terminology: Definitions of terms for metal louvers contained in AMCA 501 apply to this Section
 unless otherwise defined in this Section or in referenced standards.
 B. Horizontal Louver: Louver with horizontal blades (i.e., the axis of the blades are horizontal).
 C. Drainable-Blade Louver: Louver with blades having gutters that collect water and drain it to channels in
 jambs and mullions, which carry it to bottom of unit and away from opening.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. For louvers specified to bear AMCA seal, include printed catalog pages showing specified models
 with appropriate AMCA Certified Ratings Seals.
 B. Shop Drawings: For louvers and accessories. Include plans, elevations, sections, details, and attachments
 to other work. Show frame profiles and blade profiles, angles, and spacing.
 1. Show weep paths, gaskets, flashings, sealants, and other means of preventing water intrusion.
 2. Show mullion profiles and locations.
 A. Delegated Design: Provide shop drawings signed and sealed by a structural engineer licensed to practice
 in the location of the project, indicating ability of system and attachment to supporting construction to resist
 indicated or code required loads.

1.4 INFORMATIONAL SUBMITTALS
 A. Product Test Reports: Based on evaluation of comprehensive tests performed according to AMCA 500-L
 by a qualified testing agency or by manufacturer and witnessed by a qualified testing agency, for each type
 of louver and showing compliance with performance requirements specified.
 B. Sample Warranties: For manufacturer’s special warranties.

1.5 QUALITY ASSURANCE
 A. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.2/D1.2M.
 2. AWS D1.3/D1.3M.
 3. AWS D1.6/D1.6M.

1.6 FIELD CONDITIONS
 A. Field Measurements: Verify actual dimensions of openings by field measurements before fabrication.

1.7 WARRANTY
 A. Special Finish Warranty: Manufacturer agrees to repair or replace components on which finishes fail in
 materials or workmanship within specified warranty period.
 1. Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 2. Warranty Period: 20 years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Source Limitations: Obtain fixed louvers from single source from a single manufacturer where indicated to be of same type, design, or factory-applied color finish.

2.2 PERFORMANCE REQUIREMENTS
A. Delegated Design: Design louvers, including comprehensive engineering analysis by a qualified professional engineer, using structural performance requirements and design criteria indicated.
B. Structural Performance: Louvers shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated without permanent deformation of louver components, noise or metal fatigue caused by louver-blade rattle or flutter, or permanent damage to fasteners and anchors. Wind pressures shall be considered to act normal to the face of the building.
1. Wind Loads: Determine loads based on pressures as indicated on Drawings.
C. Louver Performance Ratings: Provide louvers complying with requirements specified, as demonstrated by testing manufacturer’s stock units identical to those provided, except for length and width according to AMCA 500-L.
D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
1. Temperature Change (Range): 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.3 FIXED EXTRUDED-ALUMINUM LOUVERS
A. Horizontal Drainable-Blade Louver:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. All-Lite Architectural Products.
 b. Construction Specialties, Inc.
 c. Greenheck Fan Corporation.
 d. NCA Manufacturing, Inc.
 e. Pottorf.
 f. Ruskin Company.
 g. Safe Air - Dowco Products.
2. Louver Depth: 6 inches (150 mm).
3. Frame and Blade Nominal Thickness: Not less than 0.080 inch (2.03 mm).
4. Mullion Type: Exposed.
5. Louver Performance Ratings:
 a. Free Area: Not less than 7.5 sq. ft. (0.70 sq. m) for 48-inch- (1220-mm-) wide by 64-inch- (1220-mm-) high louver.
 b. Point of Beginning Water Penetration: Not less than 1000 fpm (5.1 m/s).
6. AMCA Seal: Mark units with AMCA Certified Ratings Seal.

2.4 LOUVER SCREENS
A. General: Provide screen at each exterior louver.
1. Screen Location for Fixed Louvers: Interior face.
2. Screening Type: Bird screening.
B. Secure screen frames to louver frames with stainless-steel machine screws, spaced a maximum of 6 inches (150 mm) from each corner and at 12 inches (300 mm) o.c.
C. Louver Screen Frames: Fabricate with mitered corners to louver sizes indicated.
1. Metal: Same type and form of metal as indicated for louver to which screens are attached. Reinforce extruded-aluminum screen frames at corners with clips.
2. Finish: Same finish as louver frames to which louver screens are attached.
3. Type: Non-rewirable, U-shaped frames.
D. Louver Screening for Aluminum Louvers:
1. Bird Screening: Aluminum, 1/2-inch- (13-mm-) square mesh, 0.063-inch (1.60-mm) wire.
2.5 MATERIALS

A. Aluminum Extrusions: ASTM B 221 (ASTM B 221M), Alloy 6063-T5, T-52, or T6.
B. Fasteners: Use types and sizes to suit unit installation conditions.
 1. Use Phillips flat-head screws for exposed fasteners unless otherwise indicated.
 2. For color-finished louvers, use fasteners with heads that match color of louvers.
C. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187/D 1187M.

2.6 FABRICATION

A. Factory assemble louvers to minimize field splicing and assembly. Disassemble units as necessary for shipping and handling limitations. Clearly mark units for reassembly and coordinated installation.
B. Vertical Assemblies: Where height of louver units exceeds fabrication and handling limitations, fabricate units to permit field-bolted assembly with close-fitting joints in jambs and mullions, reinforced with splice plates.
 1. Continuous Vertical Assemblies: Fabricate units without interrupting blade-spacing pattern unless horizontal mullions are indicated.
 2. Horizontal Mullions: Provide horizontal mullions at joints unless continuous vertical assemblies are indicated.
C. Maintain equal louver blade spacing, including separation between blades and frames at head and sill, to produce uniform appearance.
D. Fabricate frames, including integral sills, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.
 1. Frame Type: Channel unless otherwise indicated.
E. Include supports, anchorages, and accessories required for complete assembly.
F. Provide vertical mullions of type and at spacings indicated, but not more than is recommended by manufacturer, or 72 inches (1830 mm) o.c., whichever is less.
 1. Exposed Mullions: Where indicated, provide units with exposed mullions of same width and depth as louver frame. Where length of louver exceeds fabrication and handling limitations, provide interlocking split mullions designed to permit expansion and contraction.
G. Provide subsills made of same material as louvers for recessed louvers.
H. Join frame members to each other and to fixed louver blades with fillet welds concealed from view unless otherwise indicated or size of louver assembly makes bolted connections between frame members necessary.

2.7 ALUMINUM FINISHES

A. Finish louvers after assembly.
B. High-Performance Organic Finish: Two-coat fluoropolymer finish complying with AAMA 2605 and containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 1. Color and Gloss: As selected by Architect from manufacturer's full range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and openings, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Coordinate setting drawings, diagrams, templates, instructions, and directions for installation of anchorages that are to be embedded in concrete or masonry construction. Coordinate delivery of such items to Project site.
3.3 INSTALLATION

A. Locate and place louvers level, plumb, and at indicated alignment with adjacent work.
B. Use concealed anchorages where possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weathertight connection.
C. Form closely fitted joints with exposed connections accurately located and secured.
D. Provide perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.
E. Protect unpainted galvanized- and nonferrous-metal surfaces that are in contact with concrete, masonry, or dissimilar metals from corrosion and galvanic action by applying a heavy coating of bituminous paint or by separating surfaces with waterproof gaskets or nonmetallic flashing.
F. Install concealed gaskets, flashings, joint fillers, and insulation as louver installation progresses, where weathertight louver joints are required. Comply with Section 079200 “Joint Sealants” for sealants applied during louver installation.

3.4 ADJUSTING AND CLEANING

A. Clean exposed louver surfaces that are not protected by temporary covering, to remove fingerprints and soil during construction period. Do not let soil accumulate during construction period.
B. Before final inspection, clean exposed surfaces with water and a mild soap or detergent not harmful to finishes. Thoroughly rinse surfaces and dry.
C. Restore louvers damaged during installation and construction, so no evidence remains of corrective work. If results of restoration are unsuccessful, as determined by Architect, remove damaged units and replace with new units.
 1. Touch up minor abrasions in finishes with air-dried coating that matches color and gloss of, and is compatible with, factory-applied finish coating.

END OF SECTION
SECTION 092216
NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Non-load-bearing steel framing systems for interior partitions.
 2. Suspension systems for interior ceilings and soffits.
 3. Grid suspension systems for gypsum board ceilings.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Span and Deflection Design Criteria: Provide height to load deflection charts showing studs supplied conform to deflection limit scheduled and allowed per ASTM C 754.
 1. Mark on chart(s) showing all major partitions scheduled conformance with criteria.
 2. Submit manufacturer's certification of stud size, thickness, and spacing complying with performance requirements and selections made by architect are correct for application shown.

1.3 INFORMATIONAL SUBMITTALS
A. Product Certificates: For each type of code-compliance certification for studs and tracks.
B. Evaluation Reports: For post-installed anchors, from ICC-ES or other qualified testing agency acceptable to authorities having jurisdiction.

1.4 QUALITY ASSURANCE
A. Code-Compliance Certification of Studs and Tracks: Provide documentation that framing members are certified according to the product-certification program of the Certified Steel Stud Association.

1.5 SEQUENCING
A. Coordinate placement of concealed internal wall reinforcement, such as backing plates, for items to be attached to metal support systems.
B. Coordinate installation of ceiling and soffit suspension systems with installation of overhead structural assemblies to ensure that inserts and other provisions for anchorage to building structure have been installed to receive ceiling hangers that will develop their full strength and at spacing required to support ceilings.
C. Furnish concrete inserts, and other devices indicated, to other trades for installation well in advance of time needed for coordination with other construction.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Protect cold-formed metal framing from corrosion, deformation, and other damage during delivery, storage, and handling as required by AISI S202 "Code of Standard Practice."

PART 2 - PRODUCTS
A. PERFORMANCE REQUIREMENTS: Design framing systems in accordance with AISI S220, "North American Specification for the Design of Cold-Formed Steel Framing - Nonstructural Members" and ASTM C645, Section 10, unless otherwise indicated.
B. Fire-Test-Response Characteristics: For fire-resistance-rated assemblies that incorporate non-load-bearing steel framing, provide materials and construction identical to those tested in assembly indicated, according to ASTM E 119 by an independent testing agency.
C. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated on Drawings, according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.
D. Horizontal Deflection:
1. Minimum Base-Metal Thickness: 25 gage unless indicated otherwise on Drawings or below.
2. Interior Metal Stud/Gypsum Board Assemblies, Typical Locations: Withstand lateral loading (air pressure) of 5 psf with deflection limit not more than L/240 of partition height.
3. Interior Metal Stud/Gypsum Board Assemblies at Atriums, Lobbies, Service Corridors, Exit Corridors, Elevator Lobbies, Vertical Shafts, and walls receiving plaster veneer: Withstand lateral loading (air pressure) of 7.5 psf with deflection limit not more than L/360 of partition height.
4. Interior Metal Stud/Gypsum Board Assemblies at Locations with Ceramic Tile or Other Hard Surface Finishes: Withstand typical lateral loading (air pressure) with deflection limit not more than L/360 of partition height, minimum 22 gage studs at 16 inches on center.
5. Where wall mounted equipment, woodwork, and casework items are indicated or elsewhere as shown on Drawings, provide minimum 18 gage studs.
6. At jambs of openings provide two minimum 20 gage studs.
7. Ceilings: At ceilings using mold-mildew resistant gypsum framing to be 16 inches o.c. for 5/8 inch gypsum.
8. Refer to Division 05 for stud framing which is exposed to wind loads and for studs carrying heavy vertical loads, such as, cement plaster, manufactured stone masonry, stone tile thicker than 3/4 inch, etc.

2.2 FRAMING SYSTEMS
A. Framing Members, General: Comply with AISI S220 and ASTM C645 for conditions indicated.
1. Steel Sheet Components: Comply with ASTM C 645 requirements for metal unless otherwise indicated.
 a. Coating roll-formed from steel complying with mechanical and chemical requirements of ASTM A1003 with a zinc-based coating.
 b. Coatings shall demonstrate equivalent corrosion resistance with an evaluation report acceptable to authorities having jurisdiction
B. Studs and Tracks: AISI S220 and ASTM C 645, Section 10
1. Steel Studs and Tracks:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) CEMCO.
 2) ClarkDietrich
 3) Custom Stud.
 4) MarinoWARE.
 5) MBA Building Supplies.
 6) MRI Steel Framing, LLC.
 7) Phillips Manufacturing Co.
 8) SCAFCO Steel Stud Company.
 9) Steel Network, Inc. (The).
 10) Telling Industries
 b. Minimum Base-Metal Thickness: As required by performance requirements for horizontal deflection.
 c. Depth: As indicated on Drawings.
C. Firestop Tracks: Top track manufactured to allow partition heads to expand and contract with movement of structure while maintaining continuity of fire-resistance-rated assembly indicated; in thickness not less than indicated for studs and in width to accommodate depth of studs.
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Blazeframe Industries.
 b. CEMCO; California Expanded Metal Products Co.
 c. ClarkDietrich Building Systems.
 d. Fire Trak Corp.
 e. MarinoWARE.
f. Metal-Lite.
g. Perfect Wall, Inc.
h. SCAFCO Steel Stud Company.
i. Steel Network, Inc. (The).

D. Flat Strap and Backing Plate: Steel sheet for blocking and bracing in length and width indicated.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. MarinoWARE.
 c. MRI Steel Framing, LLC.
 d. SCAFCO Steel Stud Company.
 2. Minimum Base-Metal Thickness: 0.0179 inch (0.455 mm).

E. Cold-Rolled Channel Bridging: Steel, 0.0538-inch (1.367-mm) minimum base-metal thickness, with minimum 1/2-inch- (13-mm-) wide flanges.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. MarinoWARE.
 c. MRI Steel Framing, LLC.
 d. SCAFCO Steel Stud Company.
 2. Depth: As indicated on Drawings.
 3. Clip Angle: Not less than 1-1/2 by 1-1/2 inches (38 by 38 mm), 0.068-inch- (1.72-mm-) thick, galvanized steel.

F. Hat-Shaped, Rigid Furring Channels: ASTM C 645.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. MarinoWARE.
 c. MRI Steel Framing, LLC.
 d. SCAFCO Steel Stud Company.
 2. Minimum Base-Metal Thickness: 0.0179 inch (0.455 mm).
 3. Depth: 7/8 inch (22.2 mm).

G. Resilient Furring Channels: 1/2-inch- (13-mm-) deep, steel sheet members designed to reduce sound transmission.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. MarinoWARE.
 c. MRI Steel Framing, LLC.
 d. SCAFCO Steel Stud Company.
 2. Configuration: Asymmetrical.

H. Cold-Rolled Furring Channels: 0.053-inch (1.34-mm) uncoated-steel thickness, with minimum 1/2-inch- (13-mm-) wide flanges.
 1. Depth: 3/4 inch (19 mm).
 2. Furring Brackets: Adjustable, corrugated-edge-type steel sheet with minimum uncoated-steel thickness of 0.0329 inch (0.8 mm).
 3. Tie Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.062-inch- (1.59-mm-) diameter wire, or double strand of 0.048-inch- (1.21-mm-) diameter wire.

I. Partial Wall Framing Connection: Connector designed to support out-of-plane loading of cantilevered partial wall systems that are unsupported at the top track.
 1. ClarkDietrich Pony Wall or comparable product.
 2. Minimum Base-Steel Thickness: 0.0966 inch (2.45 mm).
2.3 SUSPENSION SYSTEMS

A. Tie Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.062-inch- (1.59-mm-) diameter wire, or double strand of 0.048-inch- (1.21-mm-) diameter wire.

B. Hanger Attachments to Concrete:
 1. Post-Installed Anchors: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC01, AC193, AC58, or AC308 as appropriate for the substrate.
 a. Uses: Securing hangers to structure.
 b. Type: Torque-controlled, expansion anchor.
 c. Material for Interior Locations: Carbon-steel components zinc-plated to comply with ASTM B 633 or ASTM F 1941 (ASTM F 1941M), Class Fe/Zn 5, unless otherwise indicated.

C. Wire Hangers: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.16 inch (4.12 mm) in diameter.

D. Flat Hangers: Steel sheet, 1 by 3/16 inch (25 by 5 mm) by length indicated.

E. Carrying Channels (Main Runners): Cold-rolled, commercial-steel sheet with a base-metal thickness of 0.0538 inch (1.367 mm) and minimum 1/2-inch- (13-mm-) wide flanges.
 1. Depth: As indicated on Drawings.

F. Furring Channels (Furring Members):
 1. Cold-Rolled Channels: 0.0538-inch (1.367-mm) uncoated-steel thickness, with minimum 1/2-inch- (13-mm-) wide flanges, 3/4 inch (19 mm) deep.
 2. Steel Studs and Tracks: AISI S220 and ASTM C 645.
 a. Minimum Base-Metal Thickness: 0.0179 inch (0.455 mm).
 b. Depth: 1-5/8 inches (41 mm).
 3. Hat-Shaped, Rigid Furring Channels: ASTM C 645, 7/8 inch (22 mm) deep.
 a. Minimum Base-Metal Thickness: 0.0179 inch (0.455 mm).
 4. Resilient Furring Channels: 1/2-inch- (13-mm-) deep members designed to reduce sound transmission.

G. Grid Suspension System for Gypsum Board Ceilings: ASTM C 645, direct-hung system composed of main beams and cross-furring members that interlock.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Armstrong World Industries, Inc.
 b. ROCKWOOL International (formerly Chicago Metallic Corporation).
 c. United States Gypsum Company.

2.4 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards.
 1. Fasteners for Steel Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.

B. Isolation Strip at Exterior Walls: Provide the following:
 1. Foam Gasket: Adhesive-backed, closed-cell vinyl foam strips that allow fastener penetration without foam displacement, 1/8 inch (3.2 mm) thick, in width to suit steel stud size.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION
A. Suspended Assemblies: Coordinate installation of suspension systems with installation of overhead structure to ensure that inserts and other provisions for anchorages to building structure have been installed to receive hangers at spacing required to support the Work and that hangers will develop their full strength.
 1. Furnish concrete inserts and other devices indicated to other trades for installation in advance of time needed for coordination and construction.

3.3 INSTALLATION, GENERAL
A. Installation Standard: ASTM C 754.
 1. Gypsum Board Assemblies: Also comply with requirements in ASTM C 840 that apply to framing installation.

B. Install framing and accessories plumb, square, and true to line, with connections securely fastened.
C. Install supplementary framing, and blocking to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction.
D. Install bracing at terminations in assemblies.
E. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.4 INSTALLING FRAMED ASSEMBLIES
A. Install framing system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
 1. Single-Layer Application: As required by horizontal deflection performance requirements unless otherwise indicated.
 2. Multilayer Application: As required by horizontal deflection performance requirements unless otherwise indicated.
 3. Tile Backing Panels: As required by horizontal deflection performance requirements unless otherwise indicated.

B. Where studs are installed directly against exterior masonry walls or dissimilar metals at exterior walls, install isolation strip between studs and exterior wall.
C. Install studs so flanges within framing system point in same direction.
D. Install tracks at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts that penetrate partitions above ceiling.
 1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.
 2. Door Openings: Screw vertical studs at jambs to jamb anchor clips on door frames; install track section (for cripple studs) at head and secure to jamb studs.
 a. Install two studs at each jamb unless otherwise indicated.
 b. Install cripple studs at head adjacent to each jamb stud, with a minimum 1/2-inch (13-mm) clearance from jamb stud to allow for installation of control joint in finished assembly.
 c. Extend jamb studs through suspended ceilings and attach to underside of overhead structure.
 3. Other Framed Openings: Frame openings other than door openings the same as required for door openings unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.
 4. Fire-Resistance-Rated Partitions: Install framing to comply with fire-resistance-rated assembly indicated and support closures and to make partitions continuous from floor to underside of solid structure.
 a. Firestop Track: Where indicated, install to maintain continuity of fire-resistance-rated assembly indicated.
 5. Sound-Rated Partitions: Install framing to comply with sound-rated assembly indicated.
E. Direct Furring:
1. Screw to wood framing.
2. Attach to concrete or masonry with stub nails, screws designed for masonry attachment, or powder-driven fasteners spaced 24 inches (610 mm) o.c.

F. Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch (3 mm) from the plane formed by faces of adjacent framing.

3.5 INSTALLING CEILING SUSPENSION SYSTEMS
A. Install suspension system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
1. Hangers: 48 inches (1219 mm) o.c.
2. Carrying Channels (Main Runners): 48 inches (1219 mm) o.c.
3. Furring Channels (Furring Members): 16 inches (406 mm) o.c.

B. Isolate suspension systems from building structure where they abut or are penetrated by building structure to prevent transfer of loading imposed by structural movement.

C. Suspend hangers from building structure as follows:
1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structural or suspension system.
 a. Splay hangers only where required to miss obstructions and offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
2. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with locations of hangers required to support standard suspension system members, install supplemental suspension members and hangers in the form of trapezes or equivalent devices.
 a. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced installation standards.
3. Wire Hangers: Secure by looping and wire tying, either directly to structures or to inserts, eye screws, or other devices and fasteners that are secure and appropriate for substrate, and in a manner that will not cause hangers to deteriorate or otherwise fail.
4. Flat Hangers: Secure to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices and fasteners that are secure and appropriate for structure and hanger, and in a manner that will not cause hangers to deteriorate or otherwise fail.
5. Do not attach hangers to steel roof deck.
6. Do not attach hangers to permanent metal forms. Furnish cast-in-place hanger inserts that extend through forms.
7. Do not attach hangers to rolled-in hanger tabs of composite steel floor deck.
8. Do not connect or suspend steel framing from ducts, pipes, or conduit.

D. Fire-Resistance-Rated Assemblies: Wire tie furring channels to supports.

E. Grid Suspension Systems: Attach perimeter wall track or angle where grid suspension systems meet vertical surfaces. Mechanically join main beam and cross-furring members to each other and butt-cut to fit into wall track.

F. Installation Tolerances: Install suspension systems that are level to within 1/8 inch in 12 feet (3 mm in 3.6 m) measured lengthwise on each member that will receive finishes and transversely between parallel members that will receive finishes.

END OF SECTION
SECTION 092900
GYPSUM BOARD

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Interior gypsum board.
 2. Tile backing panels.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.3 DELIVERY, STORAGE AND HANDLING
A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on risers on a flat platform to prevent sagging.

1.4 FIELD CONDITIONS
A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer’s written instructions, whichever are more stringent.
B. Do not install paper-faced gypsum panels until installation areas are enclosed and conditioned.
C. Do not install panels that are wet, moisture damaged, and mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.
B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.

2.2 GYPSUM BOARD, GENERAL
A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.3 INTERIOR GYPSUM BOARD
A. Gypsum Wallboard: ASTM C 1396/C 1396M.
B. Gypsum Board, Type X: ASTM C 1396/C 1396M.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. American Gypsum; 5/8 inch FireBloc Type X Gypsum Wallboard.
 b. CertainTeed Corporation; Type X Gypsum Board.
 c. Continental Building Products, LLC; Firecheck Type X.
 d. Georgia-Pacific Building Products; ToughRock Fireguard X Gypsum Board.
 e. National Gypsum Company; Gold Bond Brand Fire-Shield Gypsum Board.
 f. PABCO Gypsum; Flame Curb Type X.
 g. United States Gypsum Company; USG Sheetrock Brand Firecode X Gypsum Panels.
 2. Thickness: 5/8 inch (15.9 mm).
C. Gypsum Ceiling Board: ASTM C 1396/C 1396M.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. American Gypsum; 1/2" Interior Ceiling Board.
 b. CertainTeed Corporation; Interior Ceiling Gypsum Board.
 c. Continental Building Products, LLC; Sagcheck.
 d. Georgia-Pacific Building Products; ToughRock Span 24 Ceiling Board.
 e. PABCO Gypsum; Interior Ceiling Sag-Resistant Ceiling Panel.
 f. United States Gypsum Company; Imperial Sag-Resistant Interior Ceiling Gypsum Base.
2. Thickness: 1/2 inch (12.7 mm).

2.4 SPECIALTY GYPSUM BOARD
A. Glass-Mat Interior Gypsum Board: ASTM C 1658/C 1658M. With fiberglass mat laminated to both sides. Specifically designed for interior use.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Continental Building Products, LLC; Weather Defense Platinum Interior Type X.
 b. Georgia-Pacific Building Products; DensArmour Plus.
 c. National Gypsum Company; eXP Interior Extreme.
 d. United States Gypsum Company; USG Sheetrock Brand Glass-Mat Panels Mold Tough.
2. Core: 5/8 inch (15.9 mm), Type X.
4. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

2.5 TILE BACKING PANELS
A. Glass-Mat, Water-Resistant Backing Board: ASTM C 1178/C 1178M, with manufacturer’s standard edges.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; DiamondBack Tile Backer.
 b. Georgia-Pacific Gypsum LLC; DensShield Tile Backer.
 c. National Gypsum; eXP Tile Backer.
 d. United States Gypsum Company; USG Durock Glass-Mat Tile Backerboard.
2. Core: 5/8 inch (15.9 mm), Type X.
3. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

2.6 TRIM ACCESSORIES
A. Interior Trim: ASTM C 1047.
1. Material: Galvanized or aluminum-coated steel sheet or rolled zinc.
2. Shapes:
 a. Cornerbead.
 b. Bullnose bead.
 c. LC-Bead: J-shaped; exposed long flange receives joint compound.
 d. L-Bead: L-shaped; exposed long flange receives joint compound.
 e. U-Bead: J-shaped; exposed short flange does not receive joint compound.
 f. Expansion (control) joint.
B. Aluminum Trim: Extruded accessories of profiles and dimensions indicated.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fry Reglet Corp.
 b. Gordon, Inc.
 c. Pittcon Industries.
2. Aluminum: Alloy and temper with not less than the strength and durability properties of ASTM B 221 (ASTM B 221M), Alloy 6063-T5.
3. Finish: Corrosion-resistant primer compatible with joint compound and finish materials specified.

2.7 JOINT TREATMENT MATERIALS
A. General: Comply with ASTM C 475/C 475M.
B. Joint Tape:
1. Interior Gypsum Board: Paper.
2. Glass-Mat Gypsum Sheathing Board: 10-by-10 glass mesh.
3. Tile Backing Panels: As recommended by panel manufacturer.
C. Joint Compound for Interior Gypsum Board: For each coat, use formulation that is compatible with other compounds applied on previous or for successive coats.
 1. Prefilling: At open joints, rounded or beveled panel edges, and damaged surface areas, use setting-type taping compound.
 2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use drying-type, all-purpose compound.
 a. Use setting-type compound for installing paper-faced metal trim accessories.
 3. Fill Coat: For second coat, use drying-type, all-purpose compound.
 4. Finish Coat: For third coat, use drying-type, all-purpose compound.

D. Joint Compound for Tile Backing Panels:
 1. Glass-Mat, Water-Resistant Backing Panel: As recommended by backing panel manufacturer.

2.8 AUXILIARY MATERIALS
A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer’s written instructions.
B. Steel Drill Screws: ASTM C 1002 unless otherwise indicated.
 1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch (0.84 to 2.84 mm) thick.
C. Sound-Attenuation Blankets: ASTM C 665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.
 1. Fire-Resistance-Rated Assemblies: Comply with mineral-fiber requirements of assembly.
D. Electrical Box Pads: Putty Pads: Moldable non-curing one component, intumescent, fire-rated material for through-penetration fire stop systems and sound attenuation systems; self-adhering; 1/8-inch thick minimum.
E. Acoustical Sealant: Refer to Section 079219 "Acoustical Joint Sealants."
F. Thermal Insulation: As specified in Section 098116 "Acoustical Blanket Insulation."

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine areas and substrates including welded hollow-metal frames and support framing, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 ELECTRICAL BOX PADS FOR SMOKE / FIRE-RATED AND STC-RATED WALLS
A. Prior to installing wallboards, install electrical box pads in accordance with manufacturer’s written instructions.
B. Overlap front edge of box so that pad will be compressed around edges of box as gypsum panels are installed.

3.3 APPLYING AND FINISHING PANELS, GENERAL
A. Comply with ASTM C 840.
B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.
C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch (1.5 mm) of open space between panels. Do not force into place.
D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.
E. Form control and expansion joints with space between edges of adjoining gypsum panels.
F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.
 1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. (0.7 sq. m) in area.
 2. Fit gypsum panels around ducts, pipes, and conduits.
 3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch- (6.4- to 9.5-mm-) wide joints to install sealant.

G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments. Provide 1/4- to 1/2-inch- (6.4- to 12.7-mm-) wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.

H. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.

I. STC-Rated Assemblies: Seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C 919 and with manufacturer’s written instructions for locating edge trim and closing off sound-flanking paths around or through assemblies, including sealing partitions above acoustical ceilings.

J. Install sound attenuation blankets before installing gypsum panels unless blankets are readily installed after panels have been installed on one side.

3.4 APPLYING INTERIOR GYPSUM BOARD

A. Install interior gypsum board in the following locations:
 1. Type X: Vertical surfaces unless otherwise indicated.
 2. Ceiling Type: Ceiling surfaces except at fire rated ceilings, then use Type X.
 3. Glass-Mat Interior Type: As indicated on Drawings and the following.
 a. Interior side of exterior walls.
 b. Interior partitions where Contractor chooses to install gypsum board prior to building dry-in.
 c. On tile walls, unless noted otherwise.
 d. At urinal and toilet fixtures as indicated on Drawings.
 4. Tile Backer, Glass-Mat Type:
 a. Walls in toilet room with shower.
 b. Tiled walls in showers and bathtubs.
 c. Tiled walls in toilet rooms and kitchens.
 d. Behind prefabricated shower or bathtub units.

B. Single-Layer Application:
 1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.
 2. On partitions/walls, apply gypsum panels vertically (parallel to framing) unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.
 a. Stagger abutting end joints not less than one framing member in alternate courses of panels.
 b. At stairwells and other high walls, install panels horizontally unless otherwise indicated or required by fire-resistance-rated assembly.
 3. Fastening Methods: Apply gypsum panels to supports with steel drill screws.

C. Multilayer Application:
 1. On ceilings, apply gypsum board indicated for base layers before applying base layers on walls/partitions; apply face layers in same sequence. Apply base layers at right angles to framing members and offset face-layer joints one framing member, 16 inches (400 mm) minimum, from parallel base-layer joints, unless otherwise indicated or required by fire-resistance-rated assembly.
 2. On partitions/walls, apply gypsum board indicated for base layers and face layers vertically (parallel to framing) with joints of base layers located over stud or furring member and face-layer joints offset at least one stud or furring member with base-layer joints unless otherwise indicated or required by fire-resistance-rated assembly. Stagger joints on opposite sides of partitions.
 3. Fastening Methods: Fasten base layers and face layers separately to supports with screws.
3.5 APPLYING TILE BACKING PANELS
 A. Glass-Mat, Water-Resistant Backing Panels: Comply with manufacturer’s written installation instructions and install at showers, tubs, and where indicated. Install with 1/4-inch (6.4-mm) gap where panels abut other construction or penetrations.
 1. Do not install screws within 6 inches of the shower wall base so as to not penetrate shower pan waterproofing.
 B. Where tile backing panels abut other types of panels in same plane, shim surfaces to produce a uniform plane across panel surfaces.

3.6 INSTALLING TRIM ACCESSORIES
 A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer’s written instructions.
 B. Control Joints: Install control joints at locations indicated on Drawings according to ASTM C 840 and in specific locations approved by Architect for visual effect.
 C. Interior Trim: Install in the following locations:
 1. Cornerbead: Use at outside corners unless otherwise indicated.
 2. Bullnose Bead: Use where indicated.
 3. LC-Bead: Use at exposed panel edges.
 4. L-Bead: Use where indicated.
 5. U-Bead: Use where indicated.
 D. Aluminum Trim: Install in locations indicated on Drawings.

3.7 FINISHING GYPSUM BOARD
 A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.
 B. Prefill open joints, rounded or beveled edges, and damaged surface areas.
 C. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.
 D. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C 840:
 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 2. Level 2: Where indicated on Drawings.
 3. Level 3: Where indicated on Drawings.
 4. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
 a. Primer and its application to surfaces are specified in Section 099123 "Interior Painting."
 E. Glass-Mat Faced Panels: Finish according to manufacturer’s written instructions.

3.8 RATED PARTITION IDENTIFICATION
 A. At fire-rated wall and smoke partition assemblies, provide an identification of wall rating in 4-inch high stenciled block letters in red paint. Space identifications 12 feet on center maximum, 4 feet from corners maximum, above ceiling. Provide identification on both sides of wall.
 B. Partition Identification Text: Apply the following, as applicable:
 1. WARNING: SMOKE PARTITION – PROPERLY SEAL ALL OPENINGS.
 2. WARNING: 1-HOUR SMOKE BARRIER – PROPERLY SEAL ALL OPENINGS.
 3. WARNING: 1-HOUR FIRE PARTITION – PROPERLY SEAL ALL OPENINGS.
 4. WARNING: 1-HOUR FIRE BARRIER – PROPERLY SEAL ALL OPENINGS.
 5. WARNING: 2-HOUR FIRE WALL – PROPERLY SEAL ALL OPENINGS.
 6. WARNING: 2-HOUR FIRE BARRIER – PROPERLY SEAL ALL OPENINGS.
 C. Refer to Section 099123 "Interior Painting" for painting requirements.
 1. Use interior semi-gloss, latex, low VOC paint.
3.9 FIELD QUALITY CONTROL

A. Above-Ceiling Observation: Before installing gypsum board ceilings, conduct an above-ceiling inspection, and report and correct deficiencies in the Work observed. Do not proceed with installation of gypsum board to ceiling support framing until deficiencies have been corrected.

1. Notify Architect seven days in advance of date and time when Project, or part of Project, will be ready for Contractor’s above-ceiling inspection. Provide Architect with copy of deficiencies report. Architect reserves the right to supplement Contractor’s deficiency report with other incomplete or incorrect items that might be observed during Architect’s site visit.

2. Before notifying Architect, complete the following in areas to receive gypsum board ceilings:
 a. Installation of 80 percent of lighting fixtures, powered for operation.
 b. Installation, insulation, and leak and pressure testing of water piping systems.
 c. Installation of air-duct systems.
 d. Installation of air devices.
 e. Installation of mechanical system control-air tubing.
 f. Installation of ceiling support framing.
 g. Touch-up/patching of spray fire-resistive materials (SFRM).
 h. Installation of penetration firestopping in fire- and smoke-rated partitions.
 i. Installation of fire-resistant joint sealants in fire-rated partitions.
 j. Installation of acoustical sealants at adjacent sound-rated partitions.

3.10 PROTECTION

A. Protect adjacent surfaces from drywall compound and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.

B. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.

C. Remove and replace panels that are wet, moisture damaged, and mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Ceramic mosaic tile.
 2. Porcelain tile.
 3. Waterproof membrane for thinset applications.
 5. Metal edge strips.

1.2 DEFINITIONS
A. General: Definitions in the ANSI A108 series of tile installation standards and in ANSI A137.1 apply to Work of this Section unless otherwise specified.
C. Module Size: Actual tile size plus joint width indicated.
D. Face Size: Actual tile size, excluding spacer lugs.

1.3 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.
 1. Review requirements in ANSI A108.01 for substrates and for preparation by other trades.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: Show locations of each type of tile and tile pattern. Show widths, details, and locations of expansion, contraction, control, and isolation joints in tile substrates and finished tile surfaces.
C. Samples for Verification:
 1. Full-size units of each type and composition of tile and for each color and finish required. For ceramic mosaic tile in color blend patterns, provide full sheets of each color blend.
 2. Full-size units of each type of trim and accessory for each color and finish required.
 3. Metal edge strips in 6-inch (150-mm) lengths.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Installer.
B. Master Grade Certificates: For each shipment, type, and composition of tile, signed by tile manufacturer and Installer.
C. Product Certificates: For each type of product.
D. Product Test Reports: For tile-setting and -grouting products and certified porcelain tile.

1.6 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match and are from same production runs as products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Tile and Trim Units: Furnish quantity of full-size units equal to 3 percent of amount installed for each type, composition, color, pattern, and size indicated.
 2. Grout: Furnish quantity of grout equal to 3 percent of amount installed for each type, composition, and color indicated.
1.7 QUALITY ASSURANCE
A. Installer Qualifications:
 1. Installer is a five-star member of the National Tile Contractors Association or a Trowel of Excellence member of the Tile Contractors Association of America.
 2. Installer's supervisor for Project holds the International Masonry Institute Foreman Certification.
 3. Installer employs Ceramic Tile Education Foundation Certified Installers or installers recognized by the U.S. Department of Labor as Journeyman Tile Layers.

1.8 DELIVERY, STORAGE, AND HANDLING
A. Deliver and store packaged materials in original containers with seals unbroken and labels intact until time of use. Comply with requirements in ANSI A137.1 for labeling tile packages.
B. Store tile and cementitious materials on elevated platforms, under cover, and in a dry location.
C. Store aggregates where grading and other required characteristics can be maintained and contamination can be avoided.
D. Store liquid materials in unopened containers and protected from freezing.

1.9 FIELD CONDITIONS
A. Environmental Limitations: Do not install tile until construction in spaces is complete and ambient temperature and humidity conditions are maintained at the levels indicated in referenced standards and manufacturer's written instructions.

1.10 WARRANTY
A. Warranty: Manufacturer agrees to repair or replace components of tile system that fail in materials or workmanship within specified warranty period, when the products are installed within their shelf life and according to governmental regulations and manufacturer's written materials which are in effect at the time of installation.
 1. Warranty Period: Ten years from date of Substantial Completion.

PART 2 - PRODUCTS
2.1 MANUFACTURERS
A. Source Limitations for Tile: Obtain tile of each type and color or finish from single source or producer.
 1. Obtain tile of each type and color or finish from same production run and of consistent quality in appearance and physical properties for each contiguous area.
B. Source Limitations for Setting and Grouting Materials: Obtain ingredients of a uniform quality for each mortar, adhesive, and grout component from single manufacturer and each aggregate from single source or producer.
 1. Obtain setting and grouting materials, except for unmodified Portland cement and aggregate, from single manufacturer.
 2. Obtain waterproof membrane and crack isolation membrane, except for sheet products, from manufacturer of setting and grouting materials.
C. Source Limitations for Other Products: Obtain each of the following products specified in this Section from a single manufacturer:
 1. Waterproof membrane.
 2. Crack isolation membrane.
 3. Metal edge strips.

2.2 PRODUCTS, GENERAL
A. ANSI Ceramic Tile Standard: Provide tile that complies with ANSI A137.1 for types, compositions, and other characteristics indicated.
 1. Provide tile complying with Standard grade requirements unless otherwise indicated.
B. ANSI Standards for Tile Installation Materials: Provide materials complying with ANSI A108.02. ANSI standards referenced in other Part 2 articles, ANSI standards referenced by TCNA installation methods specified in tile installation schedules, and other requirements specified.
C. Factory Blending: For tile exhibiting color variations within ranges, blend tile in factory and package so tile units taken from one package show same range in colors as those taken from other packages and match approved Samples.

D. Mounting: For factory-mounted tile, provide back- or edge-mounted tile assemblies as standard with manufacturer unless otherwise indicated.
 1. Where tile is indicated for installation in wet areas, do not use back- or edge-mounted tile assemblies unless tile manufacturer specifies in writing that this type of mounting is suitable for installation indicated and has a record of successful in-service performance.

2.3 TILE PRODUCTS
A. As Scheduled.

2.4 WATERPROOF MEMBRANE
A. General: Manufacturer’s standard product, selected from the following, that complies with ANSI A118.10 and is recommended by the manufacturer for the application indicated. Include reinforcement and accessories recommended by manufacturer.

B. Chlorinated Polyethylene Sheet: Nonplasticized, chlorinated polyethylene faced on both sides with nonwoven polyester fabric.
 1. Products: Subject to compliance with requirements, provide the following:
 a. Noble Company (The); Nobleseal TS.
 2. Nominal Thickness: 0.030 inch (0.76 mm), minimum.

C. Polyethylene Sheet: Polyethylene faced on both sides with fleece webbing; 0.008-inch (0.2-mm) nominal thickness.
 1. Products: Subject to compliance with requirements, provide the following:
 a. Schluter Systems L.P; KERDI.

D. Fabric-Reinforced, Fluid-Applied Membrane: System consisting of liquid-latex rubber or elastomeric polymer and continuous fabric reinforcement.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Custom Building Products; 9240 Waterproofing and Anti-Fracture Membrane.
 b. H.B. Fuller Construction Products Inc. / TEC; Hydraflex Waterproofing Crack Isolation Membrane with Waterproofing Mesh.
 c. LATICRETE SUPERCAP, LLC; Laticrete 9235 Waterproof Membrane.
 d. MAPEI Corporation; Fiberglass Mesh with Mapelastic Waterstop.

2.5 CRACK ISOLATION MEMBRANE
A. General: Manufacturer’s standard product, selected from the following, that complies with ANSI A118.12 for high performance and is recommended by the manufacturer for the application indicated. Include reinforcement and accessories recommended by manufacturer.

B. Chlorinated Polyethylene Sheet: Nonplasticized, chlorinated polyethylene faced on both sides with nonwoven polyester fabric; 0.030-inch (0.76-mm) nominal thickness.
 1. Products: Subject to compliance with requirements, provide the following:
 a. Noble Company (The); Nobleseal CIS.
 b. Mapei Corporation Mapeguard 2,

C. Fabric-Reinforced, Fluid-Applied Membrane: System consisting of liquid-latex rubber or elastomeric polymer and fabric reinforcement.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Custom Building Products; 9240 Waterproofing and Anti-Fracture Membrane.
 b. H.B. Fuller Construction Products Inc. / TEC; Hydraflex Waterproofing Crack Isolation Membrane.
 c. LATICRETE SUPERCAP, LLC; Laticrete 9235 Waterproof Membrane.
 d. MAPEI Corporation; Mapelastic CI.
2.6 SETTING MATERIALS

A. Medium-Bed (Large and Heavy Tile), Modified Dry-Set Mortar: Comply with requirements in ANSI A118.4, A118.11, and ISO13007 C2TES1P1. Provide product that is approved by manufacturer for application thickness of 5/8 inch (16 mm).

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Custom Building Products; Marble, Granite & Travertine Premium Medium Bed Mortar.
 c. LATICRETE SUPERCAP, LLC; 4-XLT.
 d. MAPEI Corporation; Ultraflex LFT.

B. Improved Modified Dry-Set Mortar (Thinset): ANSI A118.15, A118.11, and ISO 13007 C2ES1P1.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Custom Building Products; CEGlite™ 100% Solids Commercial Epoxy Grout.
 c. LATICRETE SUPERCAP, LLC; LATICRETE® SUPERCAP™ Moisture Vapor Control.
 d. MAPEI Corporation; Floor Tile Mortar.

2. For wall applications, provide mortar that complies with requirements for nonsagging mortar in addition to the other requirements in ANSI A118.15.

2.7 GROUT MATERIALS

A. Water-Cleanable Epoxy Grout: ANSI A118.3, with a VOC content of 65 g/L or less.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Custom Building Products; CEG Lite 100% Solids Commercial Epoxy Grout.
 b. H.B. Fuller Construction Products Inc. / TEC; AccuColor EFX Epoxy Special Effects Grout.
 c. LATICRETE SUPERCAP, LLC; SpectraLOCK Pro Premium.
 d. MAPEI Corporation; Kerapoxy CQ.

2. Provide product capable of withstanding continuous and intermittent exposure to temperatures of up to 140 and 212 deg F (60 and 100 deg C), respectively, and certified by manufacturer for intended use.

B. Grout for Pregrouted Tile Sheets: Same product used in factory to pregrout tile sheets.

2.8 MISCELLANEOUS MATERIALS

A. Trowelable Underlayments and Patching Compounds: Latex-modified, portland cement-based formulation provided or approved by manufacturer of tile-setting materials for installations indicated.

B. Vapor-Retarder Membrane: Polyethylene sheeting, ASTM D 4397, 4.0 mils (0.1 mm) thick.

C. Metal Edge Strips: Angle or L-shaped, height to match tile and setting-bed thickness, metallic or combination of metal and PVC or neoprene base, designed specifically for flooring applications; stainless-steel, ASTM A 666, 300 Series exposed-edge material.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Ceramic Tool Company, Inc.
 c. Schluter Systems L.P.

D. Tile Cleaner: A neutral cleaner capable of removing soil and residue without harming tile and grout surfaces, specifically approved for materials and installations indicated by tile and grout manufacturers.

E. Floor Sealer: Manufacturer’s standard product for sealing grout joints and that does not change color or appearance of grout as approved by grout manufacturer.

2.9 MIXING MORTARS AND GROUT

A. Mix mortars and grouts to comply with referenced standards and mortar and grout manufacturers’ written instructions.

B. Add materials, water, and additives in accurate proportions.

C. Obtain and use type of mixing equipment, mixer speeds, mixing containers, mixing time, and other procedures to produce mortars and grouts of uniform quality with optimum performance characteristics for installations indicated.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates, areas, and conditions where tile will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 1. Verify that substrates for setting tile are firm; dry; clean; free of coatings that are incompatible with tile-setting materials, including curing compounds and other substances that contain soap, wax, oil, or silicone; and comply with flatness tolerances required by ANSI A108.01 for installations indicated.
 2. Verify that concrete substrates for tile floors installed with thinset mortar comply with surface finish requirements in ANSI A108.01 for installations indicated.
 a. Verify that surfaces that received a steel trowel finish have been mechanically scarified.
 b. Verify that protrusions, bumps, and ridges have been removed by sanding or grinding.
 3. Verify that installation of grounds, anchors, recessed frames, electrical and mechanical units of work, and similar items located in or behind tile has been completed.
 4. Verify that joints and cracks in tile substrates are coordinated with tile joint locations; if not coordinated, adjust joint locations in consultation with Architect.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Fill cracks, holes, and depressions in concrete substrates for tile floors installed with thinset mortar with trowelable leveling and patching compound specifically recommended by tile-setting material manufacturer.
B. Where indicated, prepare substrates to receive waterproofing by applying a reinforced mortar bed that complies with ANSI A108.1A and is sloped 1/4 inch per foot (1:50) toward drains.
C. Blending: For tile exhibiting color variations, verify that tile has been factory blended and packaged so tile units taken from one package show same range of colors as those taken from other packages and match approved Samples. If not factory blended, either return to manufacturer or blend tiles at Project site before installing.

3.3 CERAMIC TILE INSTALLATION
A. Comply with TCNA’s "Handbook for Ceramic, Glass, and Stone Tile Installation" for TCNA installation methods specified in tile installation schedules. Comply with parts of the ANSI A108 series "Specifications for Installation of Ceramic Tile" that are referenced in TCNA installation methods, specified in tile installation schedules, and apply to types of setting and grouting materials used.
 1. For the following installations, follow procedures in the ANSI A108 series of tile installation standards for providing 95 percent mortar coverage:
 a. Tile floors in wet areas.
 b. Tile floors consisting of tiles 8 by 8 inches (200 by 200 mm) or larger.
 c. Tile floors consisting of rib-backed tiles.
B. Extend tile work into recesses and under or behind equipment and fixtures to form complete covering without interruptions unless otherwise indicated. Terminate work neatly at obstructions, edges, and corners without disrupting pattern or joint alignments.
C. Accurately form intersections and returns. Perform cutting and drilling of tile without marring visible surfaces. Carefully grind cut edges of tile abutting trim, finish, or built-in items for straight aligned joints. Fit tile closely to electrical outlets, piping, fixtures, and other penetrations so plates, collars, or covers overlap tile.
D. Provide manufacturer’s standard trim shapes where necessary to eliminate exposed tile edges.
E. Where accent tile differs in thickness from field tile, vary setting-bed thickness so that tiles are flush.
F. Jointing Pattern: Lay tile in grid pattern unless otherwise indicated. Lay out tile work and center tile fields in both directions in each space or on each wall area. Lay out tile work to minimize the use of pieces that are less than half of a tile. Provide uniform joint widths unless otherwise indicated.
 1. For tile mounted in sheets, make joints between tile sheets same width as joints within tile sheets so joints between sheets are not apparent in finished work.
 2. Where adjoining tiles on floor, base, walls, or trim are specified or indicated to be same size, align joints.
3. Where tiles are specified or indicated to be whole integer multiples of adjoining tiles on floor, base, walls, or trim, align joints unless otherwise indicated.

G. Joint Widths: Unless otherwise indicated, install tile with the following joint widths:
 1. Ceramic Mosaic Tile: 1/16 inch (1.6 mm) unless scheduled otherwise.
 2. Porcelain Tile: 1/4 inch (6.4 mm) unless scheduled otherwise.

H. Lay out tile wainscots to dimensions indicated or to next full tile beyond dimensions indicated.

I. Expansion Joints: Provide expansion joints and other sealant-filled joints, including control, contraction, and isolation joints, where indicated. Form joints during installation of setting materials, mortar beds, and tile. Do not saw-cut joints after installing tiles.
 1. Where joints occur in concrete substrates, locate joints in tile surfaces directly above them.

J. Stone Thresholds: Install stone thresholds in same type of setting bed as adjacent floor unless otherwise indicated.
 1. At locations where mortar bed (thickset) would otherwise be exposed above adjacent floor finishes, set thresholds in improved modified dry-set mortar (thinstall).
 2. Do not extend waterproofing or crack isolation membrane under thresholds set in improved modified dry-set mortar. Fill joints between such thresholds and adjoining tile set on waterproofing or crack isolation membrane with elastomeric sealant.

K. Metal Edge Strips: Install where exposed edge of tile flooring meets carpet, wood, or other flooring that finishes flush with top of tile.

L. Floor Sealer: Apply floor sealer to cementitious grout joints in tile floors according to floor-sealer manufacturer's written instructions. As soon as floor sealer has penetrated grout joints, remove excess sealer and sealer from tile faces by wiping with soft cloth.

3.4 WATERPROOFING INSTALLATION
 A. Install waterproofing to comply with ANSI A108.13 and manufacturer's written instructions to produce waterproof membrane of uniform thickness that is bonded securely to substrate.
 B. Allow waterproofing to cure and verify by testing that it is watertight before installing tile or setting materials over it.

3.5 CRACK ISOLATION MEMBRANE INSTALLATION
 A. Install crack isolation membrane to comply with ANSI A108.17 and manufacturer's written instructions to produce membrane of uniform thickness that is bonded securely to substrate.
 B. Allow crack isolation membrane to cure before installing tile or setting materials over it.

3.6 ADJUSTING AND CLEANING
 A. Remove and replace tile that is damaged or that does not match adjoining tile. Provide new matching units, installed as specified and in a manner to eliminate evidence of replacement.
 B. Cleaning: On completion of placement and grouting, clean all ceramic tile surfaces so they are free of foreign matter.

3.7 INTERIOR CERAMIC TILE INSTALLATION SCHEDULE
 A. Interior Floor Installations, Concrete Subfloor:
 1. Ceramic Tile Installation: TCNA F113; thinset mortar.
 a. Ceramic Tile Type: As scheduled.
 b. Thinset Mortar: Improved modified dry-set mortar.
 c. Grout: Water-cleanable epoxy grout.
 2. Ceramic Tile Installation: TCNA F115; thinset mortar; epoxy grout.
 a. Ceramic Tile Type: As scheduled.
 b. Thinset Mortar: Improved modified dry-set mortar.
 c. Grout: Water-cleanable epoxy grout.
 a. Ceramic Tile Type: As scheduled.
 b. Thinset Mortar: Improved modified dry-set mortar.
 c. Grout: Water-cleanable epoxy grout.
 a. Ceramic Tile Type: As scheduled.
 b. Thinset Mortar: Medium-bed, modified dry-set mortar.
 c. Grout: Water-cleanable epoxy grout.

B. Interior Wall Installations, Wood or Metal Studs or Furring:
 1. Ceramic Tile Installation: TCNA W243; thinset mortar on gypsum board.
 a. Ceramic Tile Type: As scheduled.
 b. Thinset Mortar: Improved modified dry-set mortar.
 c. Grout: Water-cleanable epoxy grout.
 2. Ceramic Tile Installation: TCNA W245 or TCNA W248; thinset mortar on glass-mat, water-resistant gypsum backer board.
 a. Ceramic Tile Type: As scheduled.
 b. Thinset Mortar: Improved modified dry-set mortar.
 c. Grout: Water-cleanable epoxy grout.

C. Shower Receptor and Wall Installations:
 1. Ceramic Tile Installation: TCNA B420; thinset mortar on waterproof membrane over coated glass-mat, water-resistant gypsum backer board.
 a. Ceramic Tile Type: As scheduled.
 b. Thinset Mortar: Improved modified dry-set mortar.
 c. Grout: Water-cleanable epoxy grout.

END OF SECTION
SECTION 095113
ACOUSTICAL PANEL CEILINGS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes acoustical panels and exposed suspension systems for interior ceilings.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.
 B. Samples for Verification: For each component indicated and for each exposed finish required, prepared on
 Samples of sizes indicated below:
 1. Acoustical Panels: Samples of each type, color, pattern, and texture in manufacturer's standard
 sample size, minimum 6 inches square.

1.3 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown
 and coordinated with each other, using input from installers of the items involved:
 1. Ceiling suspension-system members.
 2. Structural members to which suspension systems will be attached.
 3. Method of attaching hangers to building structure.
 a. Furnish layouts for cast-in-place anchors, clips, and other ceiling attachment devices whose
 installation is specified in other Sections.
 4. Carrying channels or other supplemental support for hanger-wire attachment where conditions do
 not permit installation of hanger wires at required spacing.
 5. Size and location of initial access modules for acoustical panels.
 6. Items penetrating finished ceiling and ceiling-mounted items including the following:
 a. Lighting fixtures.
 b. Diffusers.
 c. Grilles.
 d. Speakers.
 e. Sprinklers.
 f. Access panels.
 g. Perimeter moldings.
B. Qualification Data: For testing agency.
C. Product Test Reports: For each acoustical panel ceiling, for tests performed by manufacturer and
 witnessed by a qualified testing agency.
D. Evaluation Reports: For each acoustical panel ceiling suspension system and anchor and fastener type,
 from ICC-ES.

1.4 CLOSEOUT SUBMITTALS
A. Maintenance Data: For finishes to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials, from the same product run, that match products installed and that are packaged
 with protective covering for storage and identified with labels describing contents.
 1. Acoustical Ceiling Units: Full-size panels equal to 2 percent of quantity installed.
 2. Suspension-System Components: Quantity of each exposed component equal to 2 percent of
 quantity installed.
 3. Hold-Down Clips: Equal to 2 percent of quantity installed.
1.6 QUALITY ASSURANCE
A. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials and execution.
1. Build mockup of typical ceiling area as directed by Architect.
2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 DELIVERY, STORAGE, AND HANDLING
A. Deliver acoustical panels, suspension-system components, and accessories to Project site and store them in a fully enclosed, conditioned space where they will be protected against damage from moisture, humidity, temperature extremes, direct sunlight, surface contamination, and other causes.
B. Before installing acoustical panels, permit them to reach room temperature and a stabilized moisture content.

1.8 FIELD CONDITIONS
A. Environmental Limitations: Do not install acoustical panel ceilings until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, work above ceilings is complete, and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Source Limitations: Obtain each type of acoustical ceiling panel and its supporting suspension system from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS
A. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
1. Flame-Spread Index: Class A according to ASTM E 1264.
2. Smoke-Developed Index: 450 or less.

2.3 ACOUSTICAL PANELS
A. Acoustical Panel Standard: Provide manufacturer’s standard panels according to ASTM E 1264 and designated by type, form, pattern, acoustical rating, and light reflectance unless otherwise indicated.
1. Classification: Provide fire-resistance-rated panels complying with ASTM E 1264 for type, form, and pattern as follows:
 a. Type and Form: Type III, mineral base with painted finish; Form 2, water felted.
 b. Pattern: CE (perforated, small holes and lightly textured).
2. Color: As scheduled.
3. LR: Not less than 0.85.
4. NRC: Not less than 0.75.
5. CAC: Not less than 35.
6. AC: Not less than 170.
7. Edge/Joint Detail: Match existing.
8. Thickness: As scheduled.
9. Modular Size: As scheduled.
10. Broad Spectrum Antimicrobial Fungicide and Bactericide Treatment: Provide acoustical panels treated with manufacturer’s standard antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested according to ASTM D 3273 and evaluated according to ASTM D 3274 or ASTM G 21.
 1. Classification: Provide panels complying with ASTM E 1264 for type, form, and pattern as follows:
 a. Type and Form: Type XX, other types; described as high-density, ceramic- and mineral-base panels with scrubbable finish, resistant to heat, moisture, and corrosive fumes.
 b. Pattern: E (lightly textured).
 2. Color: As scheduled.
 3. LR: Not less than 0.82.
 4. NRC: Not less than 0.55.
 5. CAC: Not less than 38.
 7. Thickness: As scheduled.
 8. Modular Size: As scheduled.
 9. Broad Spectrum Antimicrobial Fungicide and Bactericide Treatment: Provide acoustical panels treated with manufacturer’s standard antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested according to ASTM D 3273 and evaluated according to ASTM D 3274 or ASTM G 21.

2.4 METAL SUSPENSION SYSTEM

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Armstrong World Industries, Inc.
 2. CertainTeed Corp.
 3. Chicago Metallic Corporation.
 4. USG Interiors, Inc.; Subsidiary of USG Corporation.

B. Metal Suspension-System Standard: Provide manufacturer’s standard, direct-hung, metal suspension system and accessories according to ASTM C 635/C 635M and designated by type, structural classification, and finish indicated.
 1. High-Humidity Finish: Where indicated, provide coating tested and classified for "severe environment performance" according to ASTM C 635/C 635M.

C. Wide-Face, Capped, Double-Web, Steel Suspension System: Main and cross runners roll formed from cold-rolled steel sheet; prepainted, electrolytically zinc coated, or hot-dip galvanized, G30 (Z90) coating designation; with prefinished 15/16-inch- (24-mm-) wide metal caps on flanges.
 2. End Condition of Cross Runners: Override (stepped) or butt-edge type.
 3. Face Design: Flat, flush.
 4. Cap Material: Cold-rolled steel or aluminum.
 5. Cap Finish: Painted in color as selected from manufacturer’s full range.

D. Wide-Face, Single-Web, Extruded-Aluminum Suspension System: Main and cross runners formed from extruded aluminum to produce structural members with 15/16-inch- (24-mm-) wide faces.
 2. Face Design: Screw-slot profile.
 3. Face Finish: Painted white.
 4. Reveal Finish: Painted white.

2.5 ACCESSORIES

A. Attachment Devices: Size for five times the design load indicated in ASTM C 635/C 635M, Table 1, "Direct Hung," unless otherwise indicated.

B. Wire Hangers, Braces, and Ties: Provide wires as follows:
 2. Size: Wire diameter sufficient for its stress at three times hanger design load (ASTM C 635/C 635M, Table 1, "Direct Hung") will be less than yield stress of wire, but not less than 0.106-inch- (2.69-mm-) diameter wire.

C. Hold-Down Clips: Manufacturer’s standard hold-down.
2.6 METAL EDGE MOLDINGS AND TRIM
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Armstrong World Industries, Inc.
2. CertainTeed Corporation.
3. Chicago Metallic Corporation.
4. Fry Reglet Corporation.
5. Gordon, Inc.
B. Roll-Formed, Sheet-Metal Edge Moldings and Trim: Type and profile indicated or, if not indicated, manufacturer's standard moldings for edges and penetrations that comply with seismic design requirements; formed from sheet metal of same material, finish, and color as that used for exposed flanges of suspension-system runners.
1. Edge moldings shall fit acoustical panel edge details and suspension systems indicated and match width and configuration of exposed runners unless otherwise indicated.
2. For lay-in panels with reveal edge details, provide stepped edge molding that forms reveal of same depth and width as that formed between edge of panel and flange at exposed suspension member.
3. For circular penetrations of ceiling, provide edge moldings fabricated to diameter required to fit penetration exactly.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine substrates, areas, and conditions, including structural framing to which acoustical panel ceilings attach or abut, with Installer present, for compliance with requirements specified in this and other Sections that affect ceiling installation and anchorage and with requirements for installation tolerances and other conditions affecting performance of acoustical panel ceilings.
B. Examine acoustical panels before installation. Reject acoustical panels that are wet, moisture damaged, or mold damaged.
C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION
A. Measure each ceiling area and establish layout of acoustical panels to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width panels at borders unless otherwise indicated, and comply with layout shown on reflected ceiling plans.
B. Layout openings for penetrations centered on the penetrating items.
3.3 INSTALLATION
A. Install acoustical panel ceilings according to ASTM C 636/C 636M and manufacturer's written instructions.
B. Suspend ceiling hangers from building's structural members and as follows:
1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.
2. Splay hangers only where required to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
3. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacings required to support standard suspension-system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices.
4. Secure wire hangers to ceiling-suspension members and to supports above with a minimum of three tight turns. Connect hangers directly to structure or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.
5. Do not support ceilings directly from permanent metal forms or floor deck. Fasten hangers to cast-in-place hanger inserts, postinstalled mechanical or adhesive anchors, or power-actuated fasteners that extend through forms into concrete.
6. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels or other supplemental support for attachment of hanger wires.
7. Do not attach hangers to steel deck tabs.
8. Do not attach hangers to steel roof deck. Attach hangers to structural members.
9. Space hangers not more than 48 inches (1200 mm) o.c. along each member supported directly from hangers unless otherwise indicated; provide hangers not more than 8 inches (200 mm) from ends of each member.
10. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards.

C. Secure bracing wires to ceiling suspension members and to supports with a minimum of four tight turns. Suspend bracing from building's structural members as required for hangers, without attaching to permanent metal forms, steel deck, or steel deck tabs. Fasten bracing wires into concrete with cast-in-place or postinstalled anchors.

D. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical panels.
 1. Screw attach moldings to substrate at intervals not more than 16 inches (400 mm) o.c. and not more than 3 inches (75 mm) from ends. Miter corners accurately and connect securely.
 2. Do not use exposed fasteners, including pop rivets, on moldings and trim.

E. Install suspension-system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.

F. Install acoustical panels with undamaged edges and fit accurately into suspension-system runners and edge moldings. Scribe and cut panels at borders and penetrations to provide precise fit.
 1. Arrange directionally patterned acoustical panels as follows:
 a. As indicated on reflected ceiling plans.
 2. For square-edged panels, install panels with edges fully hidden from view by flanges of suspension-system runners and moldings.
 3. For reveal-edged panels on suspension-system runners, install panels with bottom of reveal in firm contact with top surface of runner flanges.
 4. For reveal-edged panels on suspension-system members with box-shaped flanges, install panels with reveal surfaces in firm contact with suspension-system surfaces and panel faces flush with bottom face of runners.
 5. Paint cut edges of panel remaining exposed after installation; match color of exposed panel surfaces using coating recommended in writing for this purpose by acoustical panel manufacturer.
 6. Install hold-down clips in areas indicated; space according to panel manufacturer's written instructions unless otherwise indicated.
 a. Hold-Down Clips: Space 24 inches (610 mm) o.c. on all cross runners.

3.4 ERECTION TOLERANCES
A. Suspended Ceilings: Install main and cross runners level to a tolerance of 1/8 inch in 12 feet (3 mm in 3.6 m), non-cumulative.
B. Moldings and Trim: Install moldings and trim to substrate and level with ceiling suspension system to a tolerance of 1/8 inch in 12 feet (3 mm in 3.6 m), non-cumulative.

3.5 CLEANING
A. Clean exposed surfaces of acoustical panel ceilings, including trim, edge moldings, and suspension-system members. Comply with manufacturer's written instructions for cleaning and touchup of minor finish damage.
B. Remove and replace ceiling components that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

END OF SECTION
SECTION 095426
LINEAR WOOD CEILING PANELS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes:
 1. Concealed suspension system for Wood Grille ceiling panels.
 2. Wood Grille ceiling panels for concealed suspension system.
 3. Trim and accessories.

1.2 QUALITY ASSURANCE
A. Installer Qualifications: Engage an experienced Installer, approved by wood ceiling manufacturer, who has completed panel ceilings similar in species, design, and extent to that indicated for this Project and with a record of successful in-service performance.
B. Inspection: All work must pass inspection and approval of architect, as well as the local codes and regulations or authorities having jurisdiction.
C. Single-Source Responsibility for Wood Ceiling Panel System: Obtain each type of Wood Grille panels from a single fabricator, with in-house Shop Drawing capabilities, in-house assembly and finishing capabilities, and with resources to provide products of consistent quality in appearance and physical properties without delaying the project.
D. Single-Source Responsibility for Suspension System: Obtain each type of suspension system from a single source with resources to provide products of consistent quality in appearance and physical properties without delaying project.
E. Pre-Installation Conference: Conduct conference at Project site to comply with requirements of Division 01 Section "Project Meetings."
F. Ceiling Panel Mockups: Build mockups to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 1. Build mockup as directed by architect.
 2. Build mockups of typical linear wood ceiling panels in sizes approximately 48 inches long by 72 inches high by full thickness, including backup ceiling materials and accessories.
 a. Include a typical steel plate and panel joint.
 b. Include adjacent mock-up of wood paneling (Reference Section 064200).
 c. Include suspended ceiling grid and acoustical ceiling panel.
 3. Approval of mockups is for proper alignment of adjacent surfaces, material finish and edge treatment.
 a. Approval of mockups is also for other material and construction qualities specifically approved by Architect in writing.
 b. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless such deviations are specifically approved by Architect, in writing.
 4. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.3 SUBMITTALS
A. Product Data: For each type of product specified.
B. Samples: For verification of each type of exposed finish required, prepared on samples of size indicated below. Where finishes involve normal color and texture variations, include sample sets showing the range of variations expected.
 1. 12” x 18” samples of each panel type, pattern, and color.
1.4 SHOP DRAWINGS & COORDINATION WITH OTHER TRADES

A. Shop Drawings: Provide Shop Drawings/Coordination Drawings for all ceilings, which should include RCP and product details. Coordinate Wood Grille ceiling panel layout and installation of wood panels and suspension system components with other construction elements that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system components, partition assemblies and all perimeter conditions.

B. Shop Drawings: Provide Shop Drawings/Coordination Drawings for all panels, which should include wall elevations and product details. Coordinate Wood Grille panel layout and installation of wood panels and suspension system components with other construction elements that penetrates walls or is supported by them, including light switches, HVAC controls, fire-suppression system components, partition assemblies and all perimeter conditions.

1.5 PROJECT CONDITIONS

A. Space Enclosure and Environmental Limitations: Do not install wood panel ceilings until spaces are enclosed and weatherproof, wet-work in spaces is completed and dry, work above ceilings is completed, and ambient temperature and humidity conditions are being maintained at the levels indicated for Project when occupied for its intended use.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Delivery & Unloading: Coordinate crate sizes, weights, unloading options, and delivery schedule with manufacturer prior to fabrication. Deliver wood panels and suspension system components to Project site in original, unopened packages and store them in a fully enclosed space where they will be protected against damage from moisture, direct sunlight, surface contamination, and other mistreatment.

B. Acclimatization: Before installing wood panels, permit them to reach room temperature and a stabilized moisture content (at least 72 hours) per AWI standards.

C. Handling: Handle Wood Grille ceiling panels carefully to avoid chipping edges or damaging units in any way.

D. Protection:
 1. Personnel: Follow good safety and industrial hygiene practices during handling and installing of all products and systems, with personnel to take necessary precautions and wear appropriate protective equipment as needed. Read related literature for important information on products before installation. Contractor to be solely responsible for all personal safety issues during and subsequent to installation; architect, specifier, owner, and manufacturer will rely on contractor’s performance in such regard.
 2. Existing completed work: Protect completed work above suspension system from damage during installation of suspension system components.

1.7 EXTRA MATERIALS / WARRANTIES

A. Extra Materials: Furnish extra materials described below that match products installed, are packaged with protective covering for storage, and are identified with labels clearly describing contents.
 1. Wood Grille ceiling panels: Furnish quantity of full-size units equal to 2.0 percent of amount installed.
 2. Suspension System Components: Furnish quantity of each component equal to 2.0 percent of amount installed.

B. Warranties: Provide owner with a (1) year warranty for material and workmanship on all installed products.
 1. Manufacturers: All materials, wood ceiling and grid, shall be warranted for (1) one year for material and workmanship.
 2. Installer: All work shall be warranted for (1) year from final acceptance of completed work.
PART 2 - PRODUCTS

2.1 WOOD GRILLE CEILING PANELS
 A. Basis of Design: Rulon International; Linear Open Suspended Wood Ceiling Systems.
 1. Wood Panels:
 a. Species: Red Oak.
 b. Member Size: As indicated.
 c. Edge Profile: Square.
 d. Members/LF: As indicated.
 e. Fire Rating: Class A as determined by ASTM E1264.
 1) Surface Burning Characteristics per ASTM E84:
 a) Flame Spread Index: 25 or less.
 b) Smoke Developed Index: 50 or less.
 f. Finish: As scheduled.

2.2 METAL SUSPENSION SYSTEMS, GENERAL
 A. Manufacturer’s standard cliprail system.
 B. Attachment Devices: Size for 3 times the design load indicated in ASTM C 635, Table 1, Direct Hung unless otherwise indicated.
 C. Wire, Braces, Ties, Hanger Rods, Flat Hangers and Angle Hangers: Provide wires, rods and hangers that comply with applicable ASTM specifications.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. General: Examine substrates and structural framing to which ceiling panels attach or abut, with installer present, for compliance with requirements specified in this and other sections that affect installation and anchorage. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION
 A. Coordination: Furnish layouts for cast-in-place anchors, clips, and other ceiling anchors whose installation is specified in other Sections.
 B. Layout: Measure each ceiling area and establish the layout of Wood Grille Panel to balance border widths at opposite edges. Avoid using less-than-half-width panels at borders, and conform to the layout shown on drawings in accordance with approved Shop Drawings.

3.3 INSTALLATION
 A. General: Install to comply with manufacturer’s instructions and CISCA “Ceiling Systems Handbook.”
 B. Attachments: Suspend ceiling hangers from building’s structural members per manufacturer’s instructions and in compliance with all local codes and regulations.
 C. Suspension System Installation: Install suspension systems to comply with appropriate industry standards. Locate cliprails perpendicular to wood direction, 4 inches (102mm) from one wall for the first cliprail, continuing 24 inches (610mm) maximum, on center, ending within 4 inches (102mm) of the opposite wall. #12-Gauge Wire hangers shall be installed 4 feet (1219mm) on center, along each cliprail. The wire hangers shall be attached to inserts, screw eyes, or other connecting devices that are secure and appropriate for suspending the ceiling and that will not deteriorate or fail with age or elevated temperatures.
 D. Wood Strip Installation: Use manufacturer’s standard clamping tool to snap wood strips onto cliprails. The clips, which are attached to the cliprail, have projections that insert into grooves cut into the back side of the wood strips. Proper tool adjustment is important to assure that the clips achieve a deep seat within the wood grooves. Installation shall proceed, in sequence, from one wall to the opposite side. When installing Linear Open Style ceilings with fiberfelt spacer, hang wood strips with felt edge facing the area yet to be filled. When installing Linear Open Style ceilings with hardboard spacer, hang a wood strip, then insert the hardboard spacer in the notched area on the back of the board with spacer edge facing the area yet to be filled. Then the next board may be installed over the spacer.
E. Suspension Runners: Install suspension system runners so they are square and securely interlocked with one another. Install number and use on-center spacing per wood ceiling manufacturer’s instructions, as indicated on approved Shop Drawings and in compliance with all local codes.

3.4 CLEANING
A. General: Clean exposed wood surfaces of wood grille panels. Comply with manufacturer’s instructions for cleaning and touchup of minor finish damage. Remove and replace wood ceiling components that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

END OF SECTION
SECTION 096513
RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Thermoset-rubber base.
 2. Vinyl stair accessories.
 3. Rubber molding accessories.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Samples for Verification: For each type of product indicated and for each color, texture, and pattern required in manufacturer's standard-size Samples, but not less than 12 inches (300 mm) long.
C. Product Schedule: For resilient base and accessory products. Use same designations indicated on Drawings.

1.3 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Furnish not less than 10 linear feet (3 linear m) for every 500 linear feet (150 linear m) or fraction thereof, of each type, color, pattern, and size of resilient product installed.

1.4 QUALITY ASSURANCE
A. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials and execution.
 1. Coordinate mockups in this Section with mockups specified in other Sections.
 2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F (10 deg C) or more than 90 deg F (32 deg C).

1.6 FIELD CONDITIONS
A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F (21 deg C) or more than 95 deg F (35 deg C), in spaces to receive resilient products during the following periods:
 1. 48 hours before installation.
 2. During installation.
 3. 48 hours after installation.
B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F (13 deg C) or more than 95 deg F (35 deg C).
C. Install resilient products after other finishing operations, including painting, have been completed.
PART 2 - PRODUCTS

2.1 THERMOSET-RUBBER BASE

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Burke Mercer Flooring Products; a division of Burke Industries Inc.
 2. Flexco.
 3. Johnsonite; a Tarkett company.
 4. Roppe Corporation, USA.

B. Basis-of-Design Product: As scheduled.

C. Product Standard: ASTM F 1861, Type TS (rubber, vulcanized thermoset), Group I (solid, homogeneous).
 1. Style and Location: As scheduled

D. Thickness: 0.125 inch (3.2 mm).

E. Height: As indicated on Drawings.

F. Lengths: Coils in manufacturer's standard length.

G. Inside Corners: Job formed or preformed.

H. Outside Corners: Job formed or preformed.

I. Colors: As scheduled.

2.2 VINYL STAIR ACCESSORIES

A. Fire-Test-Response Characteristics: As determined by testing identical products according to ASTM E 648 or NFPA 253 by a qualified testing agency.
 1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Burke Mercer Flooring Products; a division of Burke Industries Inc.
 2. Flexco.
 3. Johnsonite; a Tarkett company.
 4. Musson Rubber Co.
 5. R.C.A. Rubber Company (The).
 6. Roppe Corporation, USA.

C. Basis-of-Design Product: As scheduled.

D. Stair Treads: ASTM F 2169, Type TV (vinyl, thermoplastic).
 1. Class: 1 (smooth, flat).
 3. Nosing Style: Square, adjustable to cover angles between 60 and 90 degrees.
 4. Nosing Height: As indicated.
 5. Thickness: 1/4 inch (6 mm) and tapered to back edge.
 6. Size: Lengths and depths to fit each stair tread in one piece or, for treads exceeding maximum lengths manufactured, in equal-length units.

E. Separate Risers: Smooth, flat; in height that fully covers substrate; produced by same manufacturer as treads and recommended by manufacturer for installation with treads.
 1. Style: Coved toe, 7 inches (178 mm) high by length matching treads.
 2. Thickness: Manufacturer's standard.

F. Locations: Provide vinyl stair accessories in areas indicated.

G. Colors and Patterns: As scheduled.

2.3 RUBBER MOLDING ACCESSORY

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Roppe Corporation, USA.
 2. VPI Corporation.

B. Profile and Dimensions: As indicated.
C. Locations: Provide rubber molding accessories in areas indicated.
D. Colors and Patterns: As Scheduled.

2.4 INSTALLATION MATERIALS
A. Trowelable Leveling and Patching Compounds: Latex-modified, portland-cement-based or blended hydraulic-cement-based formulation provided or approved by resilient-product manufacturer for applications indicated.
B. Adhesives: Water-resistant type recommended by resilient-product manufacturer for resilient products and substrate conditions indicated.
 1. Adhesives shall have a VOC content of 50 g/L or less.
C. Stair-Tread Nose Filler: Two-part epoxy compound recommended by resilient stair-tread manufacturer to fill nosing substrates that do not conform to tread contours.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
 1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.
B. Proceed with installation only after unsatisfactory conditions have been corrected.
 1. Installation of resilient products indicates acceptance of surfaces and conditions.

3.2 PREPARATION
A. Prepare substrates according to manufacturer’s written instructions to ensure adhesion of resilient products.
B. Concrete Substrates for Resilient Stair Accessories: Prepare horizontal surfaces according to ASTM F 710.
 1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
 2. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by manufacturer. Do not use solvents.
 3. Alkalinity and Adhesion Testing: Perform tests recommended by manufacturer. Proceed with installation only after substrate alkalinity falls within range on pH scale recommended by manufacturer in writing, but not less than 5 or more than 9 pH.
 4. Moisture Testing: Perform tests so that each test area does not exceed 200 sq. ft. (18.6 sq. m), and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.
 a. Anhydrous Calcium Chloride Test: ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. (1.36 kg of water/92.9 sq. m) in 24 hours.
 b. Relative Humidity Test: Using in-situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.
C. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.
D. Do not install resilient products until materials are the same temperature as space where they are to be installed.
 1. At least 48 hours in advance of installation, move resilient products and installation materials into spaces where they will be installed.

3.3 RESILIENT BASE INSTALLATION
A. Comply with manufacturer’s written instructions for installing resilient base.
B. Apply resilient base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.
C. Install resilient base in lengths as long as practical without gaps at seams and with tops of adjacent pieces aligned.

D. Tightly adhere resilient base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.

E. Do not stretch resilient base during installation.

F. On masonry surfaces or other similar irregular substrates, fill voids along top edge of resilient base with manufacturer’s recommended adhesive filler material.

G. Preformed Corners: Install preformed corners before installing straight pieces.

H. Job-Formed Corners:

1. Outside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches (76 mm) in length.
 a. Form without producing discoloration (whitening) at bends.

2. Inside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches (76 mm) in length.
 a. Miter corners to minimize open joints.

3.4 RESILIENT ACCESSORY INSTALLATION

A. Comply with manufacturer’s written instructions for installing resilient accessories.

B. Resilient Stair Accessories:

1. Use stair-tread-nose filler to fill nosing substrates that do not conform to tread contours.

2. Tightly adhere to substrates throughout length of each piece.

3. For treads installed as separate, equal-length units, install to produce a flush joint between units.

C. Resilient Molding Accessories: Butt to adjacent materials and tightly adhere to substrates throughout length of each piece. Install reducer strips at edges of floor covering that would otherwise be exposed.

3.5 CLEANING AND PROTECTION

A. Comply with manufacturer’s written instructions for cleaning and protecting resilient products.

B. Perform the following operations immediately after completing resilient-product installation:

1. Remove adhesive and other blemishes from surfaces.

C. Protect resilient products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.

D. Cover resilient products subject to wear and foot traffic until Substantial Completion.

END OF SECTION
SECTION 096519

RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Solid vinyl floor tile.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: For each type of resilient floor tile.
 1. Include floor tile layouts, edges, columns, doorways, enclosing partitions, built-in furniture, cabinets, and cutouts.
 2. Show details of special patterns.
C. Samples for Verification: Full-size units of each color and pattern of floor tile required.
D. Product Schedule: For floor tile. Use same designations indicated on Drawings.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of floor tile to include in maintenance manuals.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Floor Tile: Furnish one box for every 50 boxes or fraction thereof, of each type, color, and pattern of floor tile installed.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are competent in techniques required by manufacturer for floor tile installation and seaming method indicated.
 1. Engage an installer who employs workers for this Project who are trained or certified by floor tile manufacturer for installation techniques required.
B. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials and execution.
 1. Coordinate mockups in this Section with mockups specified in other Sections.
 a. Size: Minimum 100 sq. ft. (9.3 sq. m) for each type, color, and pattern in locations directed by Architect.
 2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Store floor tile and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F (10 deg C) or more than 90 deg F (32 deg C). Store floor tiles on flat surfaces.

1.7 FIELD CONDITIONS

A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F (21 deg C) or more than 95 deg F (35 deg C), in spaces to receive floor tile during the following periods:
 1. 48 hours before installation.
 2. During installation.
 3. 48 hours after installation.
B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F (13 deg C) or more than 95 deg F (35 deg C).
C. Close spaces to traffic during floor tile installation.
D. Close spaces to traffic for 48 hours after floor tile installation.
E. Install floor tile after other finishing operations, including painting, have been completed.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

2.2 SOLID VINYL FLOOR TILE

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Armstrong World Industries, Inc.
 2. Gerflor.
 3. Johnsonite; a Tarkett company.
 4. Patcraft; a division of Shaw Industries, Inc.
 5. Polyflor, Ltd.; distributed by Gerbert Limited.
 6. Shaw Contract Group; a Berkshire Hathaway company.

B. Basis-of-Design Products: As scheduled.
C. Tile Standard: ASTM F 1700.
 1. Class: Class III, Printed Film Vinyl Tile.
 2. Type: B, Embossed Surface.
D. Thickness: 0.120 inch (3.0 mm).
E. Size: 9 by 36 inches (23 by 914 mm), nominal.
F. Colors and Patterns: As scheduled.

2.3 INSTALLATION MATERIALS

A. Trowelable Leveling and Patching Compounds: Latex-modified, portland-cement-based or blended hydraulic-cement-based formulation provided or approved by floor tile manufacturer for applications indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
 1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of floor tile.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare substrates according to floor tile manufacturer’s written instructions to ensure adhesion of resilient products.
B. Concrete Substrates: Prepare according to ASTM F 710.
 1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
 2. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by floor tile manufacturer. Do not use solvents.
 3. Alkalinity and Adhesion Testing: Perform tests recommended by floor tile manufacturer. Proceed with installation only after substrate alkalinity falls within range on pH scale recommended by manufacturer in writing, but not less than 5 or more than 9 pH.
4. Moisture Testing: Perform tests so that each test area does not exceed 200 sq. ft. (18.6 sq. m), and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.
 a. Anhydrous Calcium Chloride Test: ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. (1.36 kg of water/92.9 sq. m) in 24 hours.
 b. Relative Humidity Test: Using in-situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.

C. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.

D. Do not install floor tiles until materials are the same temperature as space where they are to be installed.
 1. At least 48 hours in advance of installation, move resilient floor tile and installation materials into spaces where they will be installed.

E. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient floor tile.

3.3 FLOOR TILE INSTALLATION
 A. Comply with manufacturer’s written instructions for installing floor tile.
 B. Lay out floor tiles from center marks established with principal walls, discounting minor offsets, so tiles at opposite edges of room are of equal width. Adjust as necessary to avoid using cut widths that equal less than one-half tile at perimeter.
 1. Lay tiles in pattern indicated.
 C. Match floor tiles for color and pattern by selecting tiles from cartons in the same sequence as manufactured and packaged, if so numbered. Discard broken, cracked, chipped, or deformed tiles.
 1. Lay tiles in pattern of colors and sizes indicated.
 D. Scribe, cut, and fit floor tiles to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.
 E. Extend floor tiles into toe spaces, door reveals, closets, and similar openings. Extend floor tiles to center of door openings.
 F. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on floor tiles as marked on substrates. Use chalk or other nonpermanent marking device.
 G. Adhere floor tiles to substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.

3.4 CLEANING AND PROTECTION
 A. Comply with manufacturer’s written instructions for cleaning and protecting floor tile.
 B. Perform the following operations immediately after completing floor tile installation:
 1. Remove adhesive and other blemishes from surfaces.
 2. Sweep and vacuum surfaces thoroughly.
 3. Damp-mop surfaces to remove marks and soil.
 C. Protect floor tile from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.
 D. Cover floor tile until Substantial Completion.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Vinyl wall covering.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include data on physical characteristics, durability, fade resistance, and fire-test-response characteristics.
 B. Shop Drawings: Show location and extent of each wall-covering type. Indicate pattern placement, seams and termination points.
 C. Samples for Verification: For each type of wall covering and for each color, pattern, texture, and finish specified, full width by 36-inch (914-mm) long in size.
 1. Wall-Covering Sample: From same production run to be used for the Work, with specified treatments applied. Show complete pattern repeat.
 D. Product Schedule: For wall coverings. Use same designations indicated on Drawings.

1.3 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For wall coverings to include in maintenance manuals.

1.4 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Wall-Covering Materials: For each type, color, texture, and finish, full width by length to equal to 5 percent of amount installed.

1.5 QUALITY ASSURANCE
 A. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and to set quality standards for installation.
 1. Build mockups for each type of wall covering on each substrate required. Comply with requirements in ASTM F 1141 for appearance shading characteristics.
 2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.6 FIELD CONDITIONS
 A. Environmental Limitations: Do not deliver or install wall coverings until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above ceilings is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at levels intended for occupants after Project completion during the remainder of the construction period.
 B. Lighting: Do not install wall covering until lighting that matches conditions intended for occupants after Project completion is provided on the surfaces to receive wall covering.
 C. Ventilation: Provide continuous ventilation during installation and for not less than the time recommended by wall-covering manufacturer for full drying or curing.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics: As determined by testing identical wall coverings applied with
identical adhesives to substrates according to test method indicated below by a qualified testing agency.
Identify products with appropriate markings of applicable testing agency.
1. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency.
 a. Flame-Spread Index: 25 or less.
 b. Smoke-Developed Index: 50 or less.
2. Fire-Growth Contribution: No flashover and heat and smoke release according to NFPA 265.

2.2 VINYL WALL COVERING

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. DesignTex Inc.; a Steelcase company.
 2. Gilford.
 3. Innovations in Wallcoverings, Inc.
 4. Knoll, Inc.
 5. MDC Wallcoverings.
 7. U.S. Vinyl Manufacturing Corporation.
B. Basis-of-Design Product: As scheduled.
C. Description: Provide mildew-resistant products in rolls from same production run and complying with the
 following:
 1. CCC-W-408-D for Type II, Medium-Duty products.
D. Total Weight: 20 oz., excluding coatings.
E. Width: 54 inches (1372 mm).
G. Colors, Textures, and Patterns: As scheduled.

2.3 ACCESSORIES

A. Adhesive: Mildew-resistant, nonstaining, strippable adhesive, for use with specific wall covering and
 substrate application indicated and as recommended in writing by wall-covering manufacturer.
B. Primer/Sealer: Mildew resistant, complying with requirements in Section 099123 "Interior Painting" and
 recommended in writing by primer/sealer and wall-covering manufacturers for intended substrate.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for levelness,
 wall plumbness, maximum moisture content, and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Comply with manufacturer’s written instructions for surface preparation.
B. Clean substrates of substances that could impair bond of wall covering, including dirt, oil, grease, mold,
 mildew, and incompatible primers.
C. Prepare substrates to achieve a smooth, dry, clean, structurally sound surface free of flaking, unsound
 coatings, cracks, and defects.
 1. Gypsum Board: Prime with primer as recommended in writing by primer/sealer manufacturer and
 wall-covering manufacturer.
 2. Painted Surfaces: Treat areas susceptible to pigment bleeding.
D. Check painted surfaces for pigment bleeding. Sand gloss, semigloss, and eggshell finish with fine
sandpaper.
E. Remove hardware and hardware accessories, electrical plates and covers, light fixture trims, and similar
items.
F. Acclimatize wall-covering materials by removing them from packaging in the installation areas not less
than 24 hours before installation.

3.3 WALL-COVERING INSTALLATION

A. Comply with wall-covering manufacturers' written installation instructions applicable to products and
applications indicated.
B. Cut wall-covering strips in roll number sequence. Change the roll numbers at partition breaks and corners.
C. Install strips in same order as cut from roll.
 1. For solid-color, even-texture, or random-match wall coverings, reverse every other strip or as
 recommended by wall covering manufacturer.
D. Install wall covering without lifted or curling edges and without visible shrinkage.
E. Match pattern as recommended by wall covering manufacturer above the finish floor.
F. Install seams vertical and plumb at least 6 inches (150 mm) from outside corners and 3 inches (75 mm)
 from inside corners unless a change of pattern or color exists at corner. Horizontal seams are not
 permitted.
G. Trim edges and seams for color uniformity, pattern match, and tight closure. Butt seams without overlaps
 or gaps between strips.
H. Fully bond wall covering to substrate. Remove air bubbles, wrinkles, blisters, and other defects.

3.4 CLEANING

A. Remove excess adhesive at seams, perimeter edges, and adjacent surfaces.
B. Use cleaning methods recommended in writing by wall-covering manufacturer.
C. Replace strips that cannot be cleaned.
D. Reinstall hardware and hardware accessories, electrical plates and covers, light fixture trims, and similar
 items.

END OF SECTION
SECTION 098116
ACOUSTICAL BLANKET INSULATION

PART 1 - GENERAL

1.1 SUMMARY
 A. This Section includes the following:
 1. Concealed building insulation.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

1.3 QUALITY ASSURANCE
 A. Source Limitations: Obtain each type of building insulation through one source.
 B. Fire-Test-Response Characteristics: Provide insulation and related materials with the fire-test-response characteristics indicated, as determined by testing identical products per test method indicated below by UL or another testing and inspecting agency acceptable to authorities having jurisdiction. Identify materials with appropriate markings of applicable testing and inspecting agency.

1.4 DELIVERY, STORAGE, AND HANDLING
 A. Protect insulation materials from physical damage and from deterioration by moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer’s written instructions for handling, storing, and protecting during installation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Slag-Wool-/Rock-Wool-Fiber Insulation:
 a. Fibrex Insulations Inc.
 b. Owens Corning.
 c. Thermafiber.

2.2 INSULATING MATERIALS
 A. General: Provide insulating materials that comply with requirements and with referenced standards.
 1. Preformed Units: Sizes to fit applications indicated; selected from manufacturer’s standard thicknesses, widths, and lengths.
 B. Unfaced Mineral-Fiber Blanket Insulation (in walls): ASTM C 665, Type I (blankets without membrane facing); consisting of fibers manufactured from slag or rock wool; with maximum flame-spread and smoke-developed indices of 25 and 50, respectively; passing ASTM E 136 for combustion characteristics.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates and conditions, with Installer present, for compliance with requirements for Sections in which substrates and related work are specified and other conditions affecting performance.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
 A. Clean substrates of substances harmful to insulations or vapor retarders, including removing projections capable of puncturing vapor retarders or of interfering with insulation attachment.
3.3 INSTALLATION, GENERAL

A. Comply with insulation manufacturer’s written instructions applicable to products and application indicated.

B. Install insulation that is undamaged, dry, and unsoiled and that has not been left exposed at any time to ice and snow.

C. Extend insulation in thickness indicated to envelop entire area to be insulated. Cut and fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.

D. Water-Piping Coordination: If water piping is located on inside of insulated exterior walls, coordinate location of piping to ensure that it is placed on warm side of insulation and insulation encapsulates piping.

E. Apply single layer of insulation to produce thickness indicated, unless multiple layers are otherwise shown or required to make up total thickness.

3.4 INSTALLATION OF GENERAL BUILDING INSULATION

A. Install mineral-fiber blankets in cavities formed by framing members according to the following requirements:

1. Use blanket widths and lengths that fill the cavities formed by framing members. If more than one length is required to fill cavity, provide lengths that will produce a snug fit between ends.

2. Place blankets in cavities formed by framing members to produce a friction fit between edges of insulation and adjoining framing members.

3. For metal-framed wall cavities where cavity heights exceed 96 inches, support unfaced blankets mechanically and support faced blankets by taping stapling flanges to flanges of metal studs.

3.5 PROTECTION

A. Protect installed insulation and vapor retarders from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION
SECTION 099123
INTERIOR PAINTING

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes surface preparation and the application of paint systems on interior substrates.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product. Include preparation requirements and application instructions.
 1. Indicate VOC content.
B. Samples for Verification: For each type of paint system and in each color and gloss of topcoat.
 1. Submit Samples on rigid backing, 8 inches (200 mm) square.
 2. Apply coats on Samples in steps to show each coat required for system.
 3. Label each coat of each Sample.
 4. Label each Sample for location and application area.
C. Product List: Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules. Include color designations.

1.3 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Paint: 5 percent, but not less than 1 gal. (3.8 L) of each material and color applied.

1.4 QUALITY ASSURANCE
A. Mockups: Apply mockups of each paint system indicated and each color and finish selected to verify preliminary selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 1. Architect will select one surface to represent surfaces and conditions for application of each paint system.
 a. Vertical and Horizontal Surfaces: Provide samples of at least 100 sq. ft. (9 sq. m).
 b. Other Items: Architect will designate items or areas required.
 2. Final approval of color selections will be based on mockups.
 a. If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner.
 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F (7 deg C).
 1. Maintain containers in clean condition, free of foreign materials and residue.
 2. Remove rags and waste from storage areas daily.

1.6 FIELD CONDITIONS
A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F (10 and 35 deg C).
B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F (3 deg C) above the dew point; or to damp or wet surfaces.
PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Benjamin Moore & Co.
4. PPG Architectural Coatings.
5. Pratt & Lambert.
7. Sherwin-Williams Company (The).

2.2 PAINT, GENERAL
A. Material Compatibility:
1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.

B. Colors: As scheduled.

2.3 SOURCE QUALITY CONTROL
A. Testing of Paint Materials: Owner reserves the right to invoke the following procedure:
1. Owner will engage the services of a qualified testing agency to sample paint materials. Contractor will be notified in advance and may be present when samples are taken. If paint materials have already been delivered to Project site, samples may be taken at Project site. Samples will be identified, sealed, and certified by testing agency.
2. Testing agency will perform tests for compliance with product requirements.
3. Owner may direct Contractor to stop applying paints if test results show materials being used do not comply with product requirements. Contractor shall remove noncomplying paint materials from Project site, pay for testing, and repaint surfaces painted with rejected materials. Contractor will be required to remove rejected materials from previously painted surfaces if, on repainting with complying materials, the two paints are incompatible.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
1. Gypsum Board: 12 percent.

C. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.

D. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.

E. Proceed with coating application only after unsatisfactory conditions have been corrected.
1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION
A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.
C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.

D. Steel Substrates: Remove rust, loose mill scale, and shop primer, if any. Clean using methods recommended in writing by paint manufacturer but not less than the following:
 1. SSPC-SP 2.
 2. SSPC-SP 3.
 3. SSPC-SP 7/NACE No. 4.
 4. SSPC-SP 11.

E. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.

3.3 SURFACE PREPARATION OF PREVIOUSLY COATED SURFACES

A. General:
 1. Remove cracked and deteriorated sealants and calking.
 2. Remove chalk deposits and loose, blistered, peeling, scaling, or crazed finish to bare base material or sound substrate by scraping and sanding.
 3. Wash surfaces with solution of TSP to remove wax, oil, grease, and other foreign material; rinse, and allow to dry. Exercise caution that TSP solution does not soften existing coating.
 4. Abrade glossy surfaces by sanding or wiping with liquid de-glosser.
 5. Remove mildew as specified above.
 6. Test compatibility of existing coatings by applying new coating to small, inconspicuous area. If new coatings lift or blister existing coatings, request recommendation from Architect.
 7. Apply specified primer to surfaces scheduled to receive coatings.

B. Gypsum Wallboard:
 1. Fill cracks and voids with spackling compound.
 2. Apply primer over bare surfaces and newly applied texture coatings.

C. Metal:
 1. Remove rust from surfaces to bare metal in accordance with SP3 "Power Tool Cleaning".
 2. Exercise care not to remove galvanizing.
 3. Complete preparation as specified for new work.

3.4 APPLICATION

A. Apply paints according to manufacturer's written instructions and to recommendations in "MPI Manual."
 1. Use applicators and techniques suited for paint and substrate indicated.
 2. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
 3. Paint front and backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
 4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
 5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.

B. Tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Tint undercoats to match color of topcoat, but provide sufficient difference in shade of undercoats to distinguish each separate coat.

C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.
E. Painting Fire Suppression, Plumbing, HVAC, Electrical, Communication, and Electronic Safety and Security Work:

1. Paint the following work where exposed in equipment rooms:
 a. Equipment, including panelboards and switch gear.
 b. Uninsulated metal piping.
 c. Uninsulated plastic piping.
 d. Pipe hangers and supports.
 e. Metal conduit.
 f. Plastic conduit.
 g. Tanks that do not have factory-applied final finishes.
 h. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material.

2. Paint the following work where exposed in occupied spaces:
 a. Equipment, including panelboards.
 b. Uninsulated metal piping.
 c. Uninsulated plastic piping.
 d. Pipe hangers and supports.
 e. Metal conduit.
 f. Plastic conduit.
 g. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material.
 h. Other items as directed by Architect.

3. Paint portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets that are visible from occupied spaces.

3.5 FIELD QUALITY CONTROL

A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.

1. Contractor shall touch up and restore painted surfaces damaged by testing.

2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written recommendations.

3.6 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.7 INTERIOR PAINTING SCHEDULE

A. Gypsum Board, Flat Latex-Based Acrylic Finish: 2 finish coats over a primer.

1. Sherwin-Williams:
 b. Second Coat: PorMar 200 Zero VOC Interior Latex Flat, B30-2600 Series 1.6 mils DFT.
 c. Third Coat: Same as second coat.

 1) Note: Apply final coat by spray application followed by rolling with short nap roller to create an “orange peel” texture on gypsum board walls. No other texture allowed.
B. Gypsum Board, Semigloss, Latex-Based Acrylic-Enamel Finish: 2 finish coats over a primer.
 1. Sherwin-Williams:
 b. Second Coat: ProMar 200 Zero VOC Interior Latex Semi-Gloss, B31-2600 Series 1.6 mils DFT.
 c. Third Coat: Same as second coat.

C. Decking (Preprimed/Prefinished), Bar Joists (Shop Primed):
 1. Water-Based Acrylic Dry Fall:
 a. Sherwin-Williams:
 1) First Coat: Low VOC Waterborne Acrylic Dryfall Flat B42W81 over prepared substrate.
 2) Second Coat: Same as first coat.

END OF SECTION
SECTION 101146
VISUAL DISPLAY FABRICS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes tackable wall coverings.

1.2 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of tackable wall covering. Include data on physical characteristics, durability, and flame-resistance characteristics.
B. Shop Drawings: Show location and extent. Indicate seams and termination points.
C. Samples for Verification: Full width by 36- (914-) inch- (mm-) long section of tackable wall covering.
D. Product Schedule: For tackable wall coverings.

1.4 INFORMATIONAL SUBMITTALS
A. Product Test Reports: For surface-burning characteristics of each type of tackable wall covering, for tests performed by manufacturer and witnessed by a qualified testing agency.

1.5 CLOSEOUT SUBMITTALS
A. Maintenance Data: For tackable wall coverings to include in maintenance manuals.

1.6 FIELD CONDITIONS
A. Environmental Limitations: Do not deliver or install tackable wall coverings until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, work above ceilings is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 50 or less.

2.2 TACKABLE WALL COVERINGS
A. Tackable Wall Coverings:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Egan Visual Inc.
 b. Kenmark Architectural Products.
 c. Koroseal Interior Products.
 d. Marsh Industries, Inc.
 e. National Wall Covering.
 f. Specified Solutions Inc.
 g. Wallscape Wallcovering.
 h. WriteWalls.
2. Basis-of-Design Products: WriteWalls; tackNOW.
 a. Material: Homogenous tackable surface consisting of linseed oil, cork, rosin binders, and dry pigments.
 b. Backing: Natural jute.
 c. Gauge: 1/4 inches.
 d. Length: 90 inches.
 e. Width: 48 inches.
3. Color: As selected by Architect from manufacturer's full range.

B. Adhesives for Field Application: Strippable, mildew-resistant, nonstaining adhesive for use with tackable wall coverings; and for substrate application; as recommended in writing by tackable wall covering manufacturer.
 1. Adhesives shall have a VOC content of 50 g/L or less.
C. Primer/Sealer: Mildew-resistant primer/sealer complying with requirements in Section 099123 "Interior Painting" and recommended in writing by tackable wall covering manufacturer for intended substrate.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances, surface conditions of wall, moisture content, and other conditions affecting performance of the Work.
 B. Examine walls and partitions for proper preparation for tackable wall covering.
 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
 A. Comply with manufacturer's written instructions for surface preparation.
 B. Clean substrates of substances, including dirt, mold, and mildew, that could impair the bond of tackable wall coverings or affect the smooth, finished surfaces of tackable wall coverings.
 C. Prepare surfaces to achieve a smooth, dry, clean surface free of flaking, unsound coatings, cracks, defects, projections, and depressions.
 D. Prepare substrates indicated to receive tackable wall covering as required by manufacturer's written instructions to achieve a smooth, dry, clean, structurally sound surface that is uniform in color.
 1. Moisture Content: Maximum of 4 percent when tested with an electronic moisture meter.
 2. Metals: If not factory primed, clean and apply metal as recommended in writing by primer/sealer manufacturer and wall-covering manufacturer.
 3. Gypsum Board: Prime with primer as recommended in writing by primer/sealer manufacturer and wall-covering manufacturer.
 4. Painted Surfaces: Treat areas susceptible to pigment bleeding.

3.3 INSTALLATION
 A. Tackable Wall Covering: Comply with tackable wall-covering manufacturers' written installation instructions.
 1. Install seams horizontal and level, with lowest seam 24 (610) inches (mm) above finished floor. Railroad fabric (reverse roll direction) to ensure color matching.
 2. Double cut seams, with no gaps or overlaps. Remove air bubbles, wrinkles, blisters, and other defects.
 3. After installation, clean tackable wall covering in accordance with manufacturer's written instructions. Remove excess adhesive at finished seams, perimeter edges, and adjacent surfaces.

3.4 CLEANING AND PROTECTION
 A. Remove excess adhesive at finished seams, perimeter edges, and adjacent surfaces.
 B. Clean tackable wall covering in accordance with manufacturer's written instructions. Attach one removable cleaning instructions label to tackable wall covering in each room.
 C. Reinstall hardware and hardware accessories, electrical plates and covers, light fixture trims, and similar items.
END OF SECTION
SECTION 101400
SIGNAGE

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Identifying devices where shown on the Drawings complete and as specified including the following:
 a. Interior code required signs.

1.2 SUBMITTALS
A. Product Data: Include manufacturer's construction details relative to materials, dimensions of individual components, profiles, and finishes for each type of sign required.
B. Shop Drawings: Provide shop drawings for fabrication and erection of signs. Include plans, elevations, and large-scale sections of typical members and other components. Show anchors, accessories, layout, and installation details.

1.3 QUALITY ASSURANCE
A. Single-Source Responsibility: For each separate type of sign required, obtain signs from one source from a single manufacturer.
B. Manufacturer shall have a minimum of five years experience in the manufacturing of signs specified.
C. Codes and Standards:
 1. Panel signs shall have 1/32-inch raised copy and grade 2 Braille, and shall comply with all existing federal, state, and local accessibility standards.
 3. Comply with the State of Texas Accessibility Standards, 2012 edition, as administered by the Texas Department of Licensing and Regulation.
 4. Comply with Design and Construction Guidelines as administered by The University of North Texas.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 4. ASI Signs, Dallas, Texas.

2.2 ROOM SIGNAGE SYSTEMS
A. Basis-of-Design Product: ASI Unframed SP Series Signs with requirements indicated for materials, thickness, finish colors, designs, shapes, sizes and details.
B. Sign Face: Clear acrylic, 0.080-inch thick, matte first surface.
C. Tactile Graphics and Text:
 1. Fabrication: Provide tactile copy and grade 2 Braille raised 1/32 inch minimum from plaque first surface by manufacturer's stratification process as follows:
 2. Provide lettering and graphics precisely formed, uniformly opaque to comply with relevant ADA regulations and requirements indicated for size, style, spacing, content, position, and colors.
D. Non-Tactile Graphics and Text:
 1. Fabrication options:
 2. Text or graphic technique:
a. Screen process using subsurface method.

3. Provide lettering and graphics precisely formed, uniformly opaque, and consistent in size, style, spacing, content, position, and colors.

E. Overall Panel Size: Refer to Drawings.

F. Panel Colors: As selected by Architect.

G. Text or Graphic Colors: As selected by Architect.

H. Letter styles, colors, letter sizes and layout position: As selected by Architect.

PART 3 - EXECUTION

3.1 DELIVERY AND STORAGE

A. Deliver and store identifying devices in protective wrappings until ready for installation. Install letters in protective wrappings and remove wrappings just prior to substantial completion.

3.2 INSTALLATION

A. Install signs plumb, level and square and in proper planes with other work, at heights required by accessibility codes and standards.

B. Anchor each plastic laminate sign with adhesive.

C. Install signs with sufficient amount of foam tape for proper installation.

D. Attach as recommended by sign manufacturer.

E. Anchor each sign with adhesive.

F. Coordinate arrival and installation of graphic signs with hardware installation. Graphic signs function as and are coordinated with the hardware as shown on the Drawings.

G. Room name signs shall be placed on the public side of the door except where noted otherwise.

H. Single Door Sign: Provide one sign as specified above, mounted to wall adjacent to door on knobside.

I. Pair of Doors: Provide one sign as specified above, mounted to adjacent wall closest to active leaf of door. Do not install sign where it will be obstructed by door when door is in the open position.

J. Attachment: Mounting to surfaces shall be done by pressure sensitive frame double-faced tape. Signs shall be delivered to the project site with the tape in place and trimmed on each sign, but with the protective paper layer not removed. Paper layer shall be removed just prior to installation of signs.

3.3 COORDINATION

A. Coordinate the installation of the identifying devices with the hardware manufacturer for lockset and knob leave outs as detailed and scheduled.

3.4 DAMAGE

A. Any identifying device which is scratched or defaced will be rejected.

3.5 CLEANING

A. Remove protective materials and clean all signs. Clean surfaces with plain water or water with soap or household detergent.

END OF SECTION
SECTION 102113.19
PLASTIC TOILET COMPARTMENTS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Solid-plastic toilet compartments configured as toilet enclosures and urinal screens.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for toilet compartments.
 B. Shop Drawings: For toilet compartments.
 1. Include plans, elevations, sections, details, and attachment details.
 2. Show locations of cutouts for compartment-mounted toilet accessories.
 3. Show locations of centerlines of toilet fixtures.
 4. Show locations of floor drains.
 C. Samples for Initial Selection: For each type of toilet compartment material indicated.
 1. Include Samples of hardware and accessories involving material and color selection.
 D. Product Schedule: For toilet compartments, prepared by or under the supervision of supplier, detailing location and selected colors for toilet compartment material.

1.3 INFORMATIONAL SUBMITTALS
 A. Product Certificates: For each type of toilet compartment.

1.4 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For toilet compartments to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents and source.
 1. Door Hinges: One hinge(s) with associated fasteners.
 2. Latch and Keeper: One latch(es) and keeper(s) with associated fasteners.
 3. Door Bumper: One bumper(s) with associated fasteners.
 4. Door Pull: One door pull(s) with associated fasteners.
 5. Fasteners: Ten fasteners of each size and type.

1.6 PROJECT CONDITIONS
 A. Field Measurements: Verify actual locations of toilet fixtures, walls, columns, ceilings, and other construction contiguous with toilet compartments by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 450 or less.
 B. Regulatory Requirements: Comply with applicable provisions in the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines for Buildings and Facilities and Texas Accessibility Standards (TAS) for toilet compartments designated as accessible.
2.2 SOLID-PLASTIC TOILET COMPARTMENTS

A. Acceptable Product: Scranton Products; Hiny Hiders.
B. Toilet-Enclosure Style: Overhead braced.
C. Urinal-Screen Style: Overhead braced.
D. Door, Panel, Screen, and Pilaster Construction: Solid, high-density polyethylene (HDPE) panel material, not less than 1 inch (25 mm) thick, seamless, with eased edges, no-sightline system, and with homogenous color and pattern throughout thickness of material.
 1. Heat-Sink Strip: Manufacturer’s standard continuous, stainless-steel strip fastened to exposed bottom edges of solid-plastic components to hinder malicious combustion.
 2. Color and Pattern: One color and pattern in each room as selected by Architect from manufacturer’s full range.
E. Pilaster Shoes and Sleeves (Caps): Manufacturer’s standard design; stainless steel.
F. Brackets (Fittings):
 1. Full-Height (Continuous) Type: Manufacturer’s standard design; stainless steel.

2.3 HARDWARE AND ACCESSORIES

A. Hardware and Accessories: Manufacturer’s heavy-duty operating hardware and accessories.
 1. Hinges: Manufacturer’s minimum 0.062-inch- (1.59-mm-) thick stainless-steel- continuous, cam type that swings to a closed or partially open position-, allowing emergency access by lifting door. Mount with through-bolts.
 2. Latch and Keeper: Manufacturer’s heavy-duty surface-mounted cast-stainless-steel latch unit designed to resist damage due to slamming, with combination rubber-faced door strike and keeper, and with provision for emergency access. Provide units that comply with regulatory requirements for accessibility at compartments designated as accessible. Mount with through-bolts.
 3. Coat Hook: Manufacturer’s heavy-duty combination cast-stainless-steel hook and rubber-tipped bumper, sized to prevent in-swinging door from hitting compartment-mounted accessories. Mount with through-bolts.
 4. Door Bumper: Manufacturer’s heavy-duty rubber-tipped cast-stainless-steel bumper at out-swinging doors -. Mount with through-bolts.
 5. Door Pull: Manufacturer’s heavy-duty cast-stainless-steel pull at out-swinging doors that complies with regulatory requirements for accessibility. Provide units on both sides of doors at compartments designated as accessible. Mount with through-bolts.
B. Overhead Bracing: Manufacturer’s standard continuous, extruded-aluminum head rail with antigrip profile and in manufacturer’s standard finish.
C. Anchorages and Fasteners: Manufacturer’s standard exposed fasteners of stainless steel, finished to match the items they are securing, with theft-resistant-type heads. Provide sex-type bolts for through-bolt applications. For concealed anchors, use stainless-steel, hot-dip galvanized-steel, or other rust-resistant, protective-coated steel compatible with related materials.

2.4 MATERIALS

A. Stainless-Steel Sheet: ASTM A 666, Type 304, stretcher-leveled standard of flatness.
B. Stainless-Steel Castings: ASTM A 743/A 743M.

2.5 FABRICATION

A. Fabrication, General: Fabricate toilet compartment components to sizes indicated. Coordinate requirements and provide cutouts for through-partition toilet accessories where required for attachment of toilet accessories.
B. Overhead-Braced Units: Provide manufacturer’s standard corrosion-resistant supports, leveling mechanism, and anchors at pilasters to suit floor conditions. Provide shoes at pilasters to conceal supports and leveling mechanism.
C. Door Size and Swings: Unless otherwise indicated, provide 24-inch- (610-mm-) wide, in-swinging doors for standard toilet compartments and 36-inch- (914-mm-) wide, out-swinging doors with a minimum 32-inch- (813-mm-) wide, clear opening for compartments designated as accessible.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas and conditions, with Installer present, for compliance with requirements for fastening, support, alignment, operating clearances, and other conditions affecting performance of the Work.
 1. Confirm location and adequacy of blocking and supports required for installation.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. General: Comply with manufacturer’s written installation instructions. Install units rigid, straight, level, and plumb. Secure units in position with manufacturer’s recommended anchoring devices.
 1. Maximum Clearances:
 a. Pilasters and Panels: 1/2 inch (13 mm).
 b. Panels and Walls: 1 inch (25 mm).
 2. Full-Height (Continuous) Brackets: Secure panels to walls and to pilasters with full-height brackets.
 a. Locate bracket fasteners so holes for wall anchors occur in masonry or tile joints.
 b. Align brackets at pilasters with brackets at walls.
B. Overhead-Braced Units: Secure pilasters to floor and level, plumb, and tighten. Set pilasters with anchors penetrating not less than 1-3/4 inches (44 mm) into structural floor unless otherwise indicated in manufacturer’s written instructions. Secure continuous head rail to each pilaster with no fewer than two fasteners. Hang doors to align tops of doors with tops of panels, and adjust so tops of doors are parallel with overhead brace when doors are in closed position.
C. Urinal Screens: Attach with anchoring devices to suit supporting structure. Set units level and plumb, rigid, and secured to resist lateral impact.

3.3 ADJUSTING
A. Hardware Adjustment: Adjust and lubricate hardware according to hardware manufacturer’s written instructions for proper operation. Set hinges on in-swinging doors to hold doors open approximately 30 degrees from closed position when unlatched. Set hinges on out-swinging doors to return doors to fully closed position.
SECTION 102600
WALL AND DOOR PROTECTION

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Corner guards.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, impact strength, dimensions of individual
 components and profiles, and finishes.
B. Shop Drawings: For each type of wall and door protection showing locations and extent.
 1. Include plans, elevations, sections, and attachment details.
C. Samples for Verification: For each type of exposed finish on the following products, prepared on Samples
 of size indicated below:
 1. Corner Guards: 12 inches (300 mm) long. Include example top caps.

1.3 INFORMATIONAL SUBMITTALS
A. Material Certificates: For each type of exposed plastic material.

1.4 CLOSEOUT SUBMITTALS
A. Maintenance Data: For each type of wall and door protection product to include in maintenance manuals.
 1. Include recommended methods and frequency of maintenance for maintaining best condition of
 plastic covers under anticipated traffic and use conditions. Include precautions against using
 cleaning materials and methods that may be detrimental to finishes and performance.

1.5 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials, from the same product run, that match products installed and that are packaged
 with protective covering for storage and identified with labels describing contents.
 1. Corner-Guard Covers: Full-size plastic covers of maximum length equal to 2 percent of each type,
 color, and texture of cover installed, but no fewer than two, 48-inch- (1200-mm-) long units.
 Package mounting and accessory components with each extra material.

1.6 QUALITY ASSURANCE

1.7 DELIVERY, STORAGE, AND HANDLING
A. Store wall and door protection in original undamaged packages and containers inside well-ventilated area
 protected from weather, moisture, soiling, extreme temperatures, and humidity.
 1. Maintain room temperature within storage area at not less than 70 deg F (21 deg C) during the
 period plastic materials are stored.

1.8 WARRANTY
A. Special Warranty: Manufacturer agrees to repair or replace components of wall- and door-protection units
 that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures including detachment of components from each other or from the
 substrates, delamination, and permanent deformation beyond normal use.
 b. Deterioration of metals, metal finishes, plastics, and other materials beyond normal use.
 2. Warranty Period: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Source Limitations: Obtain wall- and door-protection products of each type from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS
 A. Surface Burning Characteristics: Comply with ASTM E 84 or UL 723; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 450 or less.
 B. Regulatory Requirements: Comply with applicable provisions in the U.S. Architectural & Transportation Barriers Compliance Board’s ADA-ABA Accessibility Guidelines for Buildings and Facilities.

2.3 CORNER GUARDS
 A. Surface-Mounted, Metal Corner Guards: Fabricated as one piece from formed or extruded metal with formed edges; with 90- or 135-degree turn to match wall condition.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Arden Architectural Specialties, Inc.
 b. Balco, Inc.
 c. Construction Specialties, Inc.
 d. IPC Door and Wall Protection Systems; Division of InPro Corporation.
 e. Korogard Wall Protection Systems; a division of RJF International Corporation.
 f. Pawling Corporation.
 2. Basis-of-Design Product: As scheduled.
 a. Thickness: Minimum 0.0500 inch (1.3 mm).
 b. Finish: Directional satin, No. 4.
 4. Wing Size: Nominal 2-1/2 by 2-1/2 inches (65 by 65 mm).
 5. Corner Radius: 1/8 inch (3 mm).

2.4 MATERIALS
 A. Adhesive: As recommended by protection product manufacturer.
 1. Adhesives shall have a VOC content of 70 g/L or less.

2.5 FABRICATION
 A. Fabricate wall and door protection according to requirements indicated for design, performance, dimensions, and member sizes, including thicknesses of components.
 B. Factory Assembly: Assemble components in factory to greatest extent possible to minimize field assembly. Disassemble only as necessary for shipping and handling.
 C. Quality: Fabricate components with uniformly tight seams and joints and with exposed edges rolled. Provide surfaces free of wrinkles, chips, dents, uneven coloration, and other imperfections. Fabricate members and fittings to produce flush, smooth, and rigid hairline joints.

2.6 FINISHES
 A. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
 B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine walls to which wall and door protection will be attached for blocking, grounds, and other solid backing that have been installed in the locations required for secure attachment of support fasteners.
1. For wall and door protection attached with adhesive, verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Complete finishing operations, including painting, before installing wall and door protection.
B. Before installation, clean substrate to remove dust, debris, and loose particles.

3.3 INSTALLATION
A. Installation Quality: Install wall and door protection according to manufacturer’s written instructions, level, plumb, and true to line without distortions. Do not use materials with chips, cracks, voids, stains, or other defects that might be visible in the finished Work.
B. Mounting Heights: Install wall and door protection in locations and at mounting heights indicated on Drawings.
C. Accessories: Provide splices, mounting hardware, anchors, trim, joint moldings, and other accessories required for a complete installation.
1. Provide anchoring devices and suitable locations to withstand imposed loads.
2. Where splices occur in horizontal runs of more than 20 feet (6.1 m), splice aluminum retainers and plastic covers at different locations along the run, but no closer than 12 inches (305 mm) apart.
3. Adjust end and top caps as required to ensure tight seams.

3.4 CLEANING
A. Immediately after completion of installation, clean plastic covers and accessories using a standard ammonia-based household cleaning agent.
B. Remove excess adhesive using methods and materials recommended in writing by manufacturer.

END OF SECTION
SECTION 102800

TOILET
ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
1. Public-use washroom accessories.
2. Private-use bathroom accessories.
3. Warm-air dryers.
4. Underlavatory guards.
5. Custodial accessories.

1.2 COORDINATION
A. Coordinate accessory locations with other work to prevent interference with clearances required for access
 by people with disabilities, and for proper installation, adjustment, operation, cleaning, and servicing of
 accessories.
B. Deliver inserts and anchoring devices set into concrete or masonry as required to prevent delaying the
 Work.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and
 profiles, and finishes.
 2. Include anchoring and mounting requirements, including requirements for cutouts in other work and
 substrate preparation.
B. Product Schedule: Indicating types, quantities, sizes, and installation locations by room of each accessory
 required.
 1. Identify locations using room designations indicated.
 2. Identify accessories using designations indicated.

1.4 INFORMATIONAL SUBMITTALS
A. Sample Warranty: For manufacturer's special warranty.

1.5 CLOSEOUT SUBMITTALS
A. Maintenance Data: For accessories to include in maintenance manuals.

1.6 WARRANTY
A. Manufacturer's Special Warranty for Mirrors: Manufacturer agrees to repair or replace mirrors that fail in
 materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, visible silver spoilage defects.
 2. Warranty Period: 15 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 OWNER-FURNISHED, OWNER-INSTALLED MATERIALS
A. Owner-Furnished, Owner-Installed Materials:
 1. Toilet Tissue Dispensers.
 2. Soap Dispensers.
2.2 PUBLIC-USE WASHROOM ACCESSORIES

A. Source Limitations: Obtain public-use washroom accessories from single source from single manufacturer.

B. Grab Bar:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AJW Architectural Products.
 b. American Specialties, Inc.
 c. Bobrick Washroom Equipment, Inc.
 d. Bradley Corporation.
 e. Brey-Krause Manufacturing Co.
 f. GAMCO Specialty Accessories; a division of Bobrick.
 g. Tubular Specialties Manufacturing, Inc.
3. Material: Stainless steel, 0.05 inch (1.3 mm) thick.
 a. Finish: Smooth, No. 4 finish (satin) on ends and slip-resistant texture in grip area.
4. Configuration and Length: As indicated on Drawings.

C. Vendor:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AJW Architectural Products.
 b. American Specialties, Inc.
 c. Bobrick Washroom Equipment, Inc.
 d. Bradley Corporation.
 e. Brey-Krause Manufacturing Co.
 f. GAMCO Specialty Accessories; a division of Bobrick.
 g. Tubular Specialties Manufacturing, Inc.
2. Type: Sanitary napkin and tampon.
4. Operation: Two coin (50 cents).
5. Exposed Material and Finish: Stainless steel, No. 4 finish (satin).
6. Lockset: Tumbler type with separate lock and key for coin box.

D. Sanitary-Napkin Disposal Unit:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AJW Architectural Products.
 b. American Specialties, Inc.
 c. Bobrick Washroom Equipment, Inc.
 d. Bradley Corporation.
 e. Brey-Krause Manufacturing Co.
 f. GAMCO Specialty Accessories; a division of Bobrick.
 g. Seachrome Corporation.
 h. Tubular Specialties Manufacturing, Inc.
3. Door or Cover: Self-closing, disposal-opening cover and hinged face panel with tumbler lockset.
5. Material and Finish: Stainless steel, No. 4 finish (satin).

2.3 PUBLIC-USE SHOWER ROOM ACCESSORIES

A. Shower Curtain Rod:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Bobrick Washroom Equipment.
2. Basis-of-Design Product; Bobrick Washroom Equipment; B-6107.
3. Description: 1-inch (25.4-mm) OD; fabricated from nominal 0.0375-inch- (0.95-mm-) thick stainless steel.
 a. Mounting Flanges: Stainless-steel flanges designed for exposed fasteners.
 b. Finish: Stainless steel, No. 4 finish (satin).
B. Shower Curtain:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Bobrick Washroom Equipment, Inc.
3. Size: Minimum 42 inches wide by 72 inches (1828 mm) high.
4. Material: Vinyl, minimum 0.006 inch (0.15 mm) thick, opaque, matte.
5. Color: As selected from manufacturer's full range.
6. Grommets: Corrosion resistant at minimum 6 inches (152 mm) o.c. through top hem.
7. Shower Curtain Hooks: Chrome-plated or stainless-steel, spring wire curtain hooks with snap fasteners, sized to accommodate specified curtain rod. Provide one hook per curtain grommet.

C. Robe Hook:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AJW Architectural Products.
 b. American Specialties, Inc.
 c. Bobrick Washroom Equipment, Inc.
 d. Bradley Corporation.
 e. Brey-Krause Manufacturing Co.
 f. GAMCO Specialty Accessories; a division of Bobrick.
 g. Tubular Specialties Manufacturing, Inc.
2. Description: Double -prong unit.

2.4 WARM-AIR DRYERS
A. Source Limitations: Obtain warm-air dryers from single source from single manufacturer.

B. High-Speed Warm-Air Dryer:
2. Description: High-speed, warm-air hand dryer for rapid hand drying.
4. Operation: Electronic-sensor activated with operation time of 10 to 20 seconds.
5. Cover Material and Finish: Stainless steel, No. 4 finish (satin).
6. Electrical Requirements: 115 V, 13 A, 1500 W.

2.5 UNDERLAVATORY GUARDS
A. Underlavatory Guard:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Plumberex Specialty Products, Inc.
 b. Truebro by IPS Corporation.
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Plumberex Specialty Products, Inc.
 b. Truebro by IPS Corporation.
3. Description: Insulating pipe covering for supply and drain piping assemblies that prevents direct contact with and burns from piping; allow service access without removing coverings.
2.6 CUSTODIAL ACCESSORIES

A. Source Limitations: Obtain custodial accessories from single source from single manufacturer.

B. Mop and Broom Holder:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AJW Architectural Products.
 b. American Specialties, Inc.
 c. Bobrick Washroom Equipment, Inc.
 d. Bradley Corporation.
 e. Brey-Krause Manufacturing Co.
 f. GAMCO Specialty Accessories; a division of Bobrick.
 g. Tubular Specialties Manufacturing, Inc.
 2. Description: Unit with shelf, hooks, holders, and rod suspended beneath shelf.
 3. Length: 36 inches (914 mm).
 5. Mop/Broom Holders: Three, spring-loaded, rubber hat, cam type.
 a. Shelf: Not less than nominal 0.05-inch- (1.3-mm-) thick stainless steel.
 b. Rod: Approximately 1/4-inch- (6-mm-) diameter stainless steel.

2.7 MATERIALS

A. Stainless Steel: ASTM A 666, Type 304, 0.031-inch (0.8-mm) minimum nominal thickness unless otherwise indicated.

B. Brass: ASTM B 19, flat products; ASTM B 16/B 16M, rods, shapes, forgings, and flat products with finished edges; or ASTM B 30, castings.

C. Steel Sheet: ASTM A 1008/A 1008M, Designation CS (cold rolled, commercial steel), 0.036-inch (0.9-mm) minimum nominal thickness.

D. Galvanized-Steel Sheet: ASTM A 653/A 653M, with G60 (Z180) hot-dip zinc coating.

F. Fasteners: Screws, bolts, and other devices of same material as accessory unit and tamper-and-theft resistant where exposed, and of galvanized steel where concealed.

G. Chrome Plating: ASTM B 456, Service Condition Number SC 2 (moderate service).

H. Mirrors: ASTM C 1503, Mirror Glazing Quality, clear-glass mirrors, nominal 6.0 mm thick.

2.8 FABRICATION

A. General: Fabricate units with tight seams and joints, and exposed edges rolled. Hang doors and access panels with full-length, continuous hinges. Equip units for concealed anchorage and with corrosion-resistant backing plates.

B. Keys: Provide universal keys for internal access to accessories for servicing and resupplying. Provide minimum of six keys to Owner's representative.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install accessories according to manufacturers' written instructions, using fasteners appropriate to substrate indicated and recommended by unit manufacturer. Install units level, plumb, and firmly anchored in locations and at heights indicated.

B. Grab Bars: Install to withstand a downward load of at least 250 lbf (1112 N), when tested according to ASTM F 446.
3.2 ADJUSTING AND CLEANING

A. Adjust accessories for unencumbered, smooth operation. Replace damaged or defective items.
B. Remove temporary labels and protective coatings.
C. Clean and polish exposed surfaces according to manufacturer’s written instructions.

END OF SECTION
SECTION 104413

FIRE PROTECTION CABINETS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Fire-protection cabinets for the following:
 a. Portable fire extinguisher.

1.2 ACTION SUBMITTALS
A. Shop Drawings: For fire-protection cabinets.
 1. Include plans, elevations, sections, details, and attachments to other work.

1.3 COORDINATION
A. Coordinate size of fire-protection cabinets to ensure that type and capacity of fire extinguishers indicated are accommodated.
B. Coordinate sizes and locations of fire-protection cabinets with wall depths.

PART 2 - PRODUCTS

2.1 FIRE-PROTECTION CABINET
A. Existing to be relocated.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine walls and partitions for suitable framing depth and blocking where semirecessed cabinets will be installed.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Prepare recesses for semirecessed fire-protection cabinets as required by type and size of cabinet and trim style.

3.3 INSTALLATION
A. General: Install fire-protection cabinets in locations and at mounting heights indicated or, if not indicated, at heights acceptable to authorities having jurisdiction.
B. Fire-Protection Cabinets: Fasten cabinets to structure, square and plumb.
 1. Fasten mounting brackets to inside surface of fire-protection cabinets, square and plumb.
C. Identification:
 1. Apply vinyl lettering at locations indicated.

3.4 ADJUSTING AND CLEANING
A. Remove temporary protective coverings and strippable films, if any, as fire-protection cabinets are installed unless otherwise indicated in manufacturer’s written installation instructions.
B. Adjust fire-protection cabinet doors to operate easily without binding. Verify that integral locking devices operate properly.
C. On completion of fire-protection cabinet installation, clean interior and exterior surfaces as recommended by manufacturer.
D. Touch up marred finishes, or replace fire-protection cabinets that cannot be restored to factory-finished appearance. Use only materials and procedures recommended or furnished by fire-protection cabinet and mounting bracket manufacturers.

E. Replace fire-protection cabinets that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION
SECTION 123623.13
PLASTIC-LAMINATE-CLAD COUNTERTOPS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes plastic-laminate-clad countertops.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: For plastic-laminate-clad countertops.
 1. Include plans, sections, details, and attachments to other work. Detail fabrication and installation, including field joints.
 2. Show locations and sizes of cutouts and holes for items installed in plastic-laminate-clad countertops.
 3. Apply AWI Quality Certification Program label to Shop Drawings.
C. Samples for Verification: As follows:
 1. Plastic Laminates: For each type, color, pattern, and surface finish required, 8 by 10 inches (200 by 250 mm) in size.

1.3 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Installer.
B. Product Certificates: For the following:
 1. Composite wood products.
 2. High-pressure decorative laminate.
 3. Adhesives.
C. Quality Standard Compliance Certificates: AWI Quality Certification Program.

1.4 QUALITY ASSURANCE
A. Fabricator Qualifications: Shop that employs skilled workers who custom fabricate products similar to those required for this Project and whose products have a record of successful in-service performance.
 1. Shop Certification: AWI’s Quality Certification Program accredited participant.
B. Installer Qualifications: Fabricator of products.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Deliver countertops only after casework and supports on which they will be installed have been completed in installation areas.
B. Store countertops in areas where environmental conditions comply with requirements specified in "Field Conditions" Article.
C. Keep surfaces of countertops covered with protective covering during handling and installation.

1.6 FIELD CONDITIONS
A. Environmental Limitations: Do not deliver or install countertops until building is enclosed, wet-work is complete, and HVAC system is operating and maintaining temperature between 60 and 90 deg F (16 and 32 deg C) and relative humidity between 25 and 55 percent during the remainder of the construction period.
B. Field Measurements: Where countertops are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
C. Established Dimensions: Where countertops are indicated to fit to other construction, establish dimensions for areas where countertops are to fit. Provide allowance for trimming at site, and coordinate construction to ensure that actual dimensions correspond to established dimensions.
PART 2 - PRODUCTS

2.1 PLASTIC-LAMINATE-CLAD COUNTERTOPS

A. Quality Standard: Unless otherwise indicated, comply with the "Architectural Woodwork Standards" for grades of plastic-laminate-clad countertops indicated for construction, finishes, installation, and other requirements.
 1. Provide inspections of fabrication and installation together with labels and certificates from AWI certification program indicating that countertops comply with requirements of grades specified.
 2. The Contract Documents contain requirements that are more stringent than the referenced quality standard. Comply with requirements of Contract Documents in addition to those of the referenced quality standard.

B. Grade: Custom.

C. High-Pressure Decorative Laminate: NEMA LD 3, Grade HGS.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Abet Laminati Inc.
 b. Formica Corporation.
 c. Lamin-Art, Inc.
 d. Nevamar; a Panolam Industries International, Inc. brand.
 e. Pionite; a Panolam Industries International, Inc. brand.
 f. Wilsonart.

D. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:
 1. As scheduled.

E. Edge Treatment: 3-mm (0.12 inch) PVC edging.

F. Core Material: MDF made with exterior glue or Exterior-grade plywood.

G. Core Material at Sinks: MDF made with exterior glue or exterior-grade plywood.

H. Core Thickness: 3/4 inch (19 mm).

I. Backer Sheet: Provide plastic-laminate backer sheet, NEMA LD 3, Grade BKL, on underside of countertop substrate.

2.2 WOOD MATERIALS

A. Wood Products: Provide materials that comply with requirements of referenced quality standard unless otherwise indicated.
 1. Wood Moisture Content: 5 to 10 percent.

B. Composite Wood Products: Provide materials that comply with requirements of referenced quality standard for each type of countertop and quality grade specified unless otherwise indicated.
 1. MDF: Medium-density fiberboard, ANSI A208.2, Grade 130.

2.3 ACCESSORIES

A. Countertop Support Brackets: Steel, 18 inches by 24 inches, minimum 1,000 lb load limit, factory-applied primer for field painting in accordance with Section 099123 "Interior Painting."
 1. Acceptable Products:
 a. A & M Hardware; Work Station Brackets.
 1) Provide manufacturer’s standard factory-applied primer. Refer to Section 099123 "Interior Painting" for finish coat.

2.4 MISCELLANEOUS MATERIALS

A. Adhesive for Bonding Plastic Laminate: Unpigmented contact cement.
 1. Adhesive for Bonding Edges: Hot-melt adhesive or adhesive specified above for faces.
2.5 FABRICATION
 A. Fabricate countertops to dimensions, profiles, and details indicated. Provide front and end overhang of 1 inch (25 mm) over base cabinets. Ease edges to radius indicated for the following:
 1. Solid-Wood (Lumber) Members: 1/16 inch (1.5 mm) unless otherwise indicated.
 B. Complete fabrication, including assembly, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.
 C. Shop cut openings to maximum extent possible to receive appliances, plumbing fixtures, electrical work, and similar items. Locate openings accurately, and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.
 1. Seal edges of cutouts by saturating with varnish.

PART 3 - EXECUTION

3.1 PREPARATION
 A. Before installation, condition countertops to average prevailing humidity conditions in installation areas.
 B. Before installing countertops, examine shop-fabricated work for completion and complete work as required, including removal of packing.

3.2 INSTALLATION
 A. Grade: Install countertops to comply with same grade as item to be installed.
 B. Assemble countertops and complete fabrication at Project site to the extent that it was not completed in the shop.
 1. Provide cutouts for appliances, plumbing fixtures, electrical work, and similar items. Locate openings accurately, and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.
 2. Seal edges of cutouts by saturating with varnish.
 C. Field Jointing: Where possible, make in the same manner as shop jointing, using dowels, splines, adhesives, and fasteners recommended by manufacturer. Prepare edges to be joined in shop so Project-site processing of top and edge surfaces is not required. Locate field joints where shown on Shop Drawings.
 1. Secure field joints in countertops with concealed clamping devices located within 6 inches (150 mm) of front and back edges and at intervals not exceeding 24 inches (600 mm). Tighten according to manufacturer’s written instructions to exert a constant, heavy-clamping pressure at joints.
 D. Scribe and cut countertops to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.
 E. Countertop Installation: Anchor securely by screwing through corner blocks of base cabinets or other supports into underside of countertop.
 1. Install countertops level and true in line. Use concealed shims as required to maintain not more than a 1/8-inch-in-96-inches (3-mm-in-2400-mm) variation from a straight, level plane.
 2. Secure backsplashes to tops with concealed metal brackets at 16 inches (400 mm) o.c. and to walls with adhesive.
 3. Seal joints between countertop and backsplash, if any, and joints where countertop and backsplash abut walls with mildew-resistant silicone sealant or another permanently elastic sealing compound recommended by countertop material manufacturer.

3.3 ADJUSTING AND CLEANING
 A. Repair damaged and defective countertops, where possible, to eliminate functional and visual defects. Where not possible to repair, replace countertops. Adjust joinery for uniform appearance.
 B. Clean countertops on exposed and semiexposed surfaces.
 C. Protection: Provide Kraft paper or other suitable covering over countertop surfaces, taped to underside of countertop at a minimum of 48 inches (1220 mm) o.c. Remove protection at Substantial Completion.

END OF SECTION
SECTION 123661.16
SOLID SURFACING COUNTERTOPS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Solid surface material countertops.
 2. Solid surface material backsplashes.
 3. Solid surface material end splashes.
 4. Solid surface material apron fronts.

1.2 ACTION SUBMITTALS
A. Product Data: For countertop materials.
B. Shop Drawings: For countertops. Show materials, finishes, edge and backsplash profiles, methods of joining, and cutouts for plumbing fixtures.
 1. Show locations and details of joints.
 2. Show direction of directional pattern, if any.
C. Samples for Verification: For the following products:
 1. Countertop material, 6 inches (150 mm) square.

1.3 CLOSEOUT SUBMITTALS
A. Maintenance Data: For solid surface material countertops to include in maintenance manuals. Include Product Data for care products used or recommended by Installer and names, addresses, and telephone numbers of local sources for products.

1.4 QUALITY ASSURANCE
A. Fabricator Qualifications: Shop that employs skilled workers who custom-fabricate countertops similar to that required for this Project, and whose products have a record of successful in-service performance.
B. Installer Qualifications: Fabricator of countertops.
C. Mockups: Build mockups to demonstrate aesthetic effects and to set quality standards for fabrication and execution.
 1. Build mockup of typical countertop as shown on Drawings.
 2. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.5 FIELD CONDITIONS
A. Field Measurements: Verify dimensions of countertops by field measurements after base cabinets are installed but before countertop fabrication is complete.

1.6 COORDINATION
A. Coordinate locations of utilities that will penetrate countertops or backsplashes.

PART 2 - PRODUCTS

2.1 SOLID SURFACE COUNTERTOP MATERIALS
A. Solid Surface Material: Homogeneous-filled plastic resin complying with ICPA SS-1.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Affinity Surfaces; a brand of Domain Industries, Inc.
 b. Avonite Surfaces.
 d. Formica Corporation.
 e. LG Chemical, Ltd.
 f. Meganite Inc.
2.2 COUNTERTOP FABRICATION
A. Fabricate countertops according to solid surface material manufacturer's written instructions and to the AWI/AWMAC/WI's "Architectural Woodwork Standards."
 1. Grade: Custom.
B. Countertops: 1/2-inch- (12.7-mm-) thick, solid surface material.
C. Backsplashes: 1/2-inch- (12.7-mm-) thick, solid surface material with wood-trimmed edges.
D. Fabricate tops with shop-applied edges unless otherwise indicated. Comply with solid surface material manufacturer's written instructions for adhesives, sealers, fabrication, and finishing.
 1. Fabricate with loose backsplashes for field assembly.
E. Joints: Fabricate countertops without joints.
F. Cutouts and Holes:
 1. Undercounter Plumbing Fixtures: Make cutouts for fixtures in shop using template or pattern furnished by fixture manufacturer. Form cutouts to smooth, even curves.
 a. Provide vertical edges, slightly eased at juncture of cutout edges with top and bottom surfaces of countertop and projecting 3/16 inch (5 mm) into fixture opening.
 3. Fittings: Drill countertops in shop for plumbing fittings, undercounter soap dispensers, and similar items.

2.3 INSTALLATION MATERIALS
A. Adhesive: Product recommended by solid surface material manufacturer.
B. Sealant for Countertops: Comply with applicable requirements in Section 079200 "Joint Sealants."

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine substrates to receive solid surface material countertops and conditions under which countertops will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of countertops.
B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install countertops level to a tolerance of 1/8 inch in 8 feet (3 mm in 2.4 m), 1/4 inch (6 mm) maximum. Do not exceed 1/64-inch (0.4-mm) difference between planes of adjacent units.

B. Fasten countertops by screwing through corner blocks of base units into underside of countertop. Predrill holes for screws as recommended by manufacturer. Align adjacent surfaces and, using adhesive in color to match countertop, form seams to comply with manufacturer’s written instructions. Carefully dress joints smooth, remove surface scratches, and clean entire surface.

C. Fasten subtops to cabinets by screwing through subtops into cornerblocks of base cabinets. Shim as needed to align subtops in a level plane.

D. Secure countertops to subtops with adhesive according to solid surface material manufacturer’s written instructions. Align adjacent surfaces and, using adhesive in color to match countertop, form seams to comply with manufacturer’s written instructions. Carefully dress joints smooth, remove surface scratches, and clean entire surface.

E. Install backsplashes and end splashes by adhering to wall and countertops with adhesive. Mask areas of countertops and splashes adjacent to joints to prevent adhesive smears.

F. Install aprons to backing and countertops with adhesive. Mask areas of countertops and splashes adjacent to joints to prevent adhesive smears. Fasten by screwing through backing. Predrill holes for screws as recommended by manufacturer.

G. Complete cutouts not finished in shop. Mask areas of countertops adjacent to cutouts to prevent damage while cutting. Make cutouts to accurately fit items to be installed, and at right angles to finished surfaces unless beveling is required for clearance. Ease edges slightly to prevent snipping.

1. Seal edges of cutouts in particleboard subtops by saturating with varnish.

H. Apply sealant to gaps at walls; comply with Section 079200 "Joint Sealants."

END OF SECTION
SECTION 124813
ENTRANCE FLOOR MATS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Carpet-tile entrance mats.

1.2 COORDINATION
A. Coordinate size and location of recesses in concrete to receive floor mats.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for floor mats.
B. Shop Drawings:
 1. Items penetrating floor mats, including door control devices.
 2. Perimeter floor moldings.

1.4 CLOSEOUT SUBMITTALS
A. Maintenance Data: For floor mats to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Resilient-Tile Entrance Mats: Full-size tile units equal to 2 percent of amount installed, but no fewer than 10 units.

PART 2 - PRODUCTS

2.1 ENTRANCE FLOOR MATS, GENERAL
A. Accessibility Standard: Comply with applicable provisions in the DOJ’s “2010 ADA Standards for Accessible Design”.

2.2 CARPET-TILE ENTRANCE MATS
A. Carpet-Type Tiles: Polyester carpet bonded to 1/8- to 1/4-inch- (3.2- to 6.4-mm-) thick, flexible vinyl backing to form mats 3/8 or 7/16 inch (9.5 or 11 mm) thick with nonraveling edges.
 1. Basis-of-Design Product; Shaw Contract; Welcome II.
 2. Colors, Textures, and Patterns: As selected by Architect from full range of industry colors.
 3. Tile Size: As indicated.

2.3 FABRICATION
A. Floor Mats: Shop fabricate units to greatest extent possible in sizes indicated. Unless otherwise indicated, provide single unit for each mat installation; do not exceed manufacturer’s recommended maximum sizes for units that are removed for maintenance and cleaning. Where joints in mats are necessary, space symmetrically and away from normal traffic lanes. Miter corner joints in framing elements with hairline joints or provide prefabricated corner units without joints.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates and floor conditions for compliance with requirements for location, sizes, and other conditions affecting installation of floor mats.
B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install surface-type units to comply with manufacturer’s written instructions; coordinate with entrance locations and traffic patterns.

END OF SECTION
SECTION 142713.13
ELEVATOR CAB REFACING

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes refacing existing elevator cabs.

1.2 ACTION SUBMITTALS
A. Samples for Verification: For exposed car, hoistway door and frame, and signal equipment finishes, 3 inch-(75 mm-) square Samples of sheet materials and 4-inch (100-mm) lengths of running trim members.

1.3 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Installer.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: Elevator cab finish manufacturer.

1.5 COORDINATION
A. Coordinate with manufacturer and ensure proposed finishes do not exceed existing elevator design limitations.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Deliver, store, and handle materials, components and equipment in manufacturer's protective packaging. Store materials, components, and equipment off of ground, under cover, and in a dry location.

PART 2 - PRODUCTS

2.1 ELEVATOR CAB REFACING FINISHES MANUFACTURER
A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Forms+Surfaces.

2.2 ELEVATOR CAB REFACING FINISHES
A. Side and Rear Wall Panels: Fused nickel silver.
B. Reveals: Clear anodized aluminum.
C. Ceiling: Fused nickel silver.
D. Handrails: 1-1/2 inches (38 mm) round satin stainless steel, No. 4 finish, at sides and rear of car.
E. Colors and Patterns: As selected by Architect from manufacturer's full range.

2.3 FINISH MATERIALS
A. Stainless-Steel Sheet: ASTM A 240/A 240M, Type 304.
B. Stainless-Steel Bars: ASTM A 276, Type 304.
C. Stainless-Steel Tubing: ASTM A 554, Grade MT 304.
D. Aluminum Extrusions: ASTM B 221 (ASTM B 221M), Alloy 6063.
E. Manufacturer's standard fused nickel silver sheet.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elevator areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1. Division 22 – Plumbing
2. Division 23 – Mechanical
3. Division 26 – Electrical

4. Owner’s Project Requirements (OPR) and Basis of Design (BoD) documents are required. The Owner is responsible for production of the Owner’s Project Requirements (OPR) document. The Commissioning Authority can assist in the development of this document if requested by the Owner. The Basis of Design (BoD) document is produced by the Designers and is intended to describe how the design will support the OPR requirements. The Commissioning Authority will review both documents as part of the design review process and to ensure the design meets the Owner’s requirements.

B. Commissioning Authority will be hired by the Owner.

C. The Commissioning Plan will be developed by the Commissioning Agent.

D. It is of primary concern that all systems and assemblies in the project perform in accordance with the design intent and the Owner's operational needs. The process of assuring that such performance is achieved is referred to as "commissioning."

E. The Commissioning Team will include representatives of the Owner, Design A/E, General Contractor and Installing Subcontractors, Test and Balance Subcontractor, BAS Subcontractor and Commissioning Authority (CxA).

F. Commissioning is a comprehensive and systematic process of verifying that the building systems perform interactively in accordance with the BOD, according to the construction documents and the OPR.

1. The commissioning process shall encompass and coordinate the equipment and system documentation, equipment start up, field testing, control system calibration, testing and balancing, functional performance testing and training. Commissioning requires cooperation and direct involvement by all parties throughout the construction process.

2. In addition to fulfilling scheduling and planning requirements, the Contractor is further responsible for documenting the equipment and system installation and operational verification for all systems and assemblies.

G. Commissioning Process Overview: The following narrative provides a brief overview of the typical commissioning tasks during construction and the general order in which they occur.

1. Various sections of the project specifications require equipment start-up, testing, and adjusting services. Requirements for start-up, testing, and adjusting services specified in the Division 01 General Requirements, Division 22 Plumbing, Division 23 Mechanical, and Division 26 Electrical series sections of the specifications are intended to be provided in coordination with the commissioning services and are not intended to duplicate services. The Contractor shall coordinate the work required by individual specification sections with the commissioning services requirements specified herein.

2. The commissioning process does not take away from or reduce the responsibility of the Contractor to provide a finished and fully functioning and performing product.

3. The Commissioning Authority (CxA), is not responsible for construction means and methods, job safety, or management function related to commissioning on the jobsite.
4. Commissioning begins with the selection of the Commissioning authority for the project and the development of the OPR document by the Owner.

5. Commissioning Plan: The commissioning plan provides guidance in the execution of the commissioning process. The Commissioning Authority will prepare and update the plan. The Specifications will facilitate the execution of the Commissioning Plan. The Commissioning Plan will include as a minimum the following information:
 - A narrative description of the activities that will be accomplished during each phase of commissioning, including the personnel intended to accomplish each of the activities.
 - A listing of specific equipment, appliances or systems to be tested and a description of the tests to be performed.
 - Functions to be tested including, but not limited to, calibrations and economizer control.
 - Conditions under which the test will be performed. Testing shall affirm winter and summer design conditions and full outside air conditions.
 - Measureable criteria for performance.

6. Commissioning during construction begins with a planning meeting followed by a kick-off meeting conducted by the Commissioning Authority where the commissioning process is reviewed with the commissioning team members.

7. Equipment and assembly documentation is submitted to the Commissioning Authority during normal submittals, including detailed start-up procedures and early copies of Operation and Maintenance (O&M) data.

8. The Contractor develops start-up plans for selected equipment with review by the Commissioning Authority. The Commissioning Authority and/or Contractor develop Pre-Functional Checklists (PFCs) to be completed by the Contractor during the installation and start-up processes.

9. In general, the checkout and performance verification proceeds from simple to complex; from component level to equipment to systems and intersystem levels with construction checklists being completed before testing.

10. The Contractor executes and documents the PFCs and perform start-up and initial checkout. The Commissioning Authority documents that the checklists, installation and start-up were completed through spot witnessing and reviewing Contractor's completed PFCs and startup reports.

11. Air and water side Test and Balance is required. The CxA will review the results of the draft TAB Report and provide comments. The TAB report must be approved by the Mechanical Engineer of Record prior to the start of Functional Performance Testing.

12. The Commissioning Authority performs periodic construction observations.

13. The Commissioning Authority develops specific written equipment, system and assembly Functional Performance Test (FPT’s) procedures for all commissioned Mechanical and Plumbing equipment. The following functions as a minimum will be tested:
 - All modes as described in the sequences of operation.
 - Redundant or automatic back-up modes.
 - Performance of alarms.
 - Mode of operation upon a loss of power and restoration of power.
 - All economizers shall be functionally tested.
 - HVAC control systems shall be tested to document that they are operating according to the approved plans and specifications.
 - Additional items included in the Functional Performance Test documents provided by the CxA.

14. The Commissioning Authority develops specific written equipment, system and assembly Functional Performance Test (FPT’s) procedures for all commissioned Lighting and Daylighting controls and equipment. The following functions as a minimum will be tested:
 - Sampling of the occupancy sensors is permitted as follows (see the Commissioning Plan for additional information):
 - If there are (7) occupancy sensors or less, all sensors shall be functionally tested.
• For systems with more than (7) sensors testing shall be done for each unique combination of sensor type and space geometry.
• Where multiples of each unique combination of sensor type and space geometry are provided, not less than 10% but in no case less than (1), of each combination, shall be tested unless the code official or design professional requires a higher percentage to be tested.
• Where 30% or more of the tested controls fail, all remaining identical combinations shall be tested.

• Occupancy Controls shall be tested as follows:
 • Verify status indicators are correct.
 • The controlled lights turn off or down to the permitted level in the required time.
 • For auto-on occupant sensor controls, the lights turn on to the permitted level when an occupant enters the space.
 • For manual-on occupant sensor controls, the lights turn on only when manually activated.
 • The lights are not incorrectly turned on by movement in adjacent areas or by HVAC operation.

• Time-Switch Controls shall be tested as follows:
 • Confirm the time switch control is programmed with accurate weekday, weekend and holiday schedules.
 • Verify the correct time and date in the time switch.
 • Verify that any battery back-up is installed and energized.
 • Verify that the override time limit is set for no more than 2 hours.
 • Simulate an occupied condition and verify and document the following:
 • All lights can be turned on and off by their respective area control switch.
 • The switch only operates lighting in the enclosed space in which the switch is located.
 • Nonexempt lighting turns off.
 • Manual override switch only allows the lights in the enclosed space where the override switch is located to turn on or remain on until the next scheduled shutoff occurs.
 • Additional testing as specified by the registered design professional.
 • For manual-on occupant sensor controls, the lights turn on only when manually activated.
 • The lights are not incorrectly turned on by movement in adjacent areas or by HVAC operation.

• Daylight Responsive Controls shall be tested as follows:
 • Control devices have been properly located, field calibrated and set for accurate setpoints and threshold light levels.
 • Daylight controlled lighting loads adjust to light level setpoints in response to available daylight.
 • The locations of calibration equipment are readily accessible only to authorized personnel.

15. The test procedures are executed by the Contractor, under the direction of, and documented by the Commissioning Authority for most equipment.

16. The CxA prepares the Preliminary Cx Report and provides this document to the Owner. The Owner sends the code official a letter of transmittal acknowledging that the building owner has received the Preliminary Commissioning Report. The Preliminary Commissioning Report includes the following information:
 • Itemization of deficiencies found during testing that have not been corrected at the time of the report.
 • Deferred tests that cannot be performed at the time of the report preparation because of climatic conditions.
 • Climatic conditions required for performance of the deferred tests.

17. Only after the Preliminary Cx Report is received by the Owner can the final mechanical inspection be scheduled with the Building Official / AHJ.

18. Items of non-compliance in material, installation or setup are documented by the Commissioning Authority and corrected by the Contractor.

19. Cx is completed and all deficiencies corrected prior to Substantial Completion.
20. The final Cx Report shall be submitted by the CxA to the Owner within 90 days of the receipt of certificate of occupancy.

21. The Commissioning Authority reviews the O&M material for clarity, accessibility and completeness.

22. The General Contractor compiles an O&M Manual and provides it to the Owner. The O&M Manual contains the following:
 - Submittal data stating the equipment size and selected options for each piece of equipment requiring maintenance.
 - Manufacturer’s maintenance and operation manuals for each piece of equipment requiring maintenance. Routine maintenance actions are clearly identified.
 - The name and address of at least one qualified service agency for each piece of equipment requiring maintenance.
 - HVAC and service hot water controls system maintenance and calibration information, including wiring diagrams, schematics and control sequence descriptions. Desired or field determined setpoints shall be permanently recorded on control drawings at control devices or, for digital control systems, in system programming instructions.
 - Submittal data indicating all selected options for each piece of lighting equipment and lighting controls.
 - Manufacturer’s operation and maintenance manuals for each piece of lighting equipment. Required routine maintenance actions, cleaning and recommended relamping shall be clearly scheduled.
 - A schedule for relamping and recalibrating all lighting controls.
 - A narrative of how each system is intended to operate including setpoints.

23. Commissioning is completed before Substantial Completion, except for trend log monitoring, seasonal testing, and near-warranty end activities.

24. Seasonal or deferred testing and near-warranty-end activities are conducted, as specified

1.2 COMMISSIONING AUTHORITY (CxA)

A. The CxA services will be provided by the Owner or sub-contracted by the Architect. The Contractor is responsible to execute the Cx process according to this specification section.

B. The CxA for this project will be:
 1. Mechanical Systems: TBD
 2. Service Water Heating Systems: TBD
 3. Electrical / Lighting Systems: TBD

1.3 DESCRIPTION OF WORK INCLUDED

A. The following equipment, systems, assemblies and features will be commissioned utilizing the traditional construction phase commissioning process
 a. New Single Zone VAV Built Up chilled water unit.
 b. New Exhaust Fans.
 c. New BAS system.
 d. New chilled water pumps.
 e. New Heating Hot Water pumps.

2. Electrical Systems:
 a. Interior Lighting controls
b. Interior Daylighting Controls

c. Exterior Lighting Controls.

3. Service Water Heating

a. Domestic Booster Pump

1.3 DEFINITIONS

A. Approval: Acceptance that a piece of equipment, system or issue related to it complies with the Contract Documents.

B. Basis of Design (BOD): Documentation of the primary assumptions and rationale behind design decisions that are made to meet the Owner’s intent and project requirements. The BOD describes the assumptions used for sizing and selecting systems and components; site and environmental conditions or constraints; and other factors that led to decisions (e.g., codes, standards, operating conditions, functional goals, and interior environmental criteria).

C. Building Automation System (BAS): The central building energy management control system.

D. Commissioning (Cx): Commissioning is a systematic process of ensuring that all building systems and assemblies perform interactively according to the Owner’s objectives and requirements. This is achieved by beginning in the design phase and documenting the Owner’s Project Requirements, Basis of Design (BOD) and continuing through construction, acceptance and the warranty period with actual verification of function and performance.

E. Commissioning Authority aka Commissioning Provider (CxA): The professional commissioning consultant, not otherwise associated with the A/E team members, Contractor. The Commissioning Authority directs and coordinates the day-to-day commissioning activities in concert with the Contractor.

F. Commissioning Plan (CxP): The project-specific document prepared by the CxA that describes all aspects of the commissioning process including roles & responsibilities, documentation requirements, and communication structures.

G. Commissioning Team (CxT): Individuals, each having the authority to act on behalf of the entity he or she represents, explicitly organized to implement the commissioning process through coordinated action. The commissioning team shall consist of, but not be limited to, representatives of Contractor, including Project superintendent and subcontractors, installers, suppliers, and specialists deemed appropriate by the CxA.

H. Datalogging: Monitoring flows, currents, status, pressures, etc., of equipment using stand-alone dataloggers separate from the control system.

I. Deferred Tests: tests that are performed later, after substantial completion, due to partial occupancy, equipment, seasonal requirements, design or other site conditions that disallow the test from being performed.

J. Deficiency: A condition in the installation or function of a component, piece of equipment or system that is not in compliance with the Contract Documents (that is, does not perform properly or is not complying with the Owner’s objectives).

K. Functional Performance Test (FPT): The written procedures and documentation forms of tests used to guide and record testing. FTPs are composed of repeatable, step-by-step procedures and include the test prerequisites, the test process, the expected outcomes and acceptance criteria. Contractor: Refers to the Contractor, Construction Manager, Builder, and all sub-Contractor and/or authorized representatives

L. Issues Log: Ongoing record of the issues identified during the commissioning process that require or did not require correction. For each entry the log includes a unique identification number and a short description of the issue. The Commissioning Authority is responsible to maintain the log.

M. Monitoring: The recording of parameters (flow, current, status, pressure, etc.) of equipment operation using dataloggers or the trending capabilities of control systems.

N. NETA: International Electrical Testing Association, Inc.
O. Over-written Value: Writing over a sensor value in the control system to see the response of a system (e.g., changing the outside air temperature value from 50 degrees F to 75 degrees F to verify economizer operation).

P. Owner: The representative on the Project that has the authority to act in the Owner’s behalf in all issues.

Q. Owner Project Requirements (OPR): Documentation of the functional requirements of the facility and the expectations of how it will be used and operated. This includes Project and design goals, measurable performance criteria, budgets and schedules and supporting information.

R. Performance Metrics/Benchmark: Measurable indicators that allow verification that a specific Owner Objective or Requirement or element in the Design Narrative has been met. Performance Metrics are identified throughout the design of the Project with as many as possible being generated during the development of the Owner Objectives.

S. Phased Commissioning: Commissioning that is completed in phases (by floors, for example) due to the size of the structure or other scheduling issues, in order minimize the total construction time.

T. Sampling: Functionally testing only a fraction of the total number of identical or near identical pieces of equipment.

U. Seasonal Tests: Tests that are deferred until the system(s) will experience conditions closer to their design conditions.

V. Simulated Condition: Condition that is created for the purpose of testing the response of a system.

W. Simulated Signal: Disconnecting a sensor and using a signal generator to send an amperage, resistance or pressure to the transducer and DDC system to simulate a sensor value.

X. Start-up: The initial starting or activating of dynamic equipment, including executing construction checklists.

Y. Systems Manual: A manual giving the operating staff the information needed to understand and optimally operate each system. The manual is in addition to the O&M Manuals submitted by the Contractor.

Z. Test: Assessments that verify specific components, assemblies, systems, and interfaces among systems function and perform in accordance with the Owner’s objectives and the Contract Documents. Testing may include using manual (direct observation) or monitoring methods. Testing is the dynamic testing of specific and interacting equipment and systems in full operation. Tests are generally performed after construction checklists and start-up are complete. Some procedures in construction checklists test components, but reference to “testing” generally refers to those equipment and system tests conducted after Contractor startup and initial checkout.

AA. Trending: Monitoring using the building control system.

1.4 RESPONSIBILITIES

A. Overview: The responsibilities of the parties in the commissioning process are summarized in the following responsibility matrix. For detailed information on the roles of the Trade Subcontractors refer to Specification 22 08 00 Commissioning of Plumbing Systems, 23 08 00 Commissioning of HVAC Systems and 26 08 00 Commissioning of Electrical Systems.

Responsibility Matrix

<table>
<thead>
<tr>
<th>Phase</th>
<th>Task / Action</th>
<th>CxA</th>
<th>Owner</th>
<th>A/E Design Team</th>
<th>CG/CM Team</th>
<th>Trade Contractors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>OPR</td>
<td>Review</td>
<td>Prepare</td>
<td>Review</td>
<td>Review</td>
<td>-</td>
</tr>
<tr>
<td>Design</td>
<td>BOD</td>
<td>Review</td>
<td>Review</td>
<td>Review</td>
<td>Review</td>
<td>-</td>
</tr>
<tr>
<td>Design</td>
<td>Cx Specs</td>
<td>Prepare</td>
<td>Review</td>
<td>Incorporate in CDs</td>
<td>Review</td>
<td>-</td>
</tr>
<tr>
<td>Design</td>
<td>Cx Plan</td>
<td>Write</td>
<td>Review & Comment</td>
<td>Review, Comment</td>
<td>Review, Comment</td>
<td>-</td>
</tr>
<tr>
<td>Design</td>
<td>Review construction</td>
<td>Review of Docs for FPT</td>
<td>Review</td>
<td>Provide docs & Respond to</td>
<td>Review</td>
<td>-</td>
</tr>
</tbody>
</table>
B. In general the CxA writes the tests and documents the test results. The Contractor is responsible to execute the tests.

1.5 SUBMITTALS

O&M MANUALS: The Contractor shall prepare O&M manuals, including clarifying and updating the original sequences of operation to as-built conditions, and submit to the owner within 90 days of the date of receipt of the certificate of occupancy.

(1) CxA Review: Prior to Substantial Completion, the CxA will review the Operation and Maintenance (O&M) manuals, documentation, “redline” as-builts, and warranty information for all commissioned systems. Deficiencies will be communicated to Owner and the A/E for consolidation with other review comments and resolution/correction by the Contractor.
(2) Single Line System Diagrams. The Contractor shall provide simplified professionally drawn, computer generated single line system diagrams on 8 ½” x 11” or 11” x 17” sheets.

(3) These shall show major pieces of equipment such as pumps, heat exchangers, air handling equipment, coils, control valves, expansion tanks, coils, service valves, etc. In some cases, the single line control diagrams submitted by the Contractor can suffice if updated to as-built status and approved by the Owner and CxA for this purpose.

Draft TAB Report: The Contractor shall submit the draft Testing and Balancing (TAB) Report, describing the activities and measurements completed, to the CxA for review and to the Mechanical Engineer of Record for approval. This draft report must be submitted two weeks prior to the beginning of Functional Performance Testing to allow time for review and approval. Functional Performance Testing will not be scheduled until the Engineer has approved the report.

Final TAB Report: The Contractor shall submit the final System Testing and Balancing (TAB) Report, describing the activities and measurements completed, to the Owner within 90 days of the date of receipt of the certificate of occupancy.

Record Drawings: Final record drawings shall be prepared by the Contractor, and submitted to the owner within 90 days of the date of receipt of the certificate of occupancy

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

The Contractor shall provide all specialized tools, test equipment, and instruments required to execute startup, checkout, and FPT of systems and equipment.

Test equipment shall be of sufficient quality and accuracy to test and/or measure system performance according to specified tolerances.

(1) Test instruments shall bear a valid NIST-traceable calibration stamp.

(2) Frequency of calibration shall be in accordance applicable NEBB, AABC, or IEEE requirements.

All standard testing equipment required for the Contractor to perform installation, start-up and initial checkout and required testing shall be provided by the Contractor.

Special tools and instruments, only available from vendor, specific to a piece of equipment, required for testing equipment according to these Contract Documents shall be included in the base bid price.

2.2 TEST EQUIPMENT CALIBRATION:

The Contractor shall submit, within 90 days of notice to proceed and 30 days before any testing is performed, documentation of meeting the following calibration requirements.

Electrical equipment testing instruments must be calibrated in accordance with the following frequency:

Field Instruments: Analog, 6 months maximum, digital, 12 months maximum.

Laboratory Instruments: 12 months.

Leased specialty equipment: 12 months where accuracy is guaranteed by lessor.

All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications.
If not otherwise given, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5 degrees F and a resolution of + or - 0.1 degrees F.

Pressure sensors shall have an accuracy of + or - 2.0 percent of the value range being measured (not full range of meter) and have been calibrated within the last year. All equipment shall be calibrated according to the manufacturer’s recommended intervals. Calibration tags shall be affixed or certificates readily available.

PART 3 - EXECUTION

3.1 COORDINATION

Scheduling: The Contractor shall provide sufficient notice to the Commissioning Authority regarding the installation of static assemblies being commissioned and the schedule for the construction checklists, start-up and initial checkout of all commissioned dynamic equipment and systems.

Meetings: The Contractor will coordinate with the Commissioning Authority in a number of areas as described in this Section in order to facilitate the successful completion of the commissioning plan.

The Commissioning Authority will plan, conduct and take minutes at commissioning meetings.

All commissioning meetings shall be attended by the Contractor, and all appropriate or requested subcontractors.

The number of specific meetings dedicated to commissioning is provided in the Commissioning Plan. If the number of deficiencies is abnormal or coordination or cooperation is insufficient, additional meetings or meeting durations shall be required.

Controls Integration Meetings: The Commissioning Authority coordinates a series of meetings to go over the control drawings, sequences of operation, points list and database and controls submittal requirements. These meetings are held prior to a formal control drawing submittal and any programming. The intent is to clarify control related issues for the Contractor, and appropriate sub-Contractor, Owner facility staff and Commissioning Authority prior to final point database development, programming and the formal control drawing submittal.

3.2 PRE-FUNCTIONAL CHECKLISTS, START-UP, AND INITIAL CHECKOUT

The following procedures shall apply to all equipment and systems to be commissioned.

Pre-Functional Checklists:

(1) The Commissioning Authority develops new or adapts existing representative Pre-Functional checklists and procedures for commissioned equipment and assemblies.

(2) The Contractor is responsible to calibrate all field-installed sensors and actuators using test and documentation methods approved by the Commissioning Authority.

(3) On each Checklist the Contractor shall identify which trade or contractor is responsible for executing and documenting each of the line item tasks and shall note that trade on the checklist form.

(4) Checklists may be attached to start-up procedure forms.

Manufacturer Installation and Startup Procedures:

(5) The Contractor shall document their installation and startup utilizing manufacturer installation and startup procedures, check sheets and reports, in addition to the commissioning checklists.
(6) The completed manufacturer startup reports shall be submitted to the Commissioning Authority within 5 days of startup. The Contractor shall clearly note any items that have not been completed and the plan for their completion.

Execution of Pre-Functional Checklists and Start-up:

(7) Each piece of equipment shall receive full construction checkout by the Contractor following the approved plan and forms. Only individuals that have direct knowledge and witnessed that a line item task on the construction checklist was actually performed shall initial or check that item off. It is not acceptable for non-witnessing supervisors to fill out the forms.

(8) The Contractors shall complete the pre-start procedures in the checklist prior to starting equipment, including but not limited to verification of completion of wiring, safeties, lubrication, drive rotation and proper electrical test readings. Startup shall be conducted under supervision of responsible manufacturer representatives for major pieces of equipment. The Contractor shall notify the Commissioning Authority at least 5 days in advance of any equipment start-up, providing the Commissioning Authority a copy of the pre-start sections of the installation and start-up plan at that time.

(9) The Commissioning Authority may observe installation, start-up and checkout of selected systems. Procedures on the plans and checklists will be spot-checked by the Commissioning Authority prior to testing.

(10) The Contractor shall execute start-up and provide the Commissioning Authority with a signed and dated copy of the completed construction checklists and installation and start-up documentation. The Contractor shall clearly note any items that have not been completed and the plan for their completion.

(11) The Contractor shall operate each commissioned device or assembly to the full extent of its capability, from minimum to maximum, under automatic and manual control and verify that the equipment, system and assembly is functioning according to the specifications, manufacturer's recommendations and good operating practice.

(12) The Construction Checklist and manufacturer installation and startup check sheets and procedures for a given system shall be successfully completed and submitted prior to formal testing or testing, adjusting and balancing of the equipment.

(13) Where final balancing of a system or particular components are not specifically indicated to be performed by the Owner or Owner's consultants, the Contractor and Contractor shall provide final balancing and adjustments for operation within specified tolerances prior to testing and demonstration of such system.

(14) The Contractor shall submit installation, startup and checkout documentation prior to testing equipment.

(15) The Commissioning Authority will review installation, startup and checkout documentation and identify incomplete areas.

(16) The Contractor shall correct all areas that are deficient or incomplete in the checklists in a timely manner.

3.3 FUNCTIONAL TESTING

The Contractor shall be responsible to fully test all systems and assemblies according to the Specifications. The Commissioning Authority will direct, witness and document most of the mechanical systems tests.

The following matrix indicates the systems to be tested:

<table>
<thead>
<tr>
<th>Systems and Major Equipment</th>
<th>Included in Cx Scope of Work?</th>
<th>Quantity to be Commissioned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Major New HVAC Equipment: Built Up Chilled Water Units</td>
<td>Yes</td>
<td>100%</td>
</tr>
<tr>
<td>Chilled Water Pumps</td>
<td>Yes</td>
<td>100%</td>
</tr>
<tr>
<td>Heating Hot Water Pumps</td>
<td>Yes</td>
<td>100%</td>
</tr>
<tr>
<td>New DX Split Systems</td>
<td>Yes</td>
<td>100%</td>
</tr>
<tr>
<td>New Exhaust Fans</td>
<td>Yes</td>
<td>100%</td>
</tr>
<tr>
<td>HVAC Controls</td>
<td>Yes</td>
<td>25%</td>
</tr>
<tr>
<td>Service Water Heating Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Water Booster Pumps</td>
<td>Yes</td>
<td>100%</td>
</tr>
<tr>
<td>Recirculation Pumps</td>
<td>Yes</td>
<td>100%</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>100%</td>
</tr>
<tr>
<td>Electrical Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighting / Daylighting Controls</td>
<td>Yes</td>
<td>100%</td>
</tr>
</tbody>
</table>

The Contractor shall execute all tests, except at the discretion of the Commissioning Authority and approval of the Contractor, the Commissioning Authority may execute tests of selected equipment.

Tests for a given system or assembly shall not be conducted until they are fully operational under normal and reliable control with control calibrations, programming and control system graphics complete and checked out and the Contractor have submitted a completed construction checklist and where applicable a startup report, satisfactory to the Commissioning Authority.

Objectives and Scope:

(1) The objective of testing is to demonstrate that each system is operating according to the documented Owner Objectives and Contract Documents. For dynamic systems, testing facilitates bringing the systems from a state of initial operation to full dynamic operation. For static elements, testing verifies the performance of the assembly in its installed state under conditions specified in the testing requirements. Additionally, during the testing process, areas of deficient performance are identified and corrected.

(2) In general, testing shall include each item in the sequence of operations, and other significant modes, sequences and control strategies not mentioned in the written sequences; including, but not limited to startup, shutdown, unoccupied and manual modes, modulation up and down the unit’s range of capacity, power failure, alarms, component staging and backup upon failure, interlocks with other equipment, and sensor and actuator calibrations.

(3) All interlocks and interactions between systems shall be tested.

(4) All larger equipment will be individually tested. Like units or assemblies that are numerous may have an appropriate sampling strategy applied. Refer to the Commissioning Plan for sampling requirements. Heating equipment should be tested appropriately during winter and air conditioning equipment should be tested appropriately during summer to demonstrate performance under near-design conditions.

Setup: Each function and test shall be performed under conditions that simulate actual conditions as close as is practically possible. The Contractor shall provide all necessary materials, system modifications, etc., to produce the necessary flows, pressures, temperatures, etc. necessary to execute the test according to the specified conditions. At completion of the test, the Contractor shall return all affected building equipment and systems, due to these temporary modifications, to their pre-test condition.
Testing Order: In general, testing is conducted after Pre-Functional Checklists and start-up has been satisfactorily completed. The control system is sufficiently tested and approved by the Commissioning Authority before it is used for testing, adjusting and balancing or to verify performance of other components or systems. The air balancing and water balancing is completed and debugged before testing of air-related or water-related equipment or systems. Testing generally proceeds from components to sub-systems to systems. When the proper performance of all interacting individual systems has been achieved, the interface or coordinated responses between systems is verified.

Problem Solving: The burden of problem solving is on the Contractor and the Designers, though the Commissioning Authority may recommend solutions to problems found.

Sampling: The following is a summary of the systems that are intended to be Functional Performance Tested as part of this project.

(5) The Contractor is responsible for testing 100% of all systems and components as part of their normal scope of work unless sampling is permitted by the Commissioning Plan. The table in Paragraph 3.3.B offers a descriptive listing of equipment and components which will be tested and witnessed by the CxA for each of the typical systems during the commissioning process. Sampling may be permitted – review the Commissioning plan for sampling allowances and minimum quantities.

(6) If at any point, frequent failures are occurring and testing is becoming more troubleshooting than verification, the Commissioning Authority may stop the testing and require the Contractor to perform and document a checkout of the remaining units, prior to continuing with functionally testing the remaining units. Deficiency correction time and follow-up tests shall be required when deficiencies are discovered.

The costs for extensive retesting or expanded sample Functional Performance Tests shall be solely the responsibility of the Contractor. Any required retesting or expanded sample testing by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.

3.4 ISSUES AND NON-CONFORMANCE

The Commissioning Authority will record the results of document reviews, field observations, tests conducted or reviewed and trend logs or monitoring. All deficiencies or non-conformance issues will be recorded on a master Issues Log kept by the Commissioning Authority. The Issues Log will be kept updated by the Commissioning Authority.

A current copy of the Issues Log will be provided to the Contractor and Owner on a regular basis, as requested by the Contractor or Owner. New issues since the last printing will be clearly identified.

Issues warranting a request for information (RFI) will be forwarded by the Commissioning Authority to the designated party for developing the RFI, or the Commissioning Authority will generate and forward the RFI directly.

Issues of non-compliance or items that are incomplete or are requiring Designer input will be sent to the Contractor or Designer and Owner by the Commissioning Authority via appropriate channels.

The Commissioning Authority documents resolutions in the Issues Log and schedules retesting and re-inspection as needed.

Corrections of minor issues identified may be made during the tests at the discretion of the Commissioning Authority and with the issue and resolution documented in the Issues Log.

Every effort will be made to expedite the testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the Commissioning Authority will not be pressured into overlooking deficient work or loosening acceptance criteria to satisfy scheduling or cost issues, unless there is an overriding reason to do so at the written request of the Owner.

Cost of Retesting: The Contractor shall reimburse the Owner and Commissioning Authority for costs when a scheduled test cannot be completed due to, but not limited to the following:
(1) Failure of the Contractor to schedule the test with all parties required to perform the test or with regulatory authorities required to witness the test.

(2) Failure of the Contractor to provide required notice for tests that have been cancelled or rescheduled.

(3) Failure of the Contractor to have in place test equipment, support equipment, instrumentation, permits, or other ancillary equipment or systems required for successful execution of the test.

(4) Failure of the Contractor to complete pre-start or start-up procedures or other work required as a prerequisite for execution of the test.

Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or time extension by the Contractor.

3.5 APPROVAL AND ACCEPTANCE:

The Commissioning Authority will note each satisfactorily demonstrated function on the test form. However, formal approval of an entire test form is not normally given. Functional approval or acceptance of a system is indicated after all testing and monitoring is complete and there are no outstanding issues for that equipment or assembly in the Commissioning Authority’s Issues Log.

3.6 DEFERRED TESTING

Unforeseen Deferred Tests: If any check or test cannot be completed due to the building structure, required occupancy condition or other deficiency, execution of checklists and testing may be delayed upon written approval of the Owner.

Seasonal Testing: During the warranty period, seasonal testing (tests delayed until weather conditions are closer to the system’s design) specified in the testing requirements shall be completed as part of this contract. The Commissioning Authority will coordinate this activity. Tests will be executed, documented and deficiencies corrected by the Contractor, with facilities staff and the Commissioning Authority witnessing. The Contractor shall make needed final adjustments to the O&M manuals and Record Documents due to the testing results.

3.7 SCHEDULE

The Owner and Contractor shall work with the Commissioning Authority using established protocols to schedule the commissioning activities.

The Owner and Contractor shall integrate all commissioning activities into the master schedule. All parties will address scheduling problems and make necessary notifications in a timely manner in order to expedite the commissioning process. As construction progresses, more detailed commissioning schedules shall be developed.

The Contractor shall provide a minimum of 2 weeks’ notice prior to the date of testing to the Owner and Commissioning Authority. In addition, the Commissioning Authority and Owner shall be notified 48 hours in advance when tests are canceled or rescheduled.

PART 4 - COMMISSIONING PLAN

4.1 Design Phase Commissioning Plan

Commissioning plan will be provided by the Commissioning Agent.

END OF SECTION 019114
PART 1 - GENERAL

1.1 SUMMARY

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

B. Related Sections: Refer to Division 01 Section 019114 "General Commissioning Requirements for additional commissioning scope and requirements. All testing and commissioning requirements of that section shall be met.

C. The Commissioning Team will include representatives of the Owner, Design A/E, General Contractor and Installing Subcontractors, BAS Subcontractor and Commissioning Authority (CxA).

D. Scope of Plumbing equipment and systems commissioning
 1. Water system pumping and controls

1.2 CONTRACTOR'S RESPONSIBILITIES

A. Attend the Commissioning Kick-off meeting and other Commissioning meetings as required.

B. Attend construction phase coordination meetings.

C. Attend review and coordination meetings.

D. Complete Pre-Functional Checklists (PFCs) for all systems and equipment to be commissioned. Sign and submit the PFC's using the submittal process for tracking. The checklists should be completed and signed by the technician performing the work. Sampling is not permitted; 100% of all equipment shall be tested.

E. Submit completed manufacturer’s start-up checklists for the equipment being commissioned. Manufacturer’s start-up documents shall be provided in addition to the completed and signed Pre-Functional Checklists.

F. Provide meters, gauges and instruments for Functional Performance Testing.

G. Perform all commissioning tests at the direction of the CxA.

H. Complete tasks required to correct items noted by the CxA in the Deficiency Log.

I. Participate in systems, assemblies, equipment, and component maintenance orientation and inspection as directed by the CxA.

J. Provide O&M data including warranties, tables, recommended maintenance schedules, checklists, spare parts lists, wiring and parts diagrams, points of contact for service, for all equipment, systems and controls being commissioned.

K. Provide information requested by the CxA for final commissioning documentation.

1.3 CxA's RESPONSIBILITIES

A. Commissioning Authority will be hired by the Owner.
B. Provide Project-specific construction checklists and commissioning process test procedures for the Plumbing systems, assemblies, equipment, and components to be furnished and installed as part of the construction contract.

C. Provide a Commissioning Plan.

D. Provide Pre-Functional Checklists.

E. Provide Functional Performance Checklists.

F. Direct commissioning testing.

G. Maintain and distribute the deficiency logs.

H. Provide a Preliminary Commissioning Report to the Owner a minimum of 10 days prior to Final Inspection. The General Contractor will ensure that a copy of the draft report is available on site for review by the building official. The preliminary report shall include the following as a minimum:
 - Results of the mechanical and service water heating testing in separate sections for independent review.
 - Itemized deficiencies found during testing that have not yet been corrected at the time the report is issued.
 - Tests that cannot be completed at the time of report preparation, and reasons that the testing could not be completed.

I. Review the O&M documents for clarity and completeness.

J. Review the O&M Manual that is prepared by the General Contractor and provided to the Owner and includes the following:
 - Submittal data stating selected size and options for each piece of equipment.
 - Name and address of at least one qualified service agency.
 - Service water controls system maintenance and calibration information. Include wiring diagrams, schematics, and control sequences descriptions.
 - Desired or field determined setpoints shall be permanently recorded on control drawings at control devices or, for digital control systems, in the programming instructions.

K. Provide a Final Commissioning Report. The final report shall include the following as a minimum:
 - Results of the Functional Performance Tests.
 - Disposition of deficiencies found during testing, including the details of corrective measures used or proposed.
 - Functional performance tests procedures during the commissioning process, including measurable criteria for test acceptance, provided for repeatability.

1.4 PROCESS

A. Functional Performance Testing will commence after preliminary punch list items are completed by the Contractor. Functional Performance Testing will not be scheduled until the completed Pre-Functional Checklists are received by the Commissioning Authority. Functional Performance Testing will not be scheduled until the draft TAB Report is reviewed by the CxA and Approved by the Engineer of Record.

1.5 SUBMITTALS

A. Certificate of Readiness indicating the Plumbing systems are ready for Commissioning.

B. Completed Pre-Functional Checklists shall be provided as a submittal for tracking purposes. Pre-Functional Checklists shall be completed and signed by the technician performing the work. Sampling is not permitted for the completion of the Pre-Functional Checklists.
C. Manufacturer's start-up checklists.

D. Flushing and pressure test reports.

E. Disinfection Reports.

F. Sixty (60) days before any plumbing equipment testing is conducted, provide an overall testing plan and schedule for plumbing systems that lists the equipment, modes to be tested, dates of testing and parties required to conduct the test. Put this information in to the master construction schedule. Keep the plan and schedule updated.

1.6 COMMISSIONING DOCUMENTATION

A. Provide the following information to the CxA:

1. Approved submittals with designer review comments of submittals resolved, operation and maintenance manuals, and assistance in preparing the systems manuals, and other documents and reports requested by the Commissioning Authority in searchable pdf format

2. Identification of installed systems, assemblies, equipment, and components including design changes that occurred during the construction phase on as built markup of the design documents (plans and specifications)

3. Process and schedule for completing construction checklists and manufacturer’s prestart and startup checklists for Plumbing systems, assemblies, equipment, and components to be verified and tested.

4. Completed PFCs certifying that installation, prestart checks, and startup procedures have been completed.

5. Schedule indicating when Plumbing systems, subsystems, equipment, and associated controls will be ready for functional testing. The date for permanent connection of power is required.

6. Provide, documentation of completion of flushing and pressure test reports and certificates.

7. Corrective action documents.

8. The Contractor shall provide updated “As-Built” single line drawings for the Plumbing systems. The drawings are to be provided in the electronic format requested by the CxA.

9. Any additional information requested by the CxA.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 GENERAL

A. The Contractor shall be responsible for performing procedures presented in specification and contract drawings and as detailed in the Functional Performance Tests (FPT). Members of the designated Commissioning Team shall witness various portions of the commissioning process. Commissioning Team members shall sign-off on appropriate sections after verifying installation, operation, or documentation. Final sign-off shall be by the Owner and CxA.

B. Any test ports, gauges, test equipment, etc., needed to accomplish the functional performance tests shall be provided by the Contractor.

C. Contractor shall provide to the Commissioning Team documentation of calibration of service water heating controls. Documentation shall include dates, setpoints, calibration coefficients, control loop verification, and other data required to verify system check-out. Documentation shall be dated and initialed by field engineer or technician performing the work.
3.2 TESTING PREPARATION

A. Certify in writing the Plumbing systems, subsystems, and equipment and controls have been installed, calibrated, started and are operating per the Contract Documents. Ensure the PFCs are completed and submitted by factory authorized start up tech and submitted to the General Contractor.

B. Place systems, subsystems, and equipment into operating mode to be tested (e.g., normal shutdown, normal auto position, normal manual position, unoccupied cycle, emergency power, and alarm conditions).

C. Inspect and verify the position of each device and interlock identified in the sequences, control schematics and or on checklists.

D. Check safety cutouts, alarms, and interlocks with smoke control and life-safety systems during each mode of operation.

E. Testing Instrumentation: Install measuring instruments and logging devices to record test data if directed by the CxA in the Commissioning Plan.

3.3 GENERAL TESTING REQUIREMENTS

A. Provide technicians, instrumentation, and tools to perform commissioning tests at the direction of the CxA.

B. Refer to the Section 019114 General Commissioning Requirements and the commissioning plan for the scope of Plumbing testing.

C. Testing Strategies and Sampling: Refer to the Commissioning Plan for minimum sampling strategies and functional performance test requirements.

D. Test all operating modes, interlocks, control responses, and responses to abnormal or emergency conditions, and verify proper response of controllers and sensors.

E. The CxA shall prepare detailed testing plans, procedures, and checklists for Plumbing systems, subsystems, and equipment.

F. The Contractor shall execute the detailed testing plans, procedures, and checklists (PFCs and FPTs) prepared by the CxA for systems, subsystems, and equipment being commissioned.

G. Tests will be performed using design conditions whenever possible.

H. Simulated conditions may need to be imposed when it is not practical to test under design conditions. Before simulating conditions, calibrate testing instruments. Provide equipment to simulate loads. Set simulated conditions as directed by the CxA and document simulated conditions and methods of simulation. After tests, return settings to normal operating conditions.

I. The CxA may direct that set points be altered to achieve simulated conditions.

J. If tests cannot be completed because of a deficiency outside the scope of the system, the CxA will document the deficiency and report it to the Owner. After deficiencies are resolved, the Contractor will reschedule the tests.

3.4 INSTRUMENTATION

A. Instrumentation for Functional Performance Testing and data recording will be provided by the Contractor. Instruments used for measurements shall be accurate. Calibration histories for each instrument shall be available for examination. Calibration and maintenance of instruments shall be in accordance with the requirements of ASPE Standards.

3.5 INSTALLATION VERIFICATION
A. Before system start-up begins, the Contractor shall conduct a final installation verification audit. The Contractor shall be responsible for completion of work including change orders and punch list items to the Owner’s satisfaction.

B. If work is found to be incomplete, incorrect, or non-functional, the Contractor shall correct the deficiency before system start-up work proceeds.

3.6 SYSTEM START-UP & PRE-FUNCTIONAL CHECKLIST

A. System start-up shall be performed by the Contractor in accordance with the manufacturer’s written startup instructions and documented with the Pre-Functional Checklist (PFCs)

1. Designated members of the Commissioning Team may witness system start-up and list system and equipment deficiencies noted during start-up, however witnessing by the CxA is not required for system start-up and PFC documentation to be performed.

2. The Contractor shall take corrective action on system deficiencies found or noted and demonstrate and document proper system operation.

3. Designated systems requiring test and balance work shall have this activity commence after systems have successfully completed start-up. System and equipment deficiencies observed during this activity is to be noted and corrected.

B. Completed, signed-off PFCs shall be submitted once the system start up is complete for each system.

3.7 FUNCTIONAL PERFORMANCE TESTING

A. General Commissioning Responsibilities:

1. Functional Performance Testing begins after operational testing, adjusting, and start-up of the systems have been completed by the Subcontractors.

2. The objective of the Functional Performance Testing is to advance the building systems from a state of substantial completion to full dynamic operation in accordance with the specified design requirements and design intent.

3. Attaining this objective will be accomplished by developing individual systems testing protocols which, when implemented by the Subcontractor, will allow the Commissioning Team to observe, evaluate, identify deficiencies, recommend modifications, tune, and document the systems and systems equipment performance over a range of load and functional levels.

4. Functional Performance tests for the systems to be commissioned are defined in the Commissioning Plan. These tests are intended to be conclusive but may require minor modifications as system operation dictates.

3.8 FUNCTIONAL PERFORMANCE TESTING

A. The objective of the Functional Performance Testing is to advance the building systems from a state of substantial completion to full dynamic operation in accordance with the specified design requirements, design intent, and Owner requirements.

B. Functional Performance Testing begins after all PFCs have been completed, submitted, and reviewed by the CxA, and after Test and Balance has been completed.

C. Functional Performance tests for the systems to be commissioned are defined in the Commissioning Plan. These tests are intended to be conclusive but may require minor modifications as system operation dictates.

1. Draft Functional Performance Test procedures will be provided by the CxA to the Owner, Designers and Contractors for review and comments. Comments will be reviewed and incorporated into the final Functional Performance documents.
2. Final Functional Performance Test documents will be provided for testing.
3. Functional Performance Testing will be executed by the Contractors and witnessed by the CxA.
4. The Commissioning Authority develops specific written equipment, system and assembly Functional Performance Test (FPT’s) procedures for all commissioned Plumbing equipment. The following functions as a minimum will be tested:
 - All modes as described in the sequences of operation.
 - Redundant or automatic back-up modes.
 - Performance of alarms.
 - Mode of operation upon a loss of power and restoration of power.
 - Additional items included in the Functional Performance Test documents provided by the CxA.
5. Pipe system cleaning, flushing, hydrostatic tests, and chemical treatment requirements are specified in Division 22 Sections. Perform pipe system cleaning, flushing, and hydrostatic testing. Provide cleaning, flushing, testing, and treating completion confirmation and final reports to the CxA.
6. Provide technicians, instrumentation, tools, and equipment to test performance of systems and equipment at the direction of the CxA. The CxA shall determine the sequence of testing and testing procedures for each equipment item to be tested.

3.9 NON-CONFORMANCE

A. The CxA will record the results of the Functional Performance Tests. All deficiencies, non-conformance issues, or test failures will be noted and reported to the Contractor in a deficiency list or in a punch-list format.

B. Corrections of minor deficiencies identified may be made during the tests at the discretion of the CxA. In such cases the deficiency and resolution will be documented on the procedure form.

C. Every effort will be made to expedite the testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the CxA will not be pressured into overlooking deficient work or loosening acceptance criteria to satisfy scheduling or cost issues, unless there is an overriding reason to do so at the request of the Owners Representative.

D. Re-testing.

1. If a Functional Performance Test fails, corrections shall be made to the deficient equipment or systems by the Contractor. The systems will be re-tested until they pass the Tests.

2. The time/cost for the CxA to perform any re-testing required because of improper set up of the systems by the Contractor or failed functional or performance tests will be back-charged to the Contractor (who may choose to recover costs from the party responsible for executing faulty equipment start-up/checkout and associated checklists). This includes instances where a specific item was overlooked in the equipment start-up and checkout procedures, reported to have been successfully completed, but determined during Functional Performance testing to be faulty.

3. Any required re-testing by any Contractor or vendor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.

END OF SECTION 220800
SECTION 200820
COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

B. Related Sections: Refer to Division 01 Section 200800 “General Commissioning Requirements for additional commissioning scope and requirements. All testing and commissioning requirements of that section shall be met.

C. The Commissioning Team will include representatives of the Owner, Design A/E, General Contractor and Installing Subcontractors, Test and Balance Subcontractor, BAS Subcontractor and Commissioning Authority (CxA).

D. Scope of Mechanical and HVAC equipment and systems commissioning

1. All HVAC systems, including pumps, air handling units, terminal units, fan coil units, exhaust fans, and associate equipment.

2. All building automation system controls, associated control terminal devices, and related controls and sensors, controls and components, energy recovery devices and systems and controls.

3. All other HVAC and mechanical system components indicated on the drawings and / or in the commissioning plan

1.2 CONTRACTOR'S RESPONSIBILITIES

A. Attend the Commissioning Kick-off meeting and other Commissioning meetings as required.

B. Attend construction phase coordination meetings.

C. Attend testing, adjusting, and balancing review and coordination meetings.

D. Complete Pre-Functional Checklists (PFCs) for all systems and equipment to be commissioned. Sign and submit the PFC’s using the submittal process for tracking. The checklists should be completed and signed by the technician performing the work. Sampling is not permitted; 100% of all equipment shall be tested.

E. Submit completed manufacturer’s start-up checklists for the equipment being commissioned. Manufacturer’s start-up documents shall be provided in addition to the completed and signed Pre-Functional Checklists.

F. Provide measuring instruments and logging devices to record test data, and provide data acquisition equipment to record data for the complete range of testing for the required test period. Provide meters, gauges and instruments for Functional Performance Testing.

G. Perform all commissioning tests at the direction of the CxA.

H. Complete tasks required to correct items noted by the CxA in the Deficiency Log.

I. Participate in systems, assemblies, equipment, and component maintenance orientation and inspection as directed by the CxA.
J. Provide O&M data including warranties, tables, recommended maintenance schedules, checklists, spare parts lists, wiring and parts diagrams, points of contact for service, for all equipment, systems and controls being commissioned.

K. Provide information requested by the CxA for final commissioning documentation.

1.3 **CxA's RESPONSIBILITIES**

A. **Commissioning Authority will be hired by the Owner.**

B. Provide Project-specific construction checklists and commissioning process test procedures for actual Electrical systems, assemblies, equipment, and components to be furnished and installed as part of the construction contract.

C. Provide a Commissioning Plan.

D. Provide Pre-Functional Checklists.

E. Provide Functional Performance Checklists.

F. Direct commissioning testing.

G. Maintain and distribute the deficiency logs.

H. Provide a Preliminary Commissioning Report to the Owner a minimum of 10 days prior to Final Inspection. The General Contractor will ensure that a copy of the draft report is available on site for review by the building official. The preliminary report shall include the following as a minimum:

- Results of the mechanical and service water heating testing in separate sections for independent review.
- Itemized deficiencies found during testing that have not yet been corrected at the time the report is issued.
- Tests that cannot be completed at the time of report preparation, and reasons that the testing could not be completed.

I. Review the O&M documents for clarity and completeness.

J. Review the O&M Manual that is prepared by the General Contractor and provided to the Owner and which includes the following:

- Submittal data stating selected size and options for each piece of equipment.
- Name and address of at least one qualified service agency.
- Service water controls system maintenance and calibration information. Include wiring diagrams, schematics, and control sequences descriptions.
- Desired or field determined setpoints shall be permanently recorded on control drawings at control devices or, for digital control systems, in the programming instructions.

K. Provide a Final Commissioning Report. The final report shall include the following as a minimum:

- Results of the Functional Performance Tests.
- Disposition of deficiencies found during testing, including the details of corrective measures used or proposed.
- Functional performance tests procedures during the commissioning process, including measurable criteria for test acceptance, provided for repeatability.
1.4 PROCESS
A. Functional Performance Testing will commence after preliminary punch list items are completed by the Contractor. Functional Performance Testing will not be scheduled until the completed Pre-Functional Checklists and the Draft TAB Report are received by the Commissioning Authority.

1.5 SUBMITTALS
A. Certificate of Readiness indicating the HVAC systems are ready for Commissioning.
B. Completed Pre-Functional Checklists shall be provided as a submittal for tracking purposes. Pre-Functional Checklists shall be completed and signed by the technician performing the work. Sampling is not permitted for the completion of the Pre-Functional Checklists.
C. Manufacturer's start-up checklists.
D. Flushing and pressure test reports.
E. Draft and Final Testing, Adjusting and Balancing (TAB) Reports.
F. Sixty (60) days before any mechanical systems testing is conducted, provide an overall testing plan and schedule for HVAC equipment and BAS control systems that lists the equipment, modes to be tested, dates of testing and parties required to conduct the test. Put this information in to the master construction schedule. Keep the plan and schedule updated.

1.6 COMMISSIONING DOCUMENTATION
A. Provide the following information to the CxA:
1. Approved submittals with designer review comments of submittals resolved, operation and maintenance manuals, and assistance in preparing the systems manuals, and other documents and reports requested by the Commissioning Authority in searchable pdf format
2. Identification of installed systems, assemblies, equipment, and components including design changes that occurred during the construction phase on as built markup of the design documents (plans and specifications)
3. Process and schedule for completing construction checklists and manufacturer's prestart and startup checklists for systems, assemblies, equipment, and components being commissioned.
4. Completed PFCs certifying that installation, prestart checks, and startup procedures have been completed.
5. Schedule indicating when HVAC systems, subsystems, equipment, and associated controls will be ready for functional testing. The date for permanent connection of power is required.
6. Provide, documentation of completion of flushing and pressure test reports and certificates.
7. Corrective action documents.
9. The Contractor shall provide updated “As-Built” single line drawings for MEP systems and BAS systems. The drawings are to be provided in the electronic format requested by the CxA.
10. Any additional information requested by the CxA.
PART 3 - EXECUTION

3.1 GENERAL

A. The Contractor shall be responsible for performing procedures presented in specification and contract drawings as detailed in the Functional Performance Tests (FPT). Members of the designated Commissioning Team shall witness various portions of the commissioning process. Commissioning Team members shall sign-off on appropriate sections after verifying installation, operation, or documentation. Final sign-off shall be by the Owner and CxA.

B. Any test ports, gauges, test equipment, etc., needed to accomplish the functional performance tests shall be provided by the Contractor.

C. Contractor shall provide to the Commissioning Team documentation of calibration of controls. Documentation shall include dates, setpoints, calibration coefficients, control loop verification, and other data required to verify system check-out. Documentation shall be dated and initialed by field engineer or technician performing the work.

3.2 TESTING PREPARATION

A. Certify in writing the HVAC systems, subsystems, and equipment and controls have been installed, calibrated, started and are operating per the Contract Documents. Ensure the PFCs are completed and submitted by factory authorized start up tech and submitted to the Contractor.

B. Certify in writing the Testing, Adjusting, and Balancing (TAB) procedures have been completed and that testing, adjusting, and balancing reports have been submitted, discrepancies corrected, and corrective work approved.

C. Place systems, subsystems, and equipment into operating mode to be tested (e.g., normal shutdown, normal auto position, normal manual position, unoccupied cycle, emergency power, and alarm conditions).

D. Inspect and verify the position of each device and interlock identified in the sequences, control schematics and or on checklists.

E. Check safety cutouts, alarms, and interlocks with smoke control and life-safety systems during each mode of operation.

F. Testing Instrumentation: Install measuring instruments and logging devices to record test data if directed by the CxA in the Commissioning Plan.

3.3 TESTING AND BALANCING VERIFICATION

A. Prior to performance of testing and balancing Work, provide copies of reports, sample forms, checklists, and certificates to the CxA.

B. Notify the CxA at least 10 days in advance of testing and balancing Work, and provide access for the CxA to witness testing and balancing Work.

C. Provide technicians, instrumentation, and tools to verify testing and balancing of HVAC systems at the direction of the CxA.

1. The Contractor will notify the CxA 10 days in advance of the date of Test and Balance (TAB) field verification.

2. The same instruments (by model and serial number) that were used when original data were collected shall be used during the TAB verification with the CxA.
3. Failure of an item includes a deviation of more than 10 percent. Failure of more than 10 percent of selected items shall result in rejection of final testing, adjusting, and balancing report.

4. Remedy the deficiency and notify the CxA so verification of failed portions can be performed.

D. TAB verification is to be conducted using the same instruments used for the conduct of the initial Testing Adjusting and Balancing of the systems.

3.4 GENERAL TESTING REQUIREMENTS

A. Provide technicians, instrumentation, and tools to perform commissioning tests at the direction of the CxA.

B. Test all operating modes, interlocks, control responses, and responses to abnormal or emergency conditions, and verify proper response of building automation system controllers and sensors.

C. The Contractor shall execute the detailed testing plans, procedures, and checklists (PFCs and FPTs) prepared by the CxA for systems, subsystems, and equipment being commissioned.

D. Tests will be performed using design conditions whenever possible.

E. Simulated conditions may need to be imposed when it is not practical to test under design conditions. Before simulating conditions, calibrate testing instruments. Provide equipment to simulate loads. Set simulated conditions as directed by the CxA and document simulated conditions and methods of simulation. After tests, return settings to normal operating conditions.

F. The CxA may direct that set points be altered to achieve simulated conditions.

G. If tests cannot be completed because of a deficiency outside the scope of the HVAC system, the CxA will document the deficiency and report it to the Owner. After deficiencies are resolved, the Contractor will reschedule the tests.

H. If the testing plan indicates specific seasonal testing, complete appropriate initial performance tests and documentation and schedule seasonal tests.

3.5 INSTRUMENTATION

A. Instrumentation for Functional Performance Testing and data recording shall be provided. Instruments used for measurements shall be accurate. Calibration histories for each instrument shall be available for examination. Calibration and maintenance of instruments shall be in accordance with the requirements of NEBB or AABC Standards.

B. Application of instruments and accuracy of measurements shall be in accordance with NEBB or AABC Standards.

3.6 INSTALLATION VERIFICATION

A. Before system start-up begins, the Contractor shall conduct a final installation verification audit. The Contractor shall be responsible for completion of work including change orders and punch list items to the Owner’s satisfaction.

B. If work is found to be incomplete, incorrect, or non-functional, the Contractor shall correct the deficiency before system start-up work proceeds.

3.7 SYSTEM START-UP & PRE-FUNCTIONAL CHECKLIST

A. System start-up shall be performed by the Contractor in accordance with the manufacturer’s written startup instructions and documented with the Pre Functional Checklist (PFCs)
1. Designated members of the Commissioning Team may witness system start-up and list system and equipment deficiencies noted during start-up, however that is not required for system start-up and PFC documentation to be performed.

2. The Contractor shall take corrective action on system deficiencies found or noted and demonstrate and document proper system operation.

3. Designated systems requiring test and balance work shall have this activity commence after systems have successfully completed start-up. System and equipment deficiencies observed during this activity is to be noted and corrected.

B. Completed, signed-off PFCs shall be submitted once the system start up is complete for each system.

3.8 FUNCTIONAL PERFORMANCE TESTING

A. The objective of the Functional Performance Testing is to advance the building systems from a state of substantial completion to full dynamic operation in accordance with the specified design requirements, design intent, and Owner requirements.

B. Functional Performance Testing begins after all PFCs have been completed, submitted, and reviewed by the CxA, and after Test and Balance has been completed.

C. Functional Performance tests for the systems to be commissioned are defined in the Commissioning Plan. These tests are intended to be conclusive but may require minor modifications as system operation dictates.

1. Draft Functional Performance Test procedures will be provided by the CxA to the Owner, Designers and Contractors for review and comments. Comments will be reviewed and incorporated into the final Functional Performance documents.

2. Final Functional Performance Test documents will be provided for testing.

3. Functional Performance Testing will be executed by the Contractors and witnessed by the CxA.

4. The Commissioning Authority develops specific written equipment, system and assembly Functional Performance Test (FPT’s) procedures for all commissioned HVAC equipment. The following functions as a minimum will be tested:
 - All modes as described in the sequences of operation.
 - Redundant or automatic back-up modes.
 - Performance of alarms.
 - Mode of operation upon a loss of power and restoration of power.
 - All economizers shall be functionally tested.
 - Additional items included in the Functional Performance Test documents provided by the CxA.

5. Pipe system purging, pressure and vacuum tests, and similar requirements are specified in Division 23 Sections. Perform pipe system cleaning, flushing, and hydrostatic testing. Provide cleaning, flushing, testing, and treating completion confirmation and final reports to the CxA.

6. Provide technicians, instrumentation, tools, and equipment to test performance of HVAC and BAS systems and equipment at the direction of the CxA. The CxA shall determine the sequence of testing and testing procedures for each equipment item to be tested.

7. Provide technicians, instrumentation, tools, and equipment to test performance of air, natural gas and refrigeration systems; exhaust systems; and other distribution systems, including HVAC terminal equipment and unitary equipment.

8. Provide technicians, instrumentation, tools, and equipment to test performance of vibration isolation and seismic controls as required in the Division Section “Testing and Balance.”

3.9 NON-CONFORMANCE

A. The CxA will record the results of the Functional Performance Tests. All deficiencies, non-conformance issues, or test failures will be noted and reported to the Contractor in a deficiency list or in a punch-list format.
B. Corrections of minor deficiencies identified may be made during the tests at the discretion of the CxA. In such cases the deficiency and resolution will be documented on the procedure form.

C. Every effort will be made to expedite the testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the CxA will not be pressured into overlooking deficient work or loosening acceptance criteria to satisfy scheduling or cost issues, unless there is an overriding reason to do so at the request of the Owners Representative.

D. Re-testing.

1. If a Functional Performance Test fails, corrections shall be made to the deficient equipment or systems by the Contractor. The systems will be re-tested until they pass the Tests.

2. The time/cost for the CxA to perform any re-testing required because of improper set up of the systems by the Contractor or failed functional or performance tests will be back-charged to the Contractor (who may choose to recover costs from the party responsible for executing faulty equipment start-up/checkout and associated checklists). This includes instances where a specific item was overlooked in the equipment start-up and checkout procedures, reported to have been successfully completed, but determined during Functional Performance testing to be faulty.

3. Any required re-testing by any Contractor or vendor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.

END OF SECTION 230800
SECTION 200830

COMMISSIONING OF ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

B. Related Sections: Refer to Division 01 Section 200800 “General Commissioning Requirements for additional commissioning scope and requirements. All testing and commissioning requirements of that section shall be met.

C. The Commissioning Team will include representatives of the Owner, Design A/E, General Contractor and Installing Subcontractors, Test and Balance Subcontractor, BAS Subcontractor and Commissioning Authority (CxA).

 1. Lighting and daylighting controls List any additional systems.
 2. Receptacles.

1.2 CONTRACTOR’S RESPONSIBILITIES

A. Attend the Commissioning Kick-off meeting and other Commissioning meetings as required.

B. Attend construction phase coordination meetings.

C. Attend testing, adjusting, and balancing review and coordination meetings.

D. Complete Pre-Functional Checklists (PFCs) for all systems and equipment to be commissioned. Sign and submit the PFC’s using the submittal process for tracking. The checklists should be completed and signed by the technician performing the work. Sampling is not permitted; 100% of all equipment shall be tested.

E. Submit completed manufacturer’s start-up checklists for the equipment being commissioned. Manufacturer’s start-up documents shall be provided in addition to the completed and signed Pre-Functional Checklists.

F. Provide measuring instruments and logging devices to record test data, and provide data acquisition equipment to record data for the complete range of testing for the required test period. Provide meters, gauges and instruments for Functional Performance Testing.

G. Perform all commissioning tests at the direction of the CxA.

H. Complete tasks required to correct items noted by the CxA in the Deficiency Log.

I. Participate in systems, assemblies, equipment, and component maintenance orientation and inspection as directed by the CxA.

J. Provide O&M data including wiring diagrams, sequences of operation, single line drawings, warranties, tables, recommended maintenance schedules, checklists, spare parts lists, wiring and parts diagrams, points of contact for service, for all equipment, systems and controls being commissioned.

K. Provide training of the Owner’s operations and maintenance personnel in accordance with the project’s construction documents and commissioning plan.
L. Provide information requested by the CxA for final commissioning documentation.

1.3 CxA’s RESPONSIBILITIES

A. Commissioning Authority will be hired by the Owner.

B. Provide Project-specific construction checklists and commissioning process test procedures for actual Electrical systems, assemblies, equipment, and components to be furnished and installed as part of the construction contract.

C. Provide a Commissioning Plan.

D. Provide Pre-Functional Checklists.

E. Provide Functional Performance Checklists.

F. Direct commissioning testing.

G. Maintain and distribute the deficiency logs.

H. Provide a Preliminary Commissioning Report to the Owner a minimum of 10 days prior to Final Inspection. The General Contractor will ensure that a copy of the draft report is available on site for review by the building official. The preliminary report shall include the following as a minimum:

- Results of the Lighting and daylighting controls and equipment testing in separate sections for independent review.
- Itemized deficiencies found during testing that have not yet been corrected at the time the report is issued.
- Tests that cannot be completed at the time of report preparation, and reasons that the testing could not be completed.

I. Review the O&M documents for clarity and completeness.

J. Review an O&M Manual that is prepared by the General Contractor and provided to the Owner and includes the following:

- Submittal data stating selected size and options for each piece of equipment.
- Name and address of at least one qualified service agency.
- Lighting and daylighting controls system maintenance and calibration information. Include wiring diagrams, schematics, and control sequences descriptions.
- Desired or field determined setpoints shall be permanently recorded on control drawings at control devices or, for digital control systems, in the programming instructions.

K. Provide a Final Commissioning Report. The final report shall include the following as a minimum:

- Results of the Functional Performance Tests.
- Disposition of deficiencies found during testing, including the details of corrective measures used or proposed.
- Functional performance tests procedures during the commissioning process, including measurable criteria for test acceptance, provided for repeatability.

1.4 PROCESS

A. Functional Performance Testing will commence after preliminary punch list items are completed by the Contractor. Functional Performance Testing will not be scheduled until the completed Pre-Functional Checklists are received by the Commissioning Authority.
1.5 SUBMITTALS

A. Certificate of Readiness indicating the Electrical systems are ready for Commissioning.

B. Completed Pre-Functional Checklists shall be provided as a submittal for tracking purposes. Pre-Functional Checklists shall be completed and signed by the technician performing the work. Sampling is not permitted for the completion of the Pre-Functional Checklists.

C. Manufacturer’s start-up checklists.

D. Lighting and Daylighting Control System point to point checklists.

E. Sixty (60) days before any electrical testing is conducted, provide an overall testing plan and schedule for electrical, lighting control and daylighting control systems that lists the equipment, modes to be tested, dates of testing and parties required to conduct the test. Put this information in to the master construction schedule. Keep the plan and schedule updated.

1.6 COMMISSIONING DOCUMENTATION

A. Provide the following information to the CxA for inclusion in the commissioning documentation (commissioning plan or Systems Manual):
 1. Approved submittals with designer review comments of submittals resolved, operation and maintenance manuals, and assistance in drafting the systems manuals, and other documents and reports requested by the Commissioning Authority in searchable pdf format
 2. Identification of installed systems, assemblies, equipment, and components including design changes that occurred during the construction phase on as built markup of the design documents (plans and specifications)
 3. Process and schedule for completing construction checklists and manufacturer’s prestart and startup checklists for Electrical systems, assemblies, equipment, and components to be verified and tested.
 4. Completed PFCs certifying that installation, prestart checks, and startup procedures have been completed.
 5. Schedule indicating when Electrical systems, subsystems, equipment, and associated controls will be ready for functional testing. The date for permanent connection of power is required.
 6. Corrective action documents.
 7. The Contractor shall provide updated “As-Built” single line drawings for Power, Lighting, Lighting Control and Daylighting Control systems. The drawings are to be provided in the electronic format requested by the CxA. The drawings are required for inclusion in the Systems Manual that will be prepared by the CxA.
 8. The Contractor shall provide updated “As-Built” Lighting Control and Daylighting Control sequences of operation for inclusion in the Systems Manual.
 9. Any additional information requested by the CxA.
PART 3 - EXECUTION

3.1 GENERAL

A. The Contractor shall be responsible for performing procedures presented in specification and contract drawings as detailed in the Functional Performance Tests (FPT). Members of the designated Commissioning Team shall witness various portions of the commissioning process. Commissioning Team members shall sign-off on appropriate sections after verifying installation, operation, or documentation. Final sign-off shall be by the Owner and CxA.

B. Any test ports, gauges, test equipment, etc., needed to accomplish the functional performance tests shall be provided by the Contractor.

C. Contractor shall provide to the Commissioning Team documentation of calibration of controls. Documentation shall include dates, setpoints, calibration coefficients, control loop verification, and other data required to verify system check-out. Documentation shall be dated and initialed by field engineer or technician performing the work.

3.2 TESTING PREPARATION

A. Certify in writing the Electrical systems, subsystems, and equipment and controls have been installed, calibrated, started and are operating per the Contract Documents. Ensure the PFCs are completed and submitted by factory authorized start up tech and submitted to the Contractor.

B. Place systems, subsystems, and equipment into operating mode to be tested (e.g., normal shutdown, normal auto position, normal manual position, unoccupied cycle, emergency power, and alarm conditions).

C. Inspect and verify the position of each device and interlock identified in the sequences, control schematics and or on checklists.

D. Check safety cutouts, alarms, and interlocks with smoke control and life-safety systems during each mode of operation.

E. Testing Instrumentation: Install measuring instruments and logging devices to record test data if directed by the CxA in the Commissioning Plan.

3.3 GENERAL TESTING REQUIREMENTS

A. Provide technicians, instrumentation, and tools to perform commissioning tests at the direction of the CxA.

B. Refer to Section 019114 General Commissioning Requirements and the commissioning plan for the scope of Lighting and Daylighting controls testing.

C. Testing strategies and sampling: Refer to the Commissioning Plan for sampling strategies and functional performance test requirements.

D. Test all operating modes, interlocks, control responses, and responses to abnormal or emergency conditions, and verify proper response of lighting and daylighting system controllers and sensors.

E. The CxA shall prepare detailed testing plans, procedures, and checklists for Plumbing systems, subsystems, and equipment.

F. The Contractor shall execute the detailed testing plans, procedures, and checklists (PFCs and FPTs) prepared by the CxA for systems, subsystems, and equipment being commissioned.

G. Tests will be performed using design conditions whenever possible.
H. Simulated conditions may need to be imposed when it is not practical to test under design conditions. Before simulating conditions, calibrate testing instruments. Provide equipment to simulate loads. Set simulated conditions as directed by the CxA and document simulated conditions and methods of simulation. After tests, return settings to normal operating conditions.

I. The CxA may direct that set points be altered to achieve simulated conditions.

J. If tests cannot be completed because of a deficiency outside the scope of the system, the CxA will document the deficiency and report it to the Owner. After deficiencies are resolved, the Contractor will reschedule the tests.

K. If the testing plan indicates specific seasonal testing, complete appropriate initial performance tests and documentation and schedule seasonal tests.

3.4 INSTRUMENTATION

A. Instrumentation for Functional Performance Testing and data recording will be provided by the individual trade Subcontractors. Instruments used for measurements shall be accurate. Calibration histories for each instrument shall be available for examination. Calibration and maintenance of instruments shall be in accordance with the requirements of IEEE Standards.

B. Application of instruments and accuracy of measurements shall be in accordance with IEEE Standards.

3.5 INSTALLATION VERIFICATION

A. Before system start-up begins, the Contractor shall conduct a final installation verification audit. The Contractor shall be responsible for completion of work including change orders and punch list items to the Owner’s satisfaction.

B. If work is found to be incomplete, incorrect, or non-functional, the Contractor shall correct the deficiency before system start-up work proceeds.

3.6 SYSTEM START-UP & PRE-FUNCTIONAL CHECKLIST

A. System start-up shall be performed by the Contractor in accordance with the manufacturer’s written startup instructions and documented with the Pre-Functional Checklist (PFCs)

1. Designated members of the Commissioning Team may witness system start-up and list system and equipment deficiencies noted during start-up, however that is not required for system start-up and PFC documentation to be performed.

2. The Contractor shall take corrective action on system deficiencies found or noted and demonstrate and document proper system operation.

3. Designated systems requiring test and balance work shall have this activity commence after systems have successfully completed start-up. System and equipment deficiencies observed during this activity is to be noted and corrected.

B. Completed, signed-off PFCs shall be submitted once the system start up is complete for each system.

3.7 FUNCTIONAL PERFORMANCE TESTING

A. The objective of the Functional Performance Testing is to advance the building systems from a state of substantial completion to full dynamic operation in accordance with the specified design requirements, design intent, and Owner requirements.

B. Functional Performance Testing begins after all PFCs have been completed, submitted, and reviewed by the CxA, and after Test and Balance has been completed.
C. Functional Performance tests for the systems to be commissioned are defined in the Commissioning Plan. These tests are intended to be conclusive but may require minor modifications as system operation dictates.

1. Draft Functional Performance Test procedures will be provided by the CxA to the Owner, Designers and Contractors for review and comments. Comments will be reviewed and incorporated into the final Functional Performance documents.

2. Final Functional Performance Test documents will be provided for testing.

3. Functional Performance Testing will be executed by the Contractors and witnessed by the CxA.

4. Lighting and Daylighting Controls: Provide technicians, instrumentation, tools, and equipment to test performance of lighting control systems and daylighting control devices/systems.

5. The Commissioning Authority develops specific written equipment, system and assembly Functional Performance Test (FPT's) procedures for all commissioned Lighting and Daylighting controls and equipment. The following functions as a minimum will be tested:

- **Sampling of the occupancy sensors is permitted as follows (refer to the Commissioning Plan for additional information):**
 - If there are (7) occupancy sensors or less, all sensors shall be functionally tested.
 - For systems with more than (7) sensors testing shall be done for each unique combination of sensor type and space geometry.
 - Where multiples of each unique combination of sensor type and space geometry are provided, not less than 10% but in no case less than (1), of each combination, shall be tested unless the code official or design professional requires a higher percentage to be tested.
 - Where 30% or more of the tested controls fail, all remaining identical combinations shall be tested.
 - Refer to the Commissioning Plan for additional information. Where there is a difference between the Commissioning Plan and this specification, the Commissioning Plan shall be followed.

- **Occupancy Controls shall be tested as follows as follows:**
 - Verify status indicators are correct.
 - The controlled lights turn off or down to the permitted level in the required time.
 - For auto-on occupant sensor controls, the lights turn on to the permitted level when an occupant enters the space.
 - For manual-on occupant sensor controls, the lights turn on only when manually activated.
 - The lights are not incorrectly turned on by movement in adjacent areas of by HVAC operation.

- **Time-Switch Controls shall be tested as follows:**
 - Confirm the time switch control is programmed with accurate weekday, weekend and holiday schedules.
 - Verify the correct time and date in the time switch.
 - Verify that any battery back-up is installed and energized.
 - Verify that the override time limit is set for no more than 2 hours.
 - Simulate an occupied condition and verify and document the following:
 - All lights can be turned on and off by their respective area control switch.
 - The switch only operates lighting in the enclosed space in which the switch is located.
 - Simulate an un-occupied condition and verify and document the following:
 - Nonexempt lighting turns off.
 - Manual override switch only allows the lights in the enclosed space where the override switch is located to turn on or remain on until the next scheduled shutoff occurs.
 - Additional testing as specified by the registered design professional.
• For manual-on occupant sensor controls, the lights turn on only when manually activated.
• The lights are not incorrectly turned on by movement in adjacent areas.

• **Daylight Responsive Controls** shall be tested as follows:
 - Control devices have been properly located, field calibrated and set for accurate setpoints and threshold light levels.
 - Daylight controlled lighting loads adjust to light level setpoints in response to available daylight.
 - The locations of calibration equipment are readily accessible only to authorized personnel.

6. The test procedures are executed by the Contractor, under the direction of, and documented by the Commissioning Authority for most equipment.

3.8 NON-CONFORMANCE

A. The CxA will record the results of the Functional Performance Tests. All deficiencies, non-conformance issues, or test failures will be noted and reported to the Contractor in a deficiency list or in a punch-list format.

B. Corrections of minor deficiencies identified may be made during the tests at the discretion of the CxA. In such cases the deficiency and resolution will be documented on the procedure form.

C. Every effort will be made to expedite the testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the CxA will not be pressured into overlooking deficient work or loosening acceptance criteria to satisfy scheduling or cost issues, unless there is an overriding reason to do so at the request of the Owners Representative.

D. Re-testing.

1. If a Functional Performance Test fails, corrections shall be made to the deficient equipment or systems by the Contractor. The systems will be re-tested until they pass the Tests.

2. The time/cost for the CxA to perform any re-testing required because of improper set up of the systems by the Contractor or failed functional or performance tests will be back-charged to the Contractor (who may choose to recover costs from the party responsible for executing faulty equipment start-up/checkout and associated checklists). This includes instances where a specific item was overlooked in the equipment start-up and checkout procedures, reported to have been successfully completed, but determined during Functional Performance testing to be faulty.

3. Any required re-testing by any Contractor or vendor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.

END OF SECTION 260800
<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>210500</td>
<td>COMMON WORK RESULTS FOR FIRE SUPPRESSION</td>
</tr>
<tr>
<td>210517</td>
<td>SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING</td>
</tr>
<tr>
<td>210518</td>
<td>ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING</td>
</tr>
<tr>
<td>210548</td>
<td>VIBRATION AND SEISMIC CONTROLS FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>210553</td>
<td>IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>211000</td>
<td>WATER BASED FIRE SUPPRESSION SYSTEMS</td>
</tr>
<tr>
<td>211200</td>
<td>FIRE SUPPRESSION STANDPIPES</td>
</tr>
<tr>
<td>213213</td>
<td>ELECTRIC DRIVE VERTICAL TURNBINE FIRE PUMPS</td>
</tr>
<tr>
<td>213400</td>
<td>PRESSURE MAINTENANCE PUMPS</td>
</tr>
<tr>
<td>213900</td>
<td>CONTROLLERS FOR FIRE PUMP DRIVERS</td>
</tr>
</tbody>
</table>
SECTION 210500
COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Piping materials and installation instructions common to most piping systems.
2. Mechanical sleeve seals.
3. Sleeves.
4. Escutcheons.
5. Grout.
6. Fire-suppression equipment and piping demolition.
7. Equipment installation requirements common to equipment sections.
8. Painting and finishing.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

F. The following are industry abbreviations for rubber materials:

1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS
A. Product Data: For the following:

1. Mechanical sleeve seals.
2. Escutcheons.

1.5 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Electrical Characteristics for Fire-Suppression Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for fire-suppression installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for fire-suppression items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.

2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 21 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 21 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
1. ASME B16.21, nonmetallic, flat, asbestos-free, ⅛-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

E. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

1. Manufacturers:
 a. Calpico, Inc.
 b. Metraflex Co.
 c. Pipeline Seal and Insulator, Inc.
 d. Hilti.

2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

3. Pressure Plates: Carbon steel. Include two for each sealing element.

4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.5 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with set screws.

E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.

G. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.
2.6 **ESCUTCHEONS**

A. **Description:** Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. **One-Piece, Deep-Pattern Type:** Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. **One-Piece, Cast-Brass Type:** With set screw.
 1. **Finish:** Polished chrome-plated.

D. **One-Piece, Stamped-Steel Type:** With set screw or spring clips and chrome-plated finish.

2.7 **GROUT**

A. **Description:** ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.

 1. **Characteristics:** Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 2. **Design Mix:** 5000-psi, 28-day compressive strength.
 3. **Packaging:** Premixed and factory packaged.

PART 3 - EXECUTION

3.1 **PIPING SYSTEMS - COMMON REQUIREMENTS**

A. Install piping according to the following requirements and Division 21 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 1) Seal space outside of sleeve fittings with grout.
 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

R. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire-stop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

S. Verify final equipment locations for roughing-in.

T. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.
3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 21 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

E. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 PAINTING

A. Painting of fire-suppression systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.4 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor fire-suppression materials and equipment.

C. Field Welding: Comply with AWS D1.1.

3.5 GROUTING

A. Mix and install grout for fire-suppression equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.
G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION 210500
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Sleeve-seal systems.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.

2.2 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. Metraflex Company (The).
 4. Pipeline Seal and Insulator, Inc.
 5. Proco Products, Inc.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Carbon steel
3. Connecting Bolts and Nuts: **Carbon steel, with corrosion-resistant coating**, of length required to secure pressure plates to sealing elements.

2.3 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch (25-mm) annular clear space between piping and concrete slabs and walls.

 1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

 1. Cut sleeves to length for mounting flush with both surfaces.

 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level.

 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6 (DN 150): Galvanized-steel wall sleeves.
 b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel wall sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6 (DN 150): Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 (DN 150) and Larger: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6 (DN 150): Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 (DN 150) and Larger: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6 (DN 150): PVC-pipe sleeves
 b. Piping NPS 6 (DN 150) and Larger: PVC-pipe sleeves.

5. Interior Partitions:
 a. Piping Smaller Than NPS 6 (DN 150): Galvanized-steel-pipe sleeves
 b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-sheet sleeves

END OF SECTION 210517
SECTION 210518

ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Escutcheons.
2. Floor plates.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. Escutcheons for New Piping:

a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.

b. Chrome Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.

c. Insulated Piping: One-piece, stamped-steel type.

d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.

e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type.
h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type.
j. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated finish.
k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

 1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 210518
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:

1. Isolation pads.
2. Isolation mounts.
3. Restrained elastomeric isolation mounts.
4. Restraining braces.

1.2 DEFINITIONS

1.3 ACTION SUBMITTALS

A. Product Data: For each product indicated.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For professional engineer.

B. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Ace Mountings Co., Inc.
2. Amber/Booth Company, Inc.
4. Isolation Technology, Inc.
7. Vibration Eliminator Co., Inc.
8. Vibration Isolation.
B. Pads: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.

1. Resilient Material: Oil- and water-resistant neoprene

C. Mounts: Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.

1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.

PART 3 - EXECUTION

3.1 VIBRATION-CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Equipment Restraints:

1. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch (3.2 mm).

B. Piping Restraints:

2. Space lateral supports a maximum of 40 feet (12 m) o.c., and longitudinal supports a maximum of 80 feet (24 m) o.c.
3. Brace a change of direction longer than 12 feet (3.7 m).

C. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

D. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

E. Drilled-in Anchors:

1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
4. Set anchors to manufacturer’s recommended torque, using a torque wrench.
5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

END OF SECTION 210548
SECTION 210553
IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Equipment-Label Schedule: Include a listing of all equipment to be labeled and the proposed content for each label.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Material and Thickness: Brass, 0.032 inch (0.8 mm) thick, with predrilled holes for attachment hardware.
 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
 3. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 4. Fasteners: Stainless-steel rivets
 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch (3.2 mm) thick, with predrilled holes for attachment hardware.

B. Letter Color: Black

C. Background Color: Red.

D. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
E. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

F. Fasteners: Stainless-steel rivets

G. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

H. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe-Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; pipe size; and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches (38 mm) high.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 LABEL INSTALLATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install or permanently fasten labels on each major item of mechanical equipment.

D. Locate equipment labels where accessible and visible.

E. Pipe-Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection excluding short takeoffs. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of **50 feet (15 m)** along each run. Reduce intervals to **25 feet (7.6 m)** in areas of congested piping and equipment.

END OF SECTION 210553
SECTION 211000
WATER-BASED FIRE-SUPPRESSION SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Related Sections include the following:
 1. Division 22 Section "Water Distribution Piping" for piping outside the building.
 2. Division 28 Section "Fire Detection and Alarm" for alarm devices not specified in this Section.

1.3 DEFINITIONS

A. CR: Chlorosulfonated polyethylene synthetic rubber.

B. PE: Polyethylene plastic.

C. Underground Service-Entrance Piping: Underground service piping below the building.

1.4 SYSTEM DESCRIPTIONS

A. Combined Standpipe and Wet Sprinkler System: Fire-suppression system with both standpipe and sprinkler systems. Sprinkler system is supplied from standpipe system.

1.5 PERFORMANCE REQUIREMENTS

B. Fire-suppression standpipe system design shall be approved by authorities having jurisdiction.

C. Fire-suppression sprinkler system design shall be approved by authorities having jurisdiction. Contractor shall provide a complete fire protection system including all components necessary to insure proper operation and meet code/manufacturer’s requirements.

 1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
 2. Sprinkler Occupancy Hazard Classifications:
 a. Electrical Equipment Rooms: Ordinary Hazard, Group 1
 b. General Storage Areas: Ordinary Hazard, Group 1
 c. Mechanical Equipment Rooms: Ordinary Hazard, Group 1
 d. Office and Public Areas: Light Hazard
 e. Patient rooms, treatment rooms, and laboratories: Light Hazard.
3. Minimum Density for Automatic-Sprinkler Piping Design:
 a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
 c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.
 d. Special Occupancy Hazard: As determined by authorities having jurisdiction.

4. Maximum Protection Area per Sprinkler: Per UL listing and manufacturers requirements.

5. Maximum Protection Area per Sprinkler:
 a. Storage Areas: 130 sq. ft.
 b. Mechanical Equipment Rooms: 130 sq. ft.
 c. Electrical Equipment Rooms: 130 sq. ft.
 d. Light Hazard Areas: 225 sq. ft.
 e. Other Areas: According to NFPA 13 recommendations, unless otherwise indicated.

6. System design areas shall be per the in-force edition of NFPA 13. Adjustment allowances shall be strictly enforced.

7. Preaction system design areas shall be increased 30% to allow for delay in water delivery.

8. Gridded or looped piping configurations will not be allowed on preaction systems.

9. Total Combined Hose-Stream Demand Requirement: According to NFPA 13, unless otherwise indicated:
 a. Light-Hazard Occupancies: 100 gpm for 30 minutes
 b. Ordinary-Hazard Occupancies: 250 gpm for 60 to 90 minutes

1.6 SUBMITTALS

A. Product Data: For the following:
 1. Piping materials, including dielectric fittings, flexible connections, and sprinkler specialty fittings.
 2. Pipe hangers and supports
 3. Valves, including listed fire-protection valves, unlisted general-duty valves, and specialty valves and trim.
 4. Sprinklers, escutcheons, and guards. Include sprinkler flow characteristics, mounting, finish, and other pertinent data.
 5. Hose connections, including size, type, and finish.
 6. Fire department connections, including type; number, size, and arrangement of inlets; caps and chains; size and direction of outlet; escutcheon and marking; and finish.
 7. Alarm devices, including electrical data.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations, if applicable.

D. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13 and NFPA 14 Include "Contractor's Material and Test Certificate for Aboveground Piping" and "Contractor's Material and Test Certificate for Underground Piping."

E. Welding certificates.

F. Field quality-control test reports.

G. Operation and Maintenance Data: For standpipe and sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE
A. Installer Qualifications:

1. Installer's responsibilities include designing, fabricating, and installing fire-suppression systems. Base calculations on results of fire-hydrant flow test combined with fire pump.

B. NFPA Standards: Fire-suppression-system equipment, specialties, accessories, installation, and testing shall comply with the following:

1. NFPA 13, "Installation of Sprinkler Systems."
2. NFPA 14, "Installation of Standpipe, Private Hydrant, and Hose Systems."

1.8 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

B. Coordinate any electrical requirements for sprinkler systems with electrical contractor.

1.9 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Sprinkler Cabinets: Finished, wall-mounting, steel cabinet with hinged cover, with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler on Project.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell end and plain end.

1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern.
2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron gland, rubber gasket, and steel bolts and nuts.

B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell end and plain end.

1. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern.
2. Gaskets: AWWA C111, rubber.

C. Grooved-End, Ductile-Iron Pipe: AWWA C151, with factory- or field-formed, radius-cut-grooved ends according to AWWA C606.
1. Grooved-Joint Piping Systems:
 a. Manufacturers:
 1) Victaulic Co. of America.

 b. Grooved-End Fittings: ASTM A 536, ductile-iron casting with OD matching ductile-iron-pipe OD.
 c. Grooved-End-Pipe Couplings: AWWA C606, gasketed fitting matching ductile-iron-pipe OD. Include ductile-iron housing with keys matching ductile-iron-pipe and fitting grooves, rubber gasket with center leg, and steel bolts and nuts.
 d. Grooved-End-Pipe Transition Coupling: UL 213 and AWWA C606, gasketed fitting with end matching ductile-iron-pipe OD and end matching steel-pipe OD. Include ductile-iron housing with key matching ductile-iron-pipe groove and key matching steel-pipe groove, rubber gasket listed for use with housing, and steel bolts and nuts.
 e. Grooved-End Transition Flange: UL 213, gasketed fitting with key for ductile-iron-pipe dimensions. Include flange-type, ductile-iron housing with rubber gasket listed for use with housing and steel bolts and nuts.

2.3 STEEL PIPE AND FITTINGS

A. Threaded-End, Standard-Weight Steel Pipe: ASTM A 53/A 53M, ASTM A 135, or ASTM A 795, hot-dip galvanized where indicated and with factory- or field-formed threaded ends.
 5. Steel Threaded Couplings: ASTM A 865 hot-dip galvanized-steel pipe where indicated.

 1. Grooved-Joint Piping Systems:
 a. Manufacturers:
 1) Central Sprinkler Corp.
 2) Star Pipe Products; Star Fittings Div.
 3) Victaulic Co. of America.
 b. Grooved-End Fittings: UL-listed, ASTM A 536, ductile-iron casting with OD matching steel-pipe OD.
 c. Grooved-End-Pipe Couplings: UL 213 and AWWA C606, rigid pattern, unless otherwise indicated; gasketed fitting matching steel-pipe OD. Include ductile-iron housing with keys matching steel-pipe and fitting grooves, rubber gasket listed for use with housing, and steel bolts and nuts.

C. Grooved-End, Schedule 10 Steel Pipe: ASTM A 135 or ASTM A 795, Schedule 10 in NPS 5 and smaller; and NFPA 13-specified wall thickness in NPS 6 to NPS 10; with factory- or field-formed, roll-grooved ends.
 1. Grooved-Joint Piping Systems:
 a. Manufacturers:
 1) Central Sprinkler Corp.
 2) Star Pipe Products; Star Fittings Div.
 3) Victaulic Co. of America.
 b. Grooved-End Fittings: UL-listed, ASTM A 536, ductile-iron casting with OD matching steel-pipe OD.
2.4 FLEXIBLE CONNECTORS

A. Flexible connectors shall have materials suitable for system fluid. Include 175-psig minimum working-pressure rating and ends according to the following:

1. NPS 2 and Smaller: Threaded.
2. NPS 2-1/2 and Larger: Flanged.
3. Option for NPS 2-1/2 and Larger: Grooved for use with grooved-end-pipe couplings.

B. Manufacturers:

1. Flex-Hose Co., Inc.
2. Flex-Weld, Inc.
4. Metraflex, Inc.

C. Stainless-Steel-Hose/Steel Pipe, Flexible Connectors: Corrugated, stainless-steel, inner tubing covered with stainless-steel wire braid. Include steel nipples or flanges, welded to hose.

2.5 SPRINKLER SPECIALTY FITTINGS

A. Sprinkler specialty fittings shall be UL listed or FMG approved, with 175-psig minimum working-pressure rating, and made of materials compatible with piping. Sprinkler specialty fittings shall have 250-psig minimum working-pressure rating if fittings are components of high-pressure piping system.

B. Outlet Specialty Fittings:

1. Manufacturers:

 a. Central Sprinkler Corp.
 b. Star Pipe Products; Star Fittings Div.
 c. Victaulic Co. of America.

C. Sprinkler Drain and Alarm Test Fittings: Cast- or ductile-iron body; with threaded or locking-lug inlet and outlet, test valve, and orifice and sight glass.

1. Manufacturers:

 a. Central Sprinkler Corp.
 b. Fire-End and Croker Corp.
 c. Viking Corp.

D. Sprinkler Branch-Line Test Fittings: Brass body with threaded inlet, capped drain outlet, and threaded outlet for sprinkler.

1. Manufacturers:

 b. Fire-End and Croker Corp.
 c. Potter-Roemer; Fire-Protection Div.
E. Sprinkler Inspector's Test Fitting: Cast- or ductile-iron housing with threaded inlet and drain outlet and sight glass.
 1. Manufacturers:
 a. AGF Manufacturing Co.
 b. Central Sprinkler Corp.
 c. G/J Innovations, Inc.

F. Drop-Nipple Fittings: UL 1474, adjustable with threaded inlet and outlet, and seals.
 1. Manufacturers:
 a. CECA, LLC.
 b. Merit.

G. Dry-Pipe-System Fittings: UL listed for dry-pipe service.

2.6 LISTED FIRE-PROTECTION VALVES

A. Valves shall be UL listed or FMG approved, with 175-psig minimum pressure rating. Valves shall have 250-psig minimum pressure rating if valves are components of high-pressure piping system.

B. Ball Valves: Comply with UL 1091, except with ball instead of disc.
 1. NPS 1-1/2 and Smaller: Bronze body with threaded ends.
 2. NPS 2 and NPS 2-1/2: Bronze body with threaded ends or ductile-iron body with grooved ends.
 3. NPS 3: Ductile-iron body with grooved ends.
 4. Manufacturers:
 a. NIBCO.
 b. Victaulic Co. of America.

C. Butterfly Valves: UL 1091.
 1. NPS 2 and Smaller: Bronze body with threaded ends.
 a. Manufacturers:
 1) Global Safety Products, Inc.
 2) Milwaukee Valve Company.
 3) Nibco
 2. NPS 2-1/2 and Larger: Bronze, cast-iron, or ductile-iron body; wafer type or with flanged or grooved ends.
 a. Manufacturers:
 1) Central Sprinkler Corp.
 2) Global Safety Products, Inc.
 3) McWane, Inc.; Kennedy Valve Div.
 4) Mueller Company.
 5) NIBCO.
 6) Victaulic Co. of America.

D. Check Valves NPS 2 and Larger: UL 312, swing type, cast-iron body with flanged or grooved ends.
1. Manufacturers:
 a. Central Sprinkler Corp.
 b. Clow Valve Co.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Crane Co.; Crane Valve Group; Jenkins Valves.
 e. Globe Fire Sprinkler Corporation.
 f. Grinnell Fire Protection.
 g. Hammond Valve.
 h. McWane, Inc.; Kennedy Valve Div.
 i. Mueller Company.
 j. NIBCO.
 k. Potter-Roemer; Fire Protection Div.
 l. Reliable Automatic Sprinkler Co., Inc.
 m. Star Sprinkler Inc.
 n. Stockham.
 o. United Brass Works, Inc.
 p. Victaulic Co. of America.
 q. Watts Industries, Inc.; Water Products Div.

E. Gate Valves: UL 262, OS&Y type.

1. NPS 2 and Smaller: Bronze body with threaded ends.
 a. Manufacturers:
 1) Crane Co.; Crane Valve Group; Crane Valves.
 2) Hammond Valve.
 3) NIBCO.
 4) United Brass Works, Inc.

2. NPS 2-1/2 and Larger: Cast-iron body with flanged ends.
 a. Manufacturers:
 1) Clow Valve Co.
 2) Crane Co.; Crane Valve Group; Crane Valves.
 3) Crane Co.; Crane Valve Group; Jenkins Valves.
 4) Hammond Valve.
 5) Milwaukee Valve Company.
 6) Mueller Company.
 7) NIBCO.
 8) Red-White Valve Corp.
 9) United Brass Works, Inc.

F. Indicating Valves: UL 1091, with integral indicating device and ends matching connecting piping.

1. Indicator: Electrical, 115-V ac, prewired, single-circuit, supervisory switch.
2. NPS 2 and Smaller: Ball or butterfly valve with bronze body and threaded ends.
 a. Manufacturers:
 1) Milwaukee Valve Company.
 2) NIBCO.
 3) Victaulic Co. of America.

3. NPS 2-1/2 and Larger: Butterfly valve with cast- or ductile-iron body; wafer type or with flanged or grooved ends.
 a. Manufacturers:
2.7 SPRINKLERS

A. Sprinklers shall be UL listed or FMG approved, with 175-psig minimum pressure rating. Sprinklers shall have 250-psig minimum pressure rating if sprinklers are components of high-pressure piping system.

B. Manufacturers:

1. Central Sprinkler Corp.
4. Reliable Automatic Sprinkler Co., Inc.
5. Star Sprinkler Inc.
6. Victaulic Co. of America.
7. Viking Corp.

C. Store sprinkler system components in their original shipping container, in a clean, dry space protected from weather. Until completion of all finish-out, protective caps/clips shall not be removed from sprinklers or cover plates/escutcheon plates installed. Any painted sprinklers or cover plates shall be replaced.

D. Fire sprinklers shall be of one manufacturer throughout the protected area. No mixing of sprinkler brands shall be permitted. Utilization of non-metal parts in the sealing portion of the sprinkler is strictly prohibited.

E. Automatic Sprinklers: With heat-responsive element complying with the following:

1. UL 1767, for early-suppression, fast-response applications.

F. Sprinkler Types and Categories: Nominal 1/2-inch orifice for "Ordinary" temperature classification rating, unless otherwise indicated or required by application.

 a. Orifice: 1/2 inch, with discharge coefficient K between 5.3 and 5.8.
 b. Orifice: 17/32 inch, with discharge coefficient K between 7.4 and 8.2.

G. Sprinkler types, features, and options as follows:

1. Concealed ceiling sprinklers, including cover plate.
2. Extended-coverage sprinklers.
3. Institution sprinklers, made with a small, breakaway projection.
4. Quick-response sprinklers.
5. Recessed sprinklers, including escutcheon.
7. Sidewall, dry-type sprinklers.
8. Upright sprinklers.

H. Sprinkler Finishes: Chrome plated, bronze, and painted.

I. Special Coatings: Wax, lead, and corrosion-resistant paint.

J. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
1. Ceiling Mounting: Chrome-plated steel, one piece, flat
2. Sidewall Mounting: Chrome-plated steel one piece, flat.

K. Sprinkler Guards: Wire-cage type, including fastening device for attaching to sprinkler. Guards shall be list with the sprinkler they are installed on.

2.8 HOSE CONNECTIONS

A. Manufacturers:
 2. Fire-End and Croker Corp.
 3. Potter-Roemer; Fire-Protection Div.

B. Description: UL 668, brass or bronze, 300-psig minimum pressure rating, hose valve for connecting fire hose. Include angle or gate pattern design; female NPS inlet and male hose outlet; and lugged cap, gasket, and chain. Include NPS 1-1/2 or NPS 2-1/2 as indicated, and hose valve threads according to NFPA 1963 and matching local fire department threads.

 1. Valve Operation: Nonadjustable type, unless pressure-regulating type is indicated
 2. Finish: chrome-plated.

2.9 FIRE DEPARTMENT CONNECTIONS

A. Manufacturers:
 2. Fire-End and Croker Corp.
 3. Potter-Roemer; Fire-Protection Div.

B. Wall-Type, Fire Department Connection: UL 405, 175-psig minimum pressure rating; with corrosion-resistant-metal body with brass inlets, brass wall escutcheon plate, brass lugged caps with gaskets and brass chains, and brass lugged swivel connections. Include inlets with threads according to NFPA 1963 and matching local fire department sizes and threads, outlet with pipe threads, extension pipe nipples, check devices or clappers for inlets, and escutcheon plate with marking similar to "AUTO SPKR & STANDPIPE."

 1. Type: Exposed, projecting, with two inlets and round escutcheon plate.
 2. Finish: Polished chrome-plated

2.10 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Water-Motor-Operated Alarm: UL 753, mechanical-operation type with pelton-wheel operator with shaft length, bearings, and sleeve to suit wall construction and 10-inch- diameter, cast-aluminum alarm gong with red-enamel factory finish. Include NPS 3/4 inlet and NPS 1 drain connections.

 1. Manufacturers:
 a. Central Sprinkler Corp.
 c. Grinnell Fire Protection.
 d. Reliable Automatic Sprinkler Co., Inc.
 e. Star Sprinkler Inc.
 f. VikingCorp.
C. Electrically Operated Alarm: UL 464, with 8-inch- minimum-diameter, vibrating-type, metal alarm bell with red-enamel factory finish and suitable for outdoor use.

1. Manufacturers:

D. Water-Flow Indicator: UL 346, electrical-supervision, paddle-operated-type, water-flow detector with 250-psig pressure rating and designed for horizontal or vertical installation. Include two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.

1. Manufacturers:
 b. Potter Electric Signal Company.
 c. Viking Corp.

E. Pressure Switch: UL 753, electrical-supervision-type, water-flow switch with retard feature. Include single-pole, double-throw, normally closed contacts and design that operates on rising pressure and signals water flow.

1. Manufacturers:
 b. Potter Electric Signal Company.
 c. Viking Corp.

F. Valve Supervisory Switch: UL 753, electrical, single-pole, double-throw switch with normally closed contacts. Include design that signals controlled valve is in other than fully open position.

1. Manufacturers:
 a. McWane, Inc.; Kennedy Valve Div.
 b. Potter Electric Signal Company.

G. Indicator-Post Supervisory Switch: UL 753, electrical, single-pole, double-throw switch with normally closed contacts. Include design that signals controlled indicator-post valve is in other than fully open position.

1. Manufacturers:

2.11 PRESSURE GAGES

A. Manufacturers:

1. AGF Manufacturing Co.
2. AMETEK, Inc.; U.S. Gauge.
5. Marsh Bellofram.
6. WIKA Instrument Corporation.

B. Description: UL 393, 3-1/2- to 4-1/2-inch- diameter, dial pressure gage with range of 0 to 250 psig minimum.

1. Water System Piping: Include caption "WATER" or "AIR/WATER" on dial face.
2. Air System Piping: Include retard feature and caption "AIR" or "AIR/WATER" on dial face.
PART 3 - EXECUTION

3.1 EARTHWORK

A. Refer to Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 EXAMINATION

A. Examine roughing-in for hose connections and stations to verify actual locations of piping connections before installation.

B. Examine walls and partitions for suitable thicknesses, fire- and smoke-rated construction, framing for hose-station cabinets, and other conditions where hose connections and stations are to be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 PIPING APPLICATIONS, GENERAL

A. Shop weld pipe joints where welded piping is indicated.

B. Do not use welded joints for galvanized-steel pipe.

C. Flanges, flanged fittings, unions, nipples, and transition and special fittings with finish and pressure ratings same as or higher than system's pressure rating may be used in aboveground applications, unless otherwise indicated.

D. Piping between Fire Department Connections and Check Valves: Galvanized, standard-weight steel pipe with threaded ends; cast- or malleable-iron threaded fittings; and threaded grooved ends; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.

E. Underground Service-Entrance Piping: Ductile-iron, push-on joint pipe and fittings and restrained joints.

F. Underground Service-Entrance Piping: Ductile-iron, grooved-end pipe and fittings; grooved-end-pipe couplings; and grooved joints.

G. Underground Service-Entrance Piping: Type L, soft copper tube; wrought-copper fittings; and brazed joints.

3.4 STANDPIPE SYSTEM PIPING APPLICATIONS

A. Standard-Pressure, Wet-Type Standpipe System, 175-psig Maximum Working Pressure:

1. NPS 4 and Smaller: Grooved-end, black standard-weight steel pipe with roll-grooved ends; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.

2. NPS 4 and Smaller: Grooved-end, Schedule 10 steel pipe; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.

3. NPS 4 and Smaller: Grooved-end, Type L, hard copper tube; grooved-end copper fittings; grooved-end-tube couplings; and grooved joints.
4. NPS 5 and NPS 6: Grooved-end, black standard-weight steel pipe with roll-grooved ends; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.

5. NPS 5 and NPS 6: Grooved-end, Schedule 10 steel pipe; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.

6. NPS 5 and NPS 6: Grooved-end, Type L, hard copper tube; grooved-end copper fittings; grooved-end-tube couplings; and grooved joints.

7. NPS 8: Grooved-end, black standard-weight steel pipe with roll-grooved ends; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.

B. Standard-Pressure, Dry-Type Standpipe System, 175-psig Maximum Working Pressure:

1. NPS 4 and Smaller: Threaded-end, galvanized, standard-weight steel pipe; galvanized, cast- or malleable-iron threaded fittings; and threaded joints.

2. NPS 4 and Smaller: Grooved-end, galvanized, standard-weight steel pipe with roll-grooved ends; grooved-end fittings; and grooved joints.

3.5 VALVE APPLICATIONS

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

1. Listed Fire-Protection Valves: UL listed and FMG approved for applications where required by NFPA 13 and NFPA 14
 a. Shutoff Duty: Use ball, butterfly, or gate valves.

3.6 JOINT CONSTRUCTION

A. Refer to Division 21 Section "Common Work Results for Fire Suppression" for basic piping joint construction.

B. Grooved Joints: Assemble joints with listed coupling and gasket, lubricant, and bolts.

2. Steel Pipe: Square-cut or roll-groove piping as indicated. Use grooved-end fittings and rigid, grooved-end-pipe couplings, unless otherwise indicated.
4. Dry-Pipe Systems: Use fittings and gaskets listed for dry-pipe service.

C. Dissimilar-Metal Piping Joints: Construct joints using dielectric fittings compatible with both piping materials.

1. NPS 2 and Smaller: Use dielectric unions, couplings, or nipples.
2. NPS 2-1/2 to NPS 4: Use dielectric flanges.
3. NPS 5 and Larger: Use dielectric flange insulation kits.

3.7 SERVICE-ENTRANCE PIPING

A. Connect fire-suppression piping to water-service piping of size and in location indicated for service entrance to building. Refer to Division 22 Section "Facility Water Distribution Piping" for exterior piping.
B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-service piping. Refer to Division 22 Section "Facility Water Distribution Piping" for backflow preventers.

C. Install shutoff valve, check valve, pressure gage, and drain at connection to water service.

3.8 PIPING INSTALLATION

A. Refer to Division 21 Section "Common Work Results for Fire Suppression" for basic piping installation.

B. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.

1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

C. Install underground ductile-iron service-entrance piping according to NFPA 24 and with restrained joints.

D. Install underground copper service-entrance piping according to NFPA 24.

E. Use approved fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

F. Install unions adjacent to each valve in pipes NPS 2 and smaller. Unions are not required on flanged devices or in piping installations using grooved joints.

G. Install flanges or flange adapters on valves, apparatus, and equipment having NPS 2-1/2 and larger connections.

H. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, sized and located according to NFPA 13.

I. Install sprinkler zone control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

J. Install drain valves on standpipes.

K. Install ball drip valves to drain piping between fire department connections and check valves. Drain to floor drain or outside building.

L. Install alarm devices in piping systems.

M. Hangers and Supports: Comply with NFPA 13 for hanger materials.

1. Install standpipe system piping according to NFPA 14.

2. Install sprinkler system piping according to NFPA 13.

N. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

O. Drain dry-type standpipe piping.

P. Drain dry-pipe sprinkler piping.

Q. Fill wet-standpipe system piping with water.

R. Fill wet-pipe sprinkler system piping with water.
S. Install flexible connectors on fire-pump supply and discharge connections and in fire-suppression piping where indicated.

3.9 VALVE INSTALLATION

A. Install listed fire-protection valves, unlisted general-duty valves, specialty valves and trim, controls, and specialties according to NFPA 13 and NFPA 14 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water supply sources.

3.10 SPRINKLER APPLICATIONS

A. Drawings indicate sprinkler types to be used. Where specific types are not indicated, use the following sprinkler types:

1. Rooms without Ceilings: Upright sprinklers
2. Rooms with Suspended Ceilings: Concealed sprinklers, coordinate with architect.
3. Rooms with lay-in ceiling or gypboard ceilings: Concealed sprinklers.
5. Spaces Subject to Freezing: Upright, pendant, dry sprinklers; and sidewall, dry sprinklers
6. Special Applications: Extended-coverage, flow-control, and quick-response sprinklers
7. Sprinkler Finishes:
 a. Upright, Pendent, and Sidewall Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.
 b. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
 c. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon.

3.11 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels and tiles.

B. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing. Use dry-type sprinklers with water supply from heated space.

3.12 FIRE DEPARTMENT CONNECTION INSTALLATION

A. Install wall-type, fire department connections in vertical wall.

B. Install ball drip valve at each check valve for fire department connection.

3.13 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.
C. Connect water-supply piping to fire-suppression piping. Include backflow preventer between potable-water piping and fire-suppression piping. Refer to Division 22 Section "Domestic Water Piping Specialties" for backflow preventers.

D. Install ball drip valves at each check valve for fire department connection. Drain to floor drain or outside building.

E. Connect piping to specialty valves, hose valves, specialties, fire department connections, and accessories.

F. Connect air compressor to the following piping and wiring:
 1. Pressure gages and controls.
 2. Electrical power system.
 3. Fire alarm devices, including low-pressure alarm.

G. Electrical Connections: Power wiring is specified in Division 26.

H. Connect alarm devices to fire alarm. Connections specified in Division 26.

I. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

J. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

K. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.14 LABELING AND IDENTIFICATION
A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13 and NFPA 14

3.15 FIELD QUALITY CONTROL
A. Perform the following field tests and inspections and prepare test reports:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Energize circuits to electrical equipment and devices.
 5. Flush, test, and inspect standpipe systems according to NFPA 14, "System Acceptance" Chapter.
 6. Coordinate with fire alarm tests. Operate as required.
 7. Coordinate with fire-pump tests. Operate as required.
 8. Verify that equipment hose threads are same as local fire department equipment.

B. Report test results promptly and in writing to Architect and authorities having jurisdiction.

3.16 CLEANING AND PROTECTION
A. Clean dirt and debris from sprinklers.

B. Remove and replace sprinklers with paint other than factory finish.

C. Protect sprinklers from damage until Substantial Completion.

3.17 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain specialty valves. Refer to Division 01 Section “Demonstration and Training.”

END OF SECTION 211000
SECTION 211200
FIRE-SUPPRESSION STANDPIPES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Pipes, fittings, and specialties.
 2. Fire-protection valves.
 3. Hose connections.
 4. Fire-department connections.
 5. Alarm devices.
 6. Pressure gages.

B. Related Sections:
 1. Division 21 Section "Wet-Pipe Sprinkler Systems" for wet-pipe sprinkler piping.
 2. Division 21 Section Electric-Drive, Vertical-Turbine Fire Pumps for fire pumps, pressure-maintenance pumps, and fire-pump controllers.
 3. Division 28 Section Digital, Addressable Fire-Alarm System for alarm devices not specified in this Section.

1.2 SYSTEM DESCRIPTIONS

A. Automatic Wet-Type, Class I Standpipe System: Includes NPS 2-1/2 (DN 65) hose connections. Has open water-supply valve with pressure maintained and is capable of supplying water demand.

B. Automatic Wet-Type, Class II Standpipe System: Includes NPS 1-1/2 (DN 40) hose stations. Has open water-supply valve with pressure maintained and is capable of supplying water demand.

C. Automatic Wet-Type, Class III Standpipe System: Includes NPS 1-1/2 (DN 40) hose stations and NPS 2-1/2 (DN 65) hose connections. Has open water-supply valve with pressure maintained and is capable of supplying water demand.

D. Manual Dry-Type, Class I Standpipe System: Includes NPS 2-1/2 (DN 65) hose connections. Does not have permanent water supply. Piping is dry. Water must be pumped into standpipes to satisfy demand.

1.3 PERFORMANCE REQUIREMENTS

A. Fire-Suppression Standpipe System Component: Listed for 175-psig (1200-kPa) minimum working pressure.

B. Delegated Design: Design fire-suppression standpipes, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
 1. Refer to drawings for available fire-hydrant flow test: Contractor to provide new flow test for design submission.

C. Fire-suppression standpipe design shall be approved by authorities having jurisdiction.
1. Minimum residual pressure at each hose-connection outlet is as follows:
 a. NPS 2-1/2 (DN 65) Hose Connections: 100 psig (690 kPa).

2. Maximum residual pressure at required flow at each hose-connection outlet is as follows unless otherwise indicated:
 a. NPS 2-1/2 (DN 65) Hose Connections: 175 psig (1200 kPa).

1.4 ACTION SUBMITTALS

 A. Product Data: For each type of product indicated.
 B. Shop Drawings: For fire-suppression standpipes. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.
 C. Delegated-Design Submittal: For standpipe systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

 A. Qualification Data: For qualified Installer.
 B. Approved Standpipe Drawings: Working plans, prepared according to NFPA 14, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.
 C. Welding certificates.
 D. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 14. Include “Contractor's Material and Test Certificate for Aboveground Piping” and “Contractor's Material and Test Certificate for Underground Piping.”
 E. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

 A. Operation and maintenance data.

1.7 QUALITY ASSURANCE

 A. Installer Qualifications:
 1. Installer's responsibilities include designing, fabricating, and installing fire-suppression standpipes and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 B. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
 C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
D. NFPA Standards: Fire-suppression standpipe equipment, specialties, accessories, installation, and testing shall comply with NFPA 14, "Installation of Standpipe and Hose Systems."

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

A. Standard Weight, Black Steel Pipe: ASTM A 53/A 53M, Type E Grade B. Pipe ends may be factory or field formed to match joining method.

C. Galvanized, Steel Couplings: ASTM A 865, threaded.

E. Malleable- or Ductile-Iron Unions: UL 860.

F. Cast-Iron Flanges: ASME B16.1, Class 125.

G. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.

I. Grooved-Joint, Steel-Pipe Appurtenances:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Corcoran Piping System Co.
 c. National Fittings, Inc.
 d. Shurjoint Piping Products.
 e. Tyco Fire & Building Products LP.
 f. Victaulic Company.

2. Pressure Rating: 250 psig (1725 kPa) minimum.

4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch (3.2 mm) thick.
1. Class 125, Cast-Iron Flat-Face Flanges: Full-face gaskets.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 LISTED FIRE-PROTECTION VALVES

A. General Requirements:

1. Valves shall be UL listed or FM approved.

B. Check Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Clow Valve Company; a division of McWane, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Fire Protection Products, Inc.
 d. Globe Fire Sprinkler Corporation.
 e. Milwaukee Valve Company.
 f. Mueller Co.; Water Products Division.
 g. NIBCO INC.
 h. Reliable Automatic Sprinkler Co., Inc.
 i. Tyco Fire & Building Products LP.
 j. United Brass Works, Inc.
 k. Venus Fire Protection Ltd.
 l. Victaulic Company.
 m. Viking Corporation.

4. Pressure Rating: 250 psig (1725 kPa) minimum.
5. Type: Swing check.
7. End Connections: Flanged or grooved.

C. Bronze OS&Y Gate Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. United Brass Works, Inc.

3. Pressure Rating: 175 psig (1200 kPa).
5. End Connections: Threaded.

D. Indicating-Type Butterfly Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2.:
 a. Anvil International, Inc.
 b. Fivalco Inc.
 c. Global Safety Products, Inc.
 d. Kennedy Valve; a division of McWane, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Shurjoint Piping Products.
 h. Tyco Fire & Building Products LP.
 i. Victaulic Company.

4. Pressure Rating: 175 psig (1200 kPa) minimum.
5. Valves NPS 2 (DN 50) and Smaller:
 a. Valve Type: Ball or butterfly.
 b. Body Material: Bronze.
 c. End Connections: Threaded.
6. Valves NPS 2-1/2 (DN 65) and Larger:
 a. Valve Type: Butterfly.
 b. Body Material: Cast or ductile iron.
 c. End Connections: Flanged, grooved, or wafer.
7. Valve Operation: Integral electrical, 115-V ac, prewired, single-circuit, supervisory switch and visual indicating device.

2.5 HOSE CONNECTIONS

A. Adjustable-Valve Hose Connections:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2.:
 a. AFAC Inc.
 c. Fire-End & Croker Corporation.
 d. Fire Protection Products, Inc.
 e. GMR International Equipment Corporation.
 f. Guardian Fire Equipment, Inc.
 g. Potter Roemer.
 h. Tyco Fire & Building Products LP.
 i. Wilson & Cousins Inc.
 j. Zurn Plumbing Products Group; Wilkins Water Control Products Division.

3. Standard: UL 668 hose valve, with integral UL 1468 reducing or restricting pressure-control device, for connecting fire hose.
4. Pressure Rating: 300 psig (2070 kPa) minimum.
5. Material: Brass or bronze.
6. Size: NPS 1-1/2 or NPS 2-1/2 (DN 40 or DN 65), as indicated.
7. Inlet: Female pipe threads.
8. Outlet: Male hose threads with lugged cap, gasket, and chain. Include hose valve threads according to NFPA 1963 and matching local fire-department threads.
10. Pressure-Control Device Type: Pressure reducing.
11. Finish: Polished chrome plated

2.6 FIRE-DEPARTMENT CONNECTIONS

A. Flush-Type, Fire-Department Connection:
 1. Manufacturers: Subject to compliance with requirements available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following
 2.
 a. AFAC Inc.
 c. GMR International Equipment Corporation.
 d. Guardian Fire Equipment, Inc.
 e. Potter Roemer.
 4. Type: Flush, for wall mounting.
 5. Pressure Rating: 175 psig (1200 kPa) minimum.
 7. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
 8. Caps: Brass, lugged type, with gasket and chain.
 9. Escutcheon Plate: Rectangular, brass, wall type.
 12. Number of Inlets: Four.
 13. Outlet Location: Bottom.
 14. Escutcheon Plate Marking: Similar to AUTO SPKR & STANDPIPE
 15. Finish: Polished chrome plated.

2.7 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Water-Flow Indicators:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. ADT Security Services, Inc.
 b. McDonnell & Miller; ITT Industries.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
 e. Viking Corporation.
 f. Watts Industries (Canada) Inc.
4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.

5. Type: Paddle operated.

7. Design Installation: Horizontal or vertical.

C. Valve Supervisory Switches:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.

3. Type: Electrically supervised.

5. Design: Signals that controlled valve is in other than fully open position.

2.8 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 1. AMETEK; U.S. Gauge Division.
 2. Ashcroft Inc.
 4. WIKA Instrument Corporation.

B. Standard: UL 393.

C. Dial Size: 3-1/2- to 4-1/2-inch (90- to 115-mm) diameter.

D. Pressure Gage Range: 0 to 250 psig (0 to 1725 kPa) minimum.

E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.

F. Air System Piping Gage: Include retard feature and "AIR" or "AIR/WATER" label on dial face.

PART 3 - EXECUTION

3.1 SERVICE-ENTRANCE PIPING

A. Connect fire-suppression standpipe piping to water-service piping at service entrance into building. Comply with requirements for exterior piping in Division 21 Section "Facility Fire-Suppression Water-Service Piping."

B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories at connection to fire-suppression water-service piping.

C. Install shutoff valve, check valve, pressure gage, and drain at connection to water service.
3.2 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.

1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements in NFPA 14 for installation of fire-suppression standpipe piping.

C. Install seismic restraints on piping. Comply with requirements in NFPA 13 for seismic-restraint device materials and installation.

D. Install listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

E. Install drain valves on standpipes. Extend drain piping to outside of building.

F. Install automatic (ball drip) drain valves to drain piping between fire-department connections and check valves. Drain to floor drain or outside building.

G. Install alarm devices in piping systems.

H. Install hangers and supports for standpipe system piping according to NFPA 14. Comply with requirements in NFPA 13 for hanger materials.

I. Install pressure gages on riser or feed main and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 (DN 8) and with soft-metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

J. Drain dry-type standpipe system piping.

K. Pressurize and check dry-type standpipe system piping.

L. Fill wet-type standpipe system piping with water.

M. Install electric heating cables and pipe insulation on wet-type, fire-suppression standpipe piping in areas subject to freezing. Comply with requirements for heating cables in Division 21 Section "Heat Tracing for Fire-Suppression Piping" and for piping insulation in Division 21 Section "Fire-Suppression Systems Insulation."

N. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."

O. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."

P. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 21 Section "Escutcheons for Fire-Suppression Piping."

3.3 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 (DN 50) and smaller.
C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 (DN 65) and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Install valves and fittings using standard pipe threads. Check and clean threads. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.

I. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

J. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.

K. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 14 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

3.5 HOSE-CONNECTION INSTALLATION

A. Install hose connections adjacent to standpipes.

B. Install freestanding hose connections for access and minimum passage restriction.

C. Install NPS 1-1/2 (DN 40) hose-connection valves with flow-restricting device.

D. Install NPS 2-1/2 (DN 65) hose connections with quick-disconnect NPS 2-1/2 by NPS 1-1/2 (DN 65 by DN 40) reducer adapter and flow-restricting device.
E. Install wall-mounted-type hose connections in cabinets. Include pipe escutcheons, with finish matching valves, inside cabinet where water-supply piping penetrates cabinet. Install valves at angle required for connection of fire hose. Comply with requirements for cabinets in Division 10 Section "Fire Extinguisher Cabinets."

3.6 FIRE-DEPARTMENT CONNECTION INSTALLATION

A. Install wall-type, fire-department connections.

B. Install automatic (ball drip) drain valve at each check valve for fire-department connection.

3.7 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 14.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Flush, test, and inspect standpipe systems according to NFPA 14, "System Acceptance" Chapter.
 4. Energize circuits to electrical equipment and devices.
 5. Coordinate with fire-alarm tests. Operate as required.
 6. Coordinate with fire-pump tests. Operate as required.
 7. Verify that equipment hose threads are same as local fire-department equipment.

C. Fire-suppression standpipe system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.9 PIPING SCHEDULE

A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with threaded ends; cast-iron threaded fittings; and threaded joints.

B. Wet-type, fire-suppression standpipe piping, NPS 4 (DN 100) and smaller, shall be one of the following:
 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.

C. Wet-type, fire-suppression standpipe piping, NPS 5 and NPS 6 (DN 125 and DN 150, shall be one of the following:
 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
D. Dry-type, fire-suppression standpipe piping, shall be one of the following:

1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints

END OF SECTION 211200
SECTION 213213
ELECTRIC-DRIVE, VERTICAL-TURBINE FIRE PUMPS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:

1. Vertical-turbine fire pumps.
2. Fire-pump accessories and specialties.

1.2 PERFORMANCE REQUIREMENTS
A. Pump Equipment, Accessory, and Specialty Pressure Rating: 175 psig (1200 kPa) minimum unless higher pressure rating is indicated.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, performance curves, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For fire pumps, motor drivers, and fire-pump accessories and specialties. Include plans, elevations, sections, details, and attachments to other work.

1.4 INFORMATIONAL SUBMITTALS
A. Seismic Qualification Certificates: For fire pumps, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Product Certificates: For each fire pump, from manufacturer.

C. Source quality-control reports.

D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.
1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NFPA Compliance: Comply with NFPA 20, "Installation of Stationary Pumps for Fire Protection."

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VERTICAL-TURBINE FIRE PUMPS

A. Description: Factory-assembled and -tested fire-pump and driver unit.

B. Base: Fabricated and attached to fire-pump and driver unit with reinforcement to resist movement of pump during seismic events when base is anchored to building substrate.

C. Finish: Red paint applied to factory-assembled and -tested unit before shipping.

2.2 VERTICAL-TURBINE FIRE PUMPS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following

3. Peerless Pump, Inc.
4. Pentair Pump Group; Aurora Pump.
5. Pentair Pump Group; Fairbanks Morse.

B. Pump Head: Cast iron, for surface discharge.

1. Discharge Outlet: With flange according to ASME B16.1 except connections may be threaded according to ASME B1.20.1, in sizes where flanges are not available.
2. Pump Head Seal: Stuffing box and packing.
3. Base: Cast iron or steel with hole for electrical cable.

C. Pump:

1. Standard: UL 448, for vertical-turbine pumps for fire service.
2. Line Shaft: Stainless steel or steel, with corrosion-resistant shaft sleeves.
3. Line Shaft Bearings: Rubber sleeve, water lubricated.
4. Line Shaft: Steel.
5. Line Shaft Bearings: Corrosion resistant, oil lubricated.
6. Impeller Shaft: Monel metal or stainless steel.
7. Bowl Section: Multiple cast-iron bowls with closed-type bronze or stainless-steel impellers.
8. Column Pipe: ASTM A 53/A 53M, Schedule 40, galvanized-steel pipe with threaded ends and cast-iron or steel fittings, in sections 10 feet (3 m) or less.
9. Suction Strainer: Cast or fabricated, bronze or stainless steel, and sized to restrict passage of 0.5-inch (12.7-mm) spheres.
D. Driver:
 1. Standard: UL 1004A.
 2. Type: Electric motor; NEMA MG 1, polyphase Design B.

2.3 FIRE-PUMP ACCESSORIES AND SPECIALTIES

A. Automatic Air-Release Valves: Comply with NFPA 20 for installation in fire-pump discharge piping.

B. Relief Valves: UL 1478, bronze or cast iron, spring loaded; for installation in fire-suppression water-supply piping.

C. Outlet Fitting: Concentric tapered reducer at pump-head discharge outlet.

D. Discharge Cone: Closed or open type.

E. Hose Valve Manifold Assembly:
 5. Manifold:
 a. Test Connections: Comply with UL 405 except provide outlets without clappers instead of inlets.
 b. Body: Flush type, brass or ductile iron, with number of outlets required by NFPA 20.
 d. Adapters and Caps with Chain: Brass or bronze, with outlet threaded according to NFPA 1963 and matching local fire-department threads.
 e. Escutcheon Plate: Brass or bronze; rectangular.
 f. Hose Valves: UL 668, bronze, with outlet threaded according to NFPA 1963 and matching local fire-department threads.
 g. Exposed Parts Finish: Polished.
 h. Escutcheon Plate Marking: Equivalent to "FIRE PUMP TEST."

2.4 GROUT

B. Characteristics: Nonshrink and recommended for interior and exterior applications.

C. Design Mix: 5000-psi (34-MPa), 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SOURCE QUALITY CONTROL

A. Testing: Test and inspect fire pumps according to UL 448 requirements for "Operation Test" and "Manufacturing and Protection Tests."
 1. Verification of Performance: Rate fire pumps according to UL 448.
B. Fire pumps will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and conditions affecting performance of fire pumps.

B. Examine roughing-in for fire-suppression piping systems to verify actual locations of piping connections before fire-pump installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Fire-Pump Installation Standard: Comply with NFPA 20 for installation of fire pumps, relief valves, and related components.

B. Equipment Mounting: Install fire pumps on concrete bases. Comply with requirements for concrete bases specified in Division 03 Section Miscellaneous Cast-in-Place Concrete

 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 4. Install anchor bolts to elevations required for proper attachment to supported equipment.

C. Install fire-pump discharge piping equal to or larger than size required by NFPA 20.

D. Support piping and pumps separately so weight of piping does not rest on pumps.

E. Install valves that are same size as connecting piping. Comply with requirements for fire-protection valves specified in Division 21 Section Fire-Suppression Standpipes and Division 21 Section Wet-Pipe Sprinkler Systems.

F. Install pressure gage on pump head discharge flange pressure-gage tapping. Comply with requirements for pressure gages specified in Division 21 Section Fire-Suppression Standpipes and Division 21 Section Wet-Pipe Sprinkler Systems.

G. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not factory mounted. Furnish copies of manufacturers' wiring diagram submittals to electrical Installer.

H. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

I. Engage a factory-authorized service representative to perform startup service.

 1. Complete installation and startup checks according to manufacturer's written instructions.
3.3 ALIGNMENT

A. Align pump and driver shafts after complete unit has been leveled on concrete base, grout has set, and anchor bolts have been tightened.

B. After alignment is correct, tighten anchor bolts evenly. Fill baseplate completely with grout, with metal blocks and shims or wedges in place. Tighten anchor bolts after grout has hardened. Check alignment and make required corrections.

C. Align piping connection.

D. Align pump and driver shafts for angular and parallel alignment according to HI 2.4 and to tolerances specified by manufacturer.

3.4 CONNECTIONS

A. Comply with requirements for piping and valves specified in Division 21 Section Fire-Suppression Standpipes and Division 21 Section Wet-Pipe Sprinkler Systems. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to pumps and equipment to allow service and maintenance.

C. Connect relief-valve discharge to drainage piping or point of discharge.

D. Connect fire pumps to their controllers.

3.5 IDENTIFICATION

A. Identify system components. Comply with requirements for fire-pump marking according to NFPA 20.

3.6 FIELD QUALITY CONTROL

A. Test each fire pump with its controller as a unit. Comply with requirements for electric-motor-driver fire-pump controllers specified in Division 21 Section "Controllers for Fire-Pump Drivers."

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:
 1. After installing components, assemblies, and equipment including controller, test for compliance with requirements.
 2. Test according to NFPA 20 for acceptance and performance testing.
 3. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 4. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 5. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
E. Components, assemblies, and equipment will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports.

G. Furnish fire hoses in number, size, and length required to reach storm drain or other acceptable location to dispose of fire-pump test water. Hoses are for tests only and do not convey to Owner.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire pumps.

END OF SECTION 213213
PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Regenerative-turbine, pressure-maintenance pumps.
 2. Vertical-turbine, pressure-maintenance pumps.
B. Related Section:
 1. Division 21 Section "Controllers For Fire-Pump Drivers" for pressure-maintenance-pump controllers.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, performance curves, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings: For pumps, accessories, and specialties. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.

1.5 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.6 COORDINATION
A. Coordinate sizes and locations of concrete bases with actual equipment provided.
PART 2 - PRODUCTS

2.1 VERTICAL-TURBINE, PRESSURE-MAINTENANCE PUMPS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

3. Peerless Pump, Inc.
4. Pentair Pump Group; Aurora Pump.
5. S.A. Armstrong Limited.

B. Description: Factory-assembled and -tested, vertical, multistage, open-line-shaft turbine pump as defined in drawings; with pump motor mounted above pump head.

C. Pump Construction:

1. Pump Head: Cast iron, for surface discharge, with flange, except connections may be threaded in sizes in which flanges are not available.
2. Pump Head Seal: Stuffing box and stuffing.
3. Line Shaft: Stainless steel or steel, with corrosion-resistant shaft sleeves.
4. Line Shaft Bearings: Rubber sleeve, water lubricated.
5. Line Shaft: Steel.
7. Impeller Shaft: Monel metal or stainless steel.
8. Bowl Section: Multiple cast-iron bowls with closed-type bronze or stainless-steel impellers.
9. Column Pipe: ASTM A 53/A 53M, Schedule 40, galvanized-steel pipe with threaded ends and cast-iron or steel fittings, in sections 10 feet (3 m) or less, with strainer of cast or fabricated bronze or stainless steel at bottom.

D. Motor: Single speed with permanently lubricated ball bearings. Comply with requirements in Division 21 Section "Common Motor Requirements for Fire Suppression Equipment."

1. Power Cord: Factory-connected to motor for field connection to controller and at least 10 feet (3 m) long.

E. Base: Cast iron or steel with hole for electrical cable.

2.2 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 21 Section "Common Motor Requirements for Fire Suppression Equipment."

1. Motor Sizes: Minimum size as indicated; if not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2. Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

A. NFPA Standard: Comply with NFPA 20 for installation of pressure-maintenance pumps.
B. Base-Mounted Pump Mounting: Install pumps on concrete bases. Comply with requirements for concrete bases specified in Division 03 Section Miscellaneous Cast-in-Place Concrete

1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
4. Install anchor bolts to elevations required for proper attachment to supported equipment.
5. Attach pumps to equipment base using anchor bolts.

C. Install regenerative-turbine, pressure-maintenance pumps according to HI 1.4.

D. Install vertical-turbine, pressure-maintenance pumps according to HI 2.4.

3.2 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Pressure-maintenance pumps will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.

3.3 ADJUSTING

A. Lubricate pumps as recommended by manufacturer.

B. Set field-adjustable pressure-switch ranges as indicated.

END OF SECTION 213400
SECTION 213900
CONTROLLERS FOR FIRE-PUMP DRIVERS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Full-service, full-voltage controllers rated 600 V and less.
 2. Limited-service controllers rated 600 V and less.
 3. Controllers for diesel-drive fire pumps.
 5. Remote alarm panels.

1.2 DEFINITIONS
 A. ATS: Automatic transfer switch(es).
 B. ECM: Electronic control module.
 C. MCCB: Molded-case circuit breaker.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Shop Drawings: For each type of product indicated. Include dimensioned plans, elevations, sections, details, and attachments to other work, including required clearances and service spaces around controller enclosures.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, method of field assembly, components, and location and size of each field connection.
 2. Schematic and Connection Diagrams: For power, signal, alarm, and control wiring and for pressure-sensing tubing.

1.4 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For qualified testing agency.
 B. Seismic Qualification Certificates: For each type of product indicated, from manufacturer.
 C. Manufacturer's factory test reports of fully assembled and tested equipment.
 D. Source quality-control reports.
 E. Field quality-control reports.
1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 QUALITY ASSURANCE

A. Source Limitations: Obtain fire-pump controllers and all associated equipment from single source or producer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with standards of authorities having jurisdiction pertaining to materials and installation.

D. Comply with NFPA 20 and NFPA 70.

E. IEEE Compliance: Fabricate and test enclosed controllers according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

PART 2 - PRODUCTS

2.1 FULL-SERVICE CONTROLLERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Aquarius Fluid Products, Inc.
2. ASCO Power Technologies, LP; Firetrol Products.
4. Hubbell Incorporated; Hubbell Industrial Controls.
7. Metron, Inc.
8. Tornatech.

B. General Requirements for Full-Service Controllers:

1. Comply with NFPA 20 and UL 218.
2. Listed by an NRTL for electric-motor driver for fire-pump service.
3. Combined automatic and nonautomatic operation.
4. Factory assembled, wired, and tested; continuous-duty rated.
5. Service Equipment Label: NRTL labeled for use as service equipment.

C. Method of Starting:

1. Pressure-switch actuated.
 a. Water-pressure-actuated switch and pressure transducer with independent high- and low-calibrated adjustments responsive to water pressure in fire-suppression piping.
 b. System pressure recorder, electric ac driven, with spring backup.
 c. Programmable minimum-run-time relay to prevent short cycling.
 d. Programmable timer for weekly tests.

3. Emergency Start: Mechanically operated start handle that closes and retains the motor RUN contactor independent of all electric or pressure actuators.
D. Method of Stopping: Automatic and nonautomatic shutdown after automatic starting.

E. Capacity: Rated for fire-pump-driver horsepower and short-circuit-current (withstand) rating equal to or greater than short-circuit current available at controller location.

F. Method of Isolation and Overcurrent Protection: Interlocked isolating switch and nonthermal MCCB; with a common, externally mounted operating handle, and providing locked-rotor protection.

G. Door-Mounted Operator Interface and Controls:

1. Monitor, display, and control the devices, alarms, functions, and operations listed in NFPA 20 as required for drivers and controller types used.
2. Method of Control and Indication:
 a. Microprocessor-based logic controller, with multiline digital readout.
 b. Membrane keypad.
 c. LED alarm and status indicating lights.
3. Local and Remote Alarm and Status Indications:
 a. Controller power on.
 b. Motor running condition.
 c. Loss-of-line power.
 d. Line-power phase reversal.
 e. Line-power single-phase condition.
4. Audible alarm, with silence push button.
5. Nonautomatic START and STOP push buttons or switches.

H. ATS:

1. Complies with NFPA 20, UL 218, and UL 1008.
2. Integral with controller as a listed combination fire-pump controller and power transfer switch.
3. Automatically transfers fire-pump controller from normal power supply to alternate power supply in event of power failure.
4. Allows manual transfer from one source to the other.
5. Alternate-Source Isolating and Disconnecting Means: Integral molded-case switch, with an externally mounted operating handle.
6. Alternate-Source Isolating and Disconnecting Means: Mechanically interlocked isolation switch and circuit breaker rated at a minimum of 115 percent of rated motor full-load current, with an externally mounted operating handle; circuit breaker shall be provided with nonthermal sensing, instantaneous-only short-circuit overcurrent protection to comply with available fault currents.
7. Local and Remote Alarm and Status Indications:
 a. Normal source available.
 b. Alternate source available.
 c. In normal position.
 d. In alternate position.
 e. Isolating means open.
8. Audible alarm, with silence push button.
10. Engine test push button.
11. Start generator output contacts.
12. Timer for weekly generator tests.
2.2 CONTROLLERS FOR PRESSURE-MAINTENANCE PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. Aquarius Fluid Products, Inc.
2. ASCO Power Technologies, LP; Firetrol Products.
4. Hubbell Incorporated; Hubbell Industrial Controls.
7. Metron, Inc.

C. General Requirements for Pressure-Maintenance-Pump Controllers:

1. Type: UL 508 factory assembled, -wired, and tested, across-the-line; for combined automatic and manual operation.
2. Enclosure: UL 508 and NEMA 250, Type 2 for wall-mounting.
3. Factory assembled, wired, and tested.
4. Finish: Manufacturer's standard color paint.

D. Rate controller for scheduled horsepower and include the following:

1. Fusible disconnect switch.
2. Pressure switch.
4. Pilot light.
5. Running period timer.

2.3 REMOTE ALARM PANELS

A. General Requirements for Remote Alarm Panels: Comply with NFPA 20 and [UL 218] <Insert standard>; listed by an NRTL for fire-pump service.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Aquarius Fluid Products, Inc.
2. ASCO Power Technologies, LP; Firetrol Products.
4. Hubbell Incorporated; Hubbell Industrial Controls.
7. Metron, Inc.

C. General Requirements for Remote Alarm Panels: Factory assembled, wired, and tested.

D. Supervisory and Normal Control Voltage: 120-V ac dual source.

E. Audible and Visual Alarm and Status Indications:

1. Driver running.
2. Loss of phase.
3. Phase reversal.
4. Supervised power on.
5. Common trouble on the controller.
6. Controller connected to alternate power source.

F. Audible and Visual Alarm and Status Indications: Manufacturer's standard indicating lights; with separate test push button.
 1. Engine running.
 2. Controller main switch turned to the off or manual position.
 3. Supervised power on.
 4. Common trouble on the controller or engine.
 5. Common pump room trouble.
 6. Controller connected to alternate power source.

G. Audible alarm, with silence push button.

2.4 ENCLOSURES

A. Fire-Pump Controllers, ATS, and Remote Alarm Panels: NEMA 250, to comply with environmental conditions at installed locations and NFPA 20.
 1. Indoor Locations Subject to Dripping Noncorrosive Liquids: Type 2 (IEC IP11).

B. Enclosure Color: Manufacturer's standard "fire-pump-controller red.

C. Nameplates: Comply with NFPA 20; complete with capacity, characteristics, approvals, listings, and other pertinent data.

D. Floor stands, 12 inches (305 mm) high, for floor-mounted controllers.

2.5 SOURCE QUALITY CONTROL

A. Testing: Test and inspect fire-pump controllers according to requirements in NFPA 20 and UL 218.
 1. Verification of Performance: Rate controllers according to operation of functions and features specified.

B. Fire-pump controllers will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 CONTROLLER INSTALLATION

A. Install controllers within sight of their respective drivers.

B. Connect controllers to their dedicated pressure-sensing lines.

C. Wall-Mounting Controllers: Install controllers on walls with disconnect operating handles not higher than 79 inches (2006 mm) above finished floor, and bottom of enclosure not less than 12 inches (305 mm).
above finished floor unless otherwise indicated. Bolt units to wall or mount on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Division 26 Section "Hangers and Supports for Electrical Systems."

D. Floor-Mounting Controllers: Install controllers on 4-inch (100-mm) nominal-thickness concrete bases, using floor stands high enough so that the bottom of enclosure cabinet is not less than 12 inches (305 mm) above finished floor. Comply with requirements for concrete bases specified in Division 03 Section "[Cast-in-Place Concrete] [Miscellaneous Cast-in-Place Concrete]."

1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base, and anchor into structural concrete floor.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
4. Install anchor bolts to elevations required for proper attachment to supported equipment.

E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

F. Comply with NEMA ICS 15.

3.2 REMOTE ALARM PANEL INSTALLATION

A. Install panels on walls with tops not higher than 72 inches (1829 mm) above finished floor unless otherwise indicated. Bolt units to wall or mount on lightweight structural-steel channels bolted to wall. For panels not on walls, provide freestanding racks complying with Division 26 Section "Hangers and Supports for Electrical Systems."

3.3 POWER WIRING INSTALLATION

A. Install power wiring between controllers and their services or sources, and between controllers and their drivers. Comply with requirements in NFPA 20, NFPA 70, and Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

B. Comply with NECA 1.

3.4 CONTROL AND ALARM WIRING INSTALLATION

A. Install wiring between controllers and remote devices and facility's central monitoring system. Comply with requirements in NFPA 20, NFPA 70, and Division 26 Section "Control-Voltage Electrical Power Cables."

B. Install wiring between remote alarm panels and controllers. Comply with requirements in NFPA 20, NFPA 70, and Division 26 Section "Control-Voltage Electrical Power Cables."

C. Install wiring between controllers and the building's fire-alarm system. Comply with requirements specified in Division 28 Section "Digital, Addressable Fire-Alarm System."

D. Bundle, train, and support wiring in enclosures.

E. Connect remote manual and automatic activation devices where applicable.

3.5 IDENTIFICATION

A. Comply with requirements in NFPA 20 for marking fire-pump controllers.
3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Acceptance Testing Preparation:
 1. Inspect and Test Each Component:
 a. Inspect wiring, components, connections, and equipment installations. Test and adjust components and equipment.
 b. Test insulation resistance for each element, component, connecting supply, feeder, and control circuits.
 c. Test continuity of each circuit.
 2. Verify and Test Each Electric-Driver Controller:
 a. Verify that voltages at controller locations are within plus 10 or minus 1 percent of motor nameplate rated voltages, with motors off. If outside this range for any motor, notify Architect before starting the motor(s).
 b. Test each motor for proper phase rotation.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Field Acceptance Tests:
 1. Do not begin field acceptance testing until suction piping has been flushed and hydrostatically tested and the certificate for flushing and testing has been submitted to Architect and authorities having jurisdiction.
 2. Prior to starting, notify authorities having jurisdiction of the time and place of the acceptance testing.
 3. Engage manufacturer's factory-authorized service representative to be present during the testing.
 4. Perform field acceptance tests as outlined in NFPA 20.

D. Controllers will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.

F. Perform startup service.

G. Complete installation and startup checks according to manufacturer's written instructions.

3.7 ADJUSTING

A. Adjust controllers to function smoothly and as recommended by manufacturer.

B. Set field-adjustable switches, auxiliary relays, time-delay relays, and timers.

C. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.
D. Set field-adjustable pressure switches.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain controllers and remote alarm panels, and to use and reprogram microprocessor-based controls within this equipment.

END OF SECTION 213900
<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>220513</td>
<td>COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT</td>
</tr>
<tr>
<td>220516</td>
<td>EXPANSION FITTINGS AND LOOPS FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220517</td>
<td>SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220518</td>
<td>ESCUTCHEONS FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220519</td>
<td>METERS AND GAGES FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220523</td>
<td>GENERAL-DUTY VALVES FOR PLUMBING PIPING</td>
</tr>
<tr>
<td>220529</td>
<td>HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>220548</td>
<td>VIBRATION FOR PLUMPING PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>220553</td>
<td>IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>220716</td>
<td>PLUMBING EQUIPMENT INSULATION</td>
</tr>
<tr>
<td>220719</td>
<td>PLUMPING PIPING INSULATION</td>
</tr>
<tr>
<td>221116</td>
<td>DOMESTIC WATER PIPING</td>
</tr>
<tr>
<td>221119</td>
<td>DOMESTIC WATER PIPING SPECIALTIES</td>
</tr>
<tr>
<td>221123</td>
<td>DOMESTIC WATER PUMPS</td>
</tr>
<tr>
<td>221316</td>
<td>SANITARY WAST AND VENT PIPING</td>
</tr>
<tr>
<td>221319</td>
<td>SANITARY WASTE PIPING SPECIALTIES</td>
</tr>
<tr>
<td>221413</td>
<td>STORM DRAINAGE PIPING</td>
</tr>
<tr>
<td>221423</td>
<td>STORM DRAINAGE PIPING SPECIALTIES</td>
</tr>
</tbody>
</table>
SECTION 220513
COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small
 and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at
 equipment manufacturer’s factory or shipped separately by equipment manufacturer for field installation.

1.2 COORDINATION
 A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
 A. Comply with requirements in this Section except when stricter requirements are specified in plumbing
 equipment schedules or Sections.
 B. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS
 A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
 B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at
 designated speeds, at installed altitude and environment, with indicated operating sequence, and without
 exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS
 A. Description: NEMA MG 1, Design B, medium induction motor.
 B. Efficiency: Energy efficient, as defined in NEMA MG 1.
 C. Service Factor: 1.15.
 D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

G. Temperature Rise: Match insulation rating.

H. Insulation: Class F.

I. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 220513
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Metal-bellows packless expansion joints.
2. Pipe loops and swing connections.
3. Alignment guides and anchors.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Delegated-Design Submittal: For each anchor and alignment guide indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and swing connections.
2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
3. Alignment Guide Details: Detail field assembly and attachment to building structure.
4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint.

1.3 INFORMATIONAL SUBMITTALS

A. Welding certificates.

B. Product certificates.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:

1. AWS D1.1/D1.1M, "Structural Welding Code - Steel,"
2. ASME Boiler and Pressure Vessel Code: Section IX.
PART 2 - PRODUCTS

2.1 PACKLESS EXPANSION JOINTS

A. Metal-Bellows Packless Expansion Joints:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Adsco Manufacturing LLC.
 b. American BOA, Inc.
 c. Badger Industries, Inc.
 d. Expansion Joint Systems, Inc.
 e. Flex-Hose Co., Inc.
 f. Flexicraft Industries.
 g. Flex Pression Ltd.
 h. Flex-Weld, Inc.
 i. Flo Fab inc.
 j. Hyspan Precision Products, Inc.
 k. Metraflex, Inc.
 l. Proco Products, Inc.
 m. Senior Flexonics Pathway.
 n. Tozen Corporation.
 o. Unaflex.
 p. Unisource Manufacturing, Inc.
 q. Universal Metal Hose; a subsidiary of Hyspan Precision Products, Inc.
 r. U.S. Bellows, Inc.
 s. WahlcoMetroflex.

3. Type: Circular, corrugated bellows with external tie rods.

4. Minimum Pressure Rating: 175 psig unless otherwise indicated.

5. Configuration double joint with base class(es) unless otherwise indicated.

 a. End Connections for Copper Tubing NPS 2 and Smaller: Solder joint.
 b. End Connections for Copper Tubing NPS 2-1/2 to NPS 4: threaded.
 c. End Connections for Copper Tubing NPS 5 and Larger: Flanged.

2.2 ALIGNMENT GUIDES AND ANCHORS

A. Alignment Guides:

1. Description: Steel, factory-fabricated alignment guide, with bolted two-section outer cylinder and base for attaching to structure; with two-section guiding spider for bolting to pipe.

B. Anchor Materials:

1. Steel Shapes and Plates: ASTM A 36/A 36M.
2. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel hex head.
4. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, with tension and shear capacities appropriate for application.

5. Chemical Fasteners: Insert-type-stud, bonding-system anchor for use with hardened portland cement concrete, with tension and shear capacities appropriate for application.
 a. Bonding Material: ASTM C 881/C 881M, Type IV, Grade 3, two-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.

PART 3 - EXECUTION

3.1 EXPANSION-JOINT INSTALLATION
 A. Install expansion joints of sizes matching sizes of piping in which they are installed.
 B. Install metal-bellows expansion joints according to EJMA's "Standards of the Expansion Joint Manufacturers Association, Inc."

3.2 PIPE LOOP AND SWING CONNECTION INSTALLATION
 A. Install pipe loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.
 B. Connect risers and branch connections to mains with at least five pipe fittings including tee in main.
 C. Connect risers and branch connections to terminal units with at least four pipe fittings including tee in riser.
 D. Connect mains and branch connections to terminal units with at least four pipe fittings including tee in main.

3.3 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION
 A. Install alignment guides to guide expansion and to avoid end-loading and torsional stress.
 B. Install one guide on each side of pipe expansion fittings and loops. Install guides nearest to expansion joint not more than four pipe diameters from expansion joint.
 C. Attach guides to pipe and secure guides to building structure.
 D. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.
 E. Anchor Attachments:
 2. Anchor Attachment to Galvanized-Steel Pipe: Attach with pipe hangers. Use MSS SP-69, Type 42, riser clamp welded to anchor.
 3. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24, U-bolts bolted to anchor.
F. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1/D1.1M.

1. Anchor Attachment to Steel Structural Members: Attach by welding.
2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer's written instructions.

G. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.

END OF SECTION 220516
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Sleeve-seal systems.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.

2.2 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. Metraflex Company (The).
 4. Pipeline Seal and Insulator, Inc.
 5. Proco Products, Inc.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Carbon steel.
 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Cut sleeves to length for mounting flush with both surfaces.

 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.

2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.

3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:
1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than **NPS 6**: Cast-iron wall sleeves.
 b. Piping **NPS 6** and Larger: Cast-iron wall sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than **NPS 6**: Cast-iron wall sleeves with sleeve-seal system.
 b. Piping **NPS 6** and Larger: Cast-iron wall sleeves with sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than **NPS 6**: Cast-iron wall sleeves with sleeve-seal system.
 b. Piping **NPS 6** and Larger: Cast-iron wall sleeves with sleeve-seal system.

4. Concrete Slabs above Grade:
 a. Piping Smaller Than **NPS 6**: PVC-pipe sleeves.
 b. Piping **NPS 6** and Larger: PVC-pipe sleeves.

5. Interior Partitions:
 a. Piping Smaller Than **NPS 6**: PVC-pipe sleeves.
 b. Piping **NPS 6** and Larger: Cast-iron wall sleeves with sleeve-seal system.

END OF SECTION 220517
SECTION 220518

ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Escutcheons.
2. Floor plates.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. Escutcheons for New Piping:

a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.

b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.

c. Insulated Piping: One-piece, stamped-steel type.

d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.

e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.

f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
g. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated finish.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

 1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 220518
PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Bimetallic-actuated thermometers.
 2. Liquid-in-glass thermometers.
 3. Thermowells.
 4. Dial-type pressure gages.
 5. Gage attachments.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

1.3 INFORMATIONAL SUBMITTALS
A. Product certificates.

1.4 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 BIMETALLIC-ACTUATED THERMOMETERS
A. Manufacturers: Subject to compliance with requirements provide products by one of the following:
 1. Ashcroft Inc.
 2. Ernst Flow Industries.
 3. Marsh Bellofram.
 8. REOTEMP Instrument Corporation.
 10. Trerice, H. O. Co.
 11. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 12. Weiss Instruments, Inc.
 13. WIKA Instrument Corporation - USA.
 14. Winters Instruments - U.S.

C. Case: Liquid-filled and sealed type(s); stainless steel with 3-inch nominal diameter.

D. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F.

E. Connector Type(s): Union joint, adjustable angle, with unified-inch screw threads.

F. Connector Size: 1/2 inch, with ASME B1.1 screw threads.

G. Stem: 0.25 or 0.375 inch in diameter; stainless steel.

H. Window: Plain glass

I. Ring: Stainless steel.

J. Element: Bimetal coil.

K. Pointer: Dark-colored metal.

L. Accuracy: Plus or minus 1.5 percent of scale range.

2.2 LIQUID-IN-GLASS THERMOMETERS

A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flo Fab Inc.
 b. Miljoco Corporation.
 d. Tel-Tru Manufacturing Company.
 e. Trerice, H. O. Co.
 f. Weiss Instruments, Inc.
 g. Winters Instruments - U.S.

3. Case: Cast aluminum 7-inch nominal size unless otherwise indicated.

4. Case Form: Adjustable angle unless otherwise indicated.

5. Tube: Glass with magnifying lens and blue organic liquid.

6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.

7. Window: Glass.

8. Stem: Aluminum and of length to suit installation.
 a. Design for Thermowell Installation: Bare stem.

10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.3 THERMOWELLS

A. Thermowells:

2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
3. Material for Use with Copper Tubing: **CNR or CUNI**.
4. Material for Use with Steel Piping: **CRES**.
5. Type: Stepped shank unless straight or tapered shank is indicated.
6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
8. Bore: Diameter required to match thermometer bulb or stem.
9. Insertion Length: Length required to match thermometer bulb or stem.
10. Lagging Extension: Include on thermowells for insulated piping and tubing.
11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

B. Heat-Transfer Medium: **Mixture of graphite and glycerin**.

2.4 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMETEK, Inc.; U.S. Gauge.
 b. Ashcroft Inc.
 c. Ernst Flow Industries.
 d. Flo Fab Inc.
 e. Marsh Bellofram.
 f. Miljoco Corporation.
 g. Noshok.
 h. Palmer Wahl Instrumentation Group.
 i. REOTEMP Instrument Corporation.
 j. Tel-Tru Manufacturing Company.
 k. Trenice, H. O. Co.
 l. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 m. Weiss Instruments, Inc.
 n. WIKA Instrument Corporation - USA.
 o. Winters Instruments - U.S.

3. Case: Liquid-filled, Sealed type(s); cast aluminum 4-1/2-inch nominal diameter.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with **NPS 1/2**, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in **psi**.
9. Window: **Glass**.
10. Ring: **Stainless steel**.
11. Accuracy: **Grade A, plus or minus 1 percent of middle half of** scale range.

B. Direct-Mounted, Plastic-Case, Dial-Type Pressure Gages:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMETEK, Inc.; U.S. Gauge.
 b. Ashcroft Inc.
 c. Flo Fab Inc.
 d. Marsh Bellofram.
 e. Miljoco Corporation.
 f. Noshok.
g. Palmer Wahl Instrumentation Group.
h. REOTEMP Instrument Corporation.
i. Tel-Tru Manufacturing Company.
j. T terice, H. O. Co.
k. Weiss Instruments, Inc.
l. WIKA Instrument Corporation - USA.
m. Winters Instruments - U.S.

3. Case: Sealed type; 4-1/2-inch nominal diameter.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
10. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.5 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/2, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.

B. Valves: Brass or stainless-steel needle, with NPS 1/2, ASME B1.20.1 pipe threads.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.

G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

H. Install remote-mounted pressure gages on panel.

I. Install valve and snubber in piping for each pressure gage for fluids.

J. Install thermometers in the following locations:
 1. Inlet and outlet of each water heater.
 2. Inlets and outlets of each domestic water heat exchanger.
3. Inlet and outlet of each domestic hot-water storage tank.
4. Inlet and outlet of each remote domestic water chiller.

K. Install pressure gages in the following locations:
1. Building water service entrance into building.
2. Inlet and outlet of each pressure-reducing valve.
3. Suction and discharge of each domestic water pump.

L. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

M. Adjust faces of meters and gages to proper angle for best visibility.

3.2 THERMOMETER SCHEDULE
A. Thermometers at inlet and outlet of each domestic water heater shall be one of the following:
 1. Liquid-filled Sealed, bimetallic-actuated type.
B. Thermometers at inlets and outlets of each domestic water heat exchanger shall be the following:
 1. Liquid-filled Sealed, bimetallic-actuated type.
C. Thermometers at inlet and outlet of each domestic hot-water storage tank shall be the following:
 1. Liquid-filled Sealed, bimetallic-actuated type.
D. Thermometers at inlet and outlet of each remote domestic water chiller shall be the following:
 1. Liquid-filled Sealed, bimetallic-actuated type.
E. Thermometer stems shall be of length to match thermowell insertion length.

3.3 THERMOMETER SCALE-RANGE SCHEDULE
A. Scale Range for Domestic Cold-Water Piping: 0 to 100 deg F.

3.4 PRESSURE-GAGE SCHEDULE
A. Pressure gages at discharge of each water service into building shall be the following:
 1. Liquid-filled Sealed direct mounted, metal case.
B. Pressure gages at inlet and outlet of each water pressure-reducing valve shall be the following:
 1. Liquid-filled Sealed direct-mounted, metal case.
C. Pressure gages at suction and discharge of each domestic water pump shall be the following:
 1. Liquid-filled Sealed direct-mounted, metal case.
3.5 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Water Service Piping: **0 to 160 psi**.

END OF SECTION 220519
SECTION 220523
GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Brass ball valves.
2. Bronze ball valves.
4. Bronze swing check valves.
5. Iron swing check valves.
6. Iron swing check valves with closure control.
7. Bronze gate valves.
8. Iron gate valves.
10. Iron globe valves.

B. Related Sections:

1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve indicated.

1.3 QUALITY ASSURANCE

A. ASME Compliance: ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.

B. NSF Compliance: NSF 61 for valve materials for potable-water service.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Refer to valve schedule articles for applications of valves.

B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:

1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
2. Handwheel: For valves other than quarter-turn types.
3. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.

E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
1. Gate Valves: With rising stem.
2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:
1. Flanged: With flanges according to ASME B16.1 for iron valves.
2. Solder Joint: With sockets according to ASME B16.18.
3. Threaded: With threads according to ASME B1.20.1.

2.2 BRASS BALL VALVES

A. One-Piece, Full-Port, Brass Ball Valves with Brass Trim:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Kitz Corporation.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. DynaQuip Controls.
 e. Flow-Tek, Inc.; a subsidiary of Bray International, Inc.
 f. Hammond Valve.
 g. Jamesbury; a subsidiary of Metso Automation.
 h. Jomar International, LTD.
 i. Kitz Corporation.
 j. Legend Valve.
 k. Marwin Valve; a division of Richards Industries.
 l. Milwaukee Valve Company.
 m. NIBCO INC.
 n. Red-White Valve Corporation.
 o. RuB Inc.

2. Description:
 b. CWP Rating: 400 psig.
 c. Body Design: One piece.
 d. Body Material: Forged brass.
 e. Ends: Threaded.
 f. Seats: PTFE or TFE.
 g. Stem: Brass.
 h. Ball: Chrome-plated brass.
 i. Port: Full.

2.3 BRONZE BALL VALVES

A. One-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Description:
 b. CWP Rating: 400 psig.
 c. Body Design: One piece.
 d. Body Material: Bronze.
 e. Ends: Threaded.
 f. Seats: PTFE or TFE.
 g. Stem: Bronze.
 h. Ball: Chrome-plated brass.
 i. Port: Full.

2.4 IRON, SINGLE-FLANGE BUTTERFLY VALVES

A. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Aluminum-Bronze Disc:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following
 a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
 d. Crane Co.; Crane Valve Group; Jenkins Valves.
 e. Crane Co.; Crane Valve Group; Stockham Division.
 f. DeZurik Water Controls.
 g. Flo Fab Inc.
 h. Hammond Valve.
 i. Kitz Corporation.
 j. Legend Valve.
 k. Milwaukee Valve Company.
 l. NIBCO INC.
 m. Norriseal; a Dover Corporation company.
 n. Red-White Valve Corporation.
 o. Spence Strainers International; a division of CIRCOR International, Inc.
 p. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

 2. Description:
 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 e. Seat: EPDM.
 f. Stem: One- or two-piece stainless steel.
 g. Disc: Aluminum bronze.

2.5 BRONZE SWING CHECK VALVES

A. Class 125, Bronze Swing Check Valves with Bronze Disc:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following
a. American Valve, Inc.
b. Crane Co.; Crane Valve Group; Crane Valves.
c. Crane Co.; Crane Valve Group; Jenkins Valves.
d. Crane Co.; Crane Valve Group; Stockham Division.
e. Hammond Valve.
f. Kitz Corporation.
g. Milwaukee Valve Company.
h. NIBCO INC.
i. Powell Valves.
j. Red-White Valve Corporation.
k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
l. Zy-Tech Global Industries, Inc.
m. <Insert manufacturer's name>.

2. Description:

a. Standard: MSS SP-80, Type 3.
b. CWP Rating: 200 psig.
c. Body Design: Horizontal flow.
e. Ends: Threaded.
f. Disc: Bronze.

2.6 IRON SWING CHECK VALVES

A. Class 125, Iron Swing Check Valves with Metal Seats:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Crane Co.; Crane Valve Group; Stockham Division.
d. Hammond Valve.
e. Kitz Corporation.
f. Legend Valve.
g. Milwaukee Valve Company.
h. NIBCO INC.
i. Powell Valves.
j. Red-White Valve Corporation.
k. Sure Flow Equipment Inc.
l. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
m. Zy-Tech Global Industries, Inc.

2. Description:

a. Standard: MSS SP-71, Type I.
b. CWP Rating: 200 psig.
c. Body Design: Clear or full waterway.
d. Body Material: ASTM A 126, gray iron with bolted bonnet.
e. Ends: Flanged.
f. Trim: Bronze.
g. Gasket: Asbestos free.

2.7 IRON SWING CHECK VALVES WITH CLOSURE CONTROL

A. Class 125, Iron Swing Check Valves with Lever- and Spring-Closure Control:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. NIBCO INC.

2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.
 h. Closure Control: Factory-installed, exterior lever and spring.

2.8 BRONZE GATE VALVES

A. Class 125, NRS Bronze Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Red-White Valve Corporation.
 k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 l. Zy-Tech Global Industries, Inc.

2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded[or solder joint].
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, or bronze.

2.9 IRON GATE VALVES

A. Class 125, NRS, Iron Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Flo Fab Inc.
2. Description:

a. Standard: MSS SP-70, Type I.
b. CWP Rating: 200 psig.
c. Body Material: ASTM A 126, gray iron with bolted bonnet.
d. Ends: Flanged.
e. Trim: Bronze.
f. Disc: Solid wedge.
g. Packing and Gasket: Asbestos free.

2.10 BRONZE GLOBE VALVES

A. Class 125, Bronze Globe Valves with Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, **provide products by one of the following**:

 a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Stockham Division.
c. Hammond Valve.
d. Kitz Corporation.
e. Milwaukee Valve Company.
f. NIBCO INC.
g. Powell Valves.
h. Red-White Valve Corporation.
i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
j. Zy-Tech Global Industries, Inc.

2. Description:

 a. Standard: MSS SP-80, Type 1.
b. CWP Rating: 200 psig.
d. Ends: Threaded or solder joint.
e. Stem and Disc: Bronze.
f. Packing: Asbestos free.
g. Handwheel: Malleable iron, or **bronze**.

2.11 IRON GLOBE VALVES

A. Class 125, Iron Globe Valves:

1. Manufacturers: Subject to compliance with requirements, **provide products by one of the following**:

 a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Crane Co.; Crane Valve Group; Stockham Division.
d. Hammond Valve.
e. Kitz Corporation.
f. Milwaukee Valve Company.
g. NIBCO INC.
h. Powell Valves.
i. Red-White Valve Corporation.
j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
k. Zy-Tech Global Industries, Inc.

2. Description:
 a. Standard: MSS SP-85, Type I.
 b. CWP Rating: 200 psig.
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Packing and Gasket: Asbestos free.

PART 3 - EXECUTION

3.1 VALVE INSTALLATION
 A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
 B. Locate valves for easy access and provide separate support where necessary.
 C. Install valves in horizontal piping with stem at or above center of pipe.
 D. Install valves in position to allow full stem movement.
 E. Install swing check valves for proper direction of flow and in horizontal position with hinge pin level.

3.2 ADJUSTING
 A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS
 A. If valve applications are not indicated, use the following:
 1. Shutoff Service: Ball valves.
 2. Throttling Service: Globe or ball valves.
 3. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.
 b. NPS 2-1/2 and Larger for Domestic Water: Iron swing check valves with lever and weight or with spring.
 c. NPS 2-1/2 and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.
 B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP class or CWP ratings may be substituted.
C. Select valves, except wafer types, with the following end connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.4 LOW-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 PSIG OR LESS)

A. Pipe NPS 2 and Smaller:

1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
2. Ball Valves: One piece, full port, brass or bronze with brass trim.
3. Bronze Swing Check Valves: Class 125, bronze disc.
4. Bronze Gate Valves: Class 125, NRS.

B. Pipe NPS 2-1/2 and Larger:

1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
3. Iron Swing Check Valves: Class 125, metal seats.
4. Iron Gate Valves: Class 125, NRS.

3.5 HIGH-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 TO 200 PSIG)

A. Pipe NPS 2 and Smaller:

1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
2. Ball Valves: One piece, full port, brass or bronze with brass trim.
3. Bronze Swing Check Valves: Class 125, bronze disc.
4. Bronze Gate Valves: Class 125, NRS.

B. Pipe NPS 2-1/2 and Larger:

1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
3. Iron Swing Check Valves: Class 125, metal seats.
4. Iron Gate Valves: Class 125, NRS.

3.6 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
2. Bronze Angle Valves: Class 125, bronze disc.
3. Ball Valves: One piece, full port, brass or bronze with brass trim.
4. Bronze Swing Check Valves: Class 125, bronze disc.
5. Bronze Gate Valves: Class 125, NRS.

B. Pipe NPS 2-1/2 and Larger:
1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
3. Iron Swing Check Valves: Class 125, metal seats.
4. Iron Swing Check Valves with Closure Control: Class 125, lever and spring.
5. Iron Gate Valves: Class 125, NRS.

3.7 [SANITARY-WASTE] [AND] [STORM-DRAINAGE] VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Ball Valves: One piece, full port, brass or bronze with brass trim.
 3. Bronze Swing Check Valves: Class 125, bronze disc.
 4. Bronze Gate Valves: Class 125, NRS.
 5. Bronze Globe Valves: Class 125, bronze disc.

B. Pipe NPS 2-1/2 and Larger:
 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
 2. Iron Swing Check Valves: Class 125, metal seats.
 3. Iron Swing Check Valves with Closure Control: Class 125, lever and spring.
 4. Iron Gate Valves: Class 125, NRS.

END OF SECTION 220523
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Thermal-hanger shield inserts.
 4. Fastener systems.
 5. Pipe positioning systems.
 6. Equipment supports.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.
1.5 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:

1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Copper Pipe Hangers:

1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 THERMAL-HANGER SHIELD INSERTS

A. Insulation-Insert Material for Cold Piping: ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psi minimum compressive strength and vapor barrier.

B. Insulation-Insert Material for Hot Piping: ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psi minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches beyond sheet metal shield.

2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel anchors, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
2.5 PIPE POSITIONING SYSTEMS
 A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.6 EQUIPMENT SUPPORTS
 A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.7 MISCELLANEOUS MATERIALS
 A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
 B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION
 A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
 B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
 C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
 D. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
 E. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. See Division 22 plumbing fixture Sections for requirements for pipe positioning systems for plumbing fixtures.
 F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.

J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

M. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Use thermal-hanger shield insert with clamp sized to match OD of insert.
 b. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.
3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches. Bottom of rods 4” above finished ceilings.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.

F. Use stainless-steel pipe hangers and stainless-steel attachments for hostile environment applications.
G. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
4. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
5. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 3/4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
6. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
7. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.

M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.

P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

R. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529
SECTION 220548

VIBRATION CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:

1. Isolation pads.
2. Isolation mounts.
3. Restrained elastomeric isolation mounts.
4. Freestanding spring isolators.
5. Housed spring mounts.
6. Elastomeric hangers.
7. Spring hangers.
8. Spring hangers with vertical-limit stops.
9. Pipe riser resilient supports.
10. Resilient pipe guides.
11. Restraining braces and cables.

1.2 ACTION SUBMITTALS

A. Product Data: For each product indicated.

B. Delegated-Design Submittal: For vibration isolation and seismic-restraint calculations and details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For professional engineer.

B. Welding certificates.

C. Field quality-control test reports.

1.4 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Ace Mountings Co., Inc.
2. Amber/Booth Company, Inc.
4. Isolation Technology, Inc.
7. Vibration Eliminator Co., Inc.
8. Vibration Isolation.

B. Pads: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.

1. Resilient Material: Oil- and water-resistant neoprene.

C. Mounts: Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.

1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.

D. Spring Isolators: Freestanding, laterally stable, open-spring isolators.

1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch-thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig.
6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

E. Housed Spring Mounts: Housed spring isolator.

1. Housing: Ductile-iron or steel housing.
2. Base: Factory drilled for bolting to structure.
3. Snubbers: Vertically adjustable to allow a maximum of 1/4-inch travel up or down before contacting a resilient collar.

F. Elastomeric Hangers: Single or double-deflection type, fitted with molded, oil-resistant elastomeric isolator elements bonded to steel housings with threaded connections for hanger rods. Color-code or otherwise identify to indicate capacity range.

G. Spring Hangers: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.

1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

H. Spring Hangers with Vertical-Limit Stop: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression and with a vertical-limit stop.
 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 7. Adjustable Vertical Stop: Steel washer with neoprene washer “up-stop” on lower threaded rod.
 8. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

I. Pipe Riser Resilient Support: All-directional, acoustical pipe anchor consisting of 2 steel tubes separated by a minimum of 1/2-inch- thick neoprene. Include steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions. Design support for a maximum load on the isolation material of 500 psig and for equal resistance in all directions.

J. Resilient Pipe Guides: Telescopic arrangement of 2 steel tubes or post and sleeve arrangement separated by a minimum of 1/2-inch- thick neoprene. Where clearances are not readily visible, a factory-set guide height with a shear pin to allow vertical motion due to pipe expansion and contraction shall be fitted. Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

PART 3 - EXECUTION

3.1 APPLICATIONS
 A. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits.

3.2 VIBRATION-CONTROL DEVICE INSTALLATION
 A. Equipment Restraints:
 1. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inches.
 B. Piping Restraints:
 1. Comply with requirements in MSS SP-127.
 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 3. Brace a change of direction longer than 12 feet.
 C. Install cables so they do not bend across edges of adjacent equipment or building structure.
 D. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
E. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

F. Drilled-in Anchors:

1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
4. Set anchors to manufacturer's recommended torque, using a torque wrench.
5. Install zinc-coated steel anchors for interior and stainless steel anchors for exterior applications.

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
5. Test to 90 percent of rated proof load of device.
7. Measure isolator deflection.
8. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.

C. Remove and replace malfunctioning units and retest as specified above.

D. Prepare test and inspection reports.

3.4 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

C. Adjust active height of spring isolators.

D. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 220548
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.

1.2 ACTION SUBMITTAL

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:
 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
 2. Letter Color: Black.
 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch (A4) bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is
indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

B. Letter Color: Black.

C. Background Color: White

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.
B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

B. Pipe Label Color Schedule:

1. Low-Pressure, Compressed-Air Piping:
 a. Background Color: **Blue**.

2. Medium-Pressure, Compressed-Air Piping:
 a. Background Color: Black
 b. Letter Color: **White**

3. Domestic Water Piping:
 a. Background Color: Yellow

4. **Sanitary Waste and Storm Drainage** Piping:
 b. Letter Color: **Black**.

END OF SECTION 220553
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following plumbing equipment:

1. Domestic water heat exchangers.
2. Domestic water converters.

B. Related Sections:

1. Division 22 Section "Plumbing Piping Insulation."

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail attachment and covering of heat tracing inside insulation.
3. Detail removable insulation at equipment connections and access panels.
4. Detail application of field-applied jackets.
5. Detail application at linkages of control devices.
6. Detail field application for each equipment type.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Products shall not contain asbestos, lead, mercury, or mercury compounds.

B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

E. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Sheet and K-FLEX LS.

F. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; CrimpWrap.
 b. Johns Manville; MicroFlex.
 c. Knauf Insulation; Pipe and Tank Insulation.
 d. Manson Insulation Inc.; AK Flex.
 e. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.2 INSULATING CEMENTS

 1. Products: Subject to compliance with requirements, provide the following
 a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aeroseal.
b. Armacell LLC; Armaflex 520 Adhesive.
d. K-Flex USA; R-373 Contact Adhesive.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.

2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

D. ASJ Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Vimasco Corporation; 749.

2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.

3. Service Temperature Range: Minus 20 to plus 180 deg F.

4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 550.
 e. Vimasco Corporation; WC-1/WC-5.

2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.

3. Service Temperature Range: Minus 20 to plus 180 deg F.

4. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 SEALANTS

A. ASJ Flashing Sealants:

1. Products: Subject to compliance with requirements, provide one of the following:

2. Materials shall be compatible with insulation materials, jackets, and substrates.

3. Fire- and water-resistant, flexible, elastomeric sealant.

4. Service Temperature Range: Minus 40 to plus 250 deg F.

6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.

 a. Products: Subject to compliance with requirements, provide the following:
1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for equipment.

 1. Products: Subject to compliance with requirements, provide one of the following:

 b. Vimasco Corporation; Elastafab 894.

2.8 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

2.9 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

 1. Products: Subject to compliance with requirements, provide one of the following:

 a. ABI, Ideal Tape Division; 428 AWF ASJ.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 c. Compac Corporation; 104 and 105.
 d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.

 2. Width: 3 inches
 3. Thickness: 11.5 mils.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch in width.
 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

2.10 SECUREMENTS

A. Aluminum Bands: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/4 inch wide with closed seal.

 1. Products: Subject to compliance with requirements, provide one of the following:

 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.

B. Insulation Pins and Hangers:

 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.

 a. Products: Subject to compliance with requirements, provide one of the following:
1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.
2) GEMCO; Perforated Base.
3) Midwest Fasteners, Inc.; Spindle.

b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches (50 mm) square.
c. Spindle: Stainless steel, fully annealed, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

2. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.

a. Products: Subject to compliance with requirements, provide one of the following:

1) GEMCO; Nylon Hangers.
2) Midwest Fasteners, Inc.; Nylon Insulation Hangers.

b. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
c. Spindle: Nylon, 0.106-inch- diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.
d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

3. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick, stainless-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

a. Products: Subject to compliance with requirements, one of the following:

1) AGM Industries, Inc.; RC 150.
2) GEMCO; R-150.
3) Midwest Fasteners, Inc.; WA-150.
4) Nelson Stud Welding; Speed Clips.

b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

2.11 CORNER ANGLES

A. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.

2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.

3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.

2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.

3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.

a. For below ambient services, apply vapor-barrier mastic over staples.

4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.

5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints.
L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

O. For above ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

3.3 INSTALLATION OF EQUIPMENT, TANK, AND VESSEL INSULATION

A. Mineral-Fiber, Pipe, and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.

1. Apply adhesives according to manufacturer’s recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
3. Protect exposed corners with secured corner angles.
4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 a. Do not weld anchor pins to ASME-labeled pressure vessels.
 b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
 d. Do not overcompress insulation during installation.
 e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 f. Impale insulation over anchor pins and attach speed washers.
 g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.
7. Stagger joints between insulation layers at least 3 inches.
8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.
B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.

1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
2. Seal longitudinal seams and end joints.

3.4 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.5 FINISHES

A. Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below.

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect for exposed systems. Vary first and second coats to allow visual inspection of the completed Work. All concealed piping shall be white.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.7 EQUIPMENT INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.

B. Insulate indoor and outdoor equipment that is not factory insulated.

C. Heat-Exchanger (Water-to-Water for Domestic Water Heating Service) Insulation:

D. Domestic water, domestic chilled-water (potable), and domestic hot-water hydropneumatic tank insulation shall be one of the following:
1. Flexible Elastomeric: **1 inch** thick.

E. Domestic Hot-Water Storage Tank Insulation:
 1. Mineral-Fiber Pipe and Tank: Of thickness to provide an R-value of **12.5**.

F. Domestic Water Filter-Housing Insulation:

END OF SECTION 220716
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following plumbing piping services:

1. Domestic hot-water piping.
2. Domestic recirculating hot-water piping.
3. Sanitary waste piping exposed to freezing conditions.
4. Storm-water piping exposed to freezing conditions.
5. Roof drains and rainwater leaders.

B. Related Sections:

1. Division 22 Section "Plumbing Equipment Insulation."

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail attachment and covering of heat tracing inside insulation.
3. Detail insulation application at pipe expansion joints for each type of insulation.
4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Detail removable insulation at piping specialties, equipment connections, and access panels.
6. Detail application of field-applied jackets.
7. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
B. Comply with the following applicable standards and other requirements specified for miscellaneous components:

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.

G. Mineral-Fiber, Preformed Pipe Insulation:

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Fibrex Insulations Inc.; Coreplus 1200.
 b. Johns Manville; Micro-Lok.
 c. Knauf Insulation; 1000-Degree Pipe Insulation.
 d. Manson Insulation Inc.; Alley-K.
 e. Owens Corning; Fiberglas Pipe Insulation.

2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.
2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aeroseal.
 b. Armacell LLC; Armaflex 520 Adhesive.
 d. K-Flex USA; R-373 Contact Adhesive.
 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. ASJ Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Vimasco Corporation; 749.
 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 550.
 e. Vimasco Corporation; WC-1/WC-5.
 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 4. Solids Content: 60 percent by volume and 66 percent by weight.

D. ASJ Flashing Sealants:
 1. Products: Subject to compliance with requirements, provide the following:
 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 3. Fire- and water-resistant, flexible, elastomeric sealant.
 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
2.5 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.

2.6 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for pipe.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Vimasco Corporation; Elastafab 894.

B. Underground Direct-Buried Jacket: 125-mil-thick vapor barrier and waterproofing membrane consisting of a rubberized bituminous resin reinforced with a woven-glass fiber or polyester scrim and laminated aluminum foil.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Pittsburgh Corning Corporation; Pittwrap.
 b. Polyguard Products, Inc.; Insulrap No Torch 125.

2.7 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 428 AWF ASJ.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 c. Compac Corporation; 104 and 105.
 d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.

2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

2.8 SECUREMENTS

A. Aluminum Bands: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping and Seals.
B. Staples: Outward-clinching insulation staples, nominal 3/4-inch wide, stainless steel or Monel.

2.9 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Engineered Brass Company.
 b. Insul-Tect Products Co.; a subsidiary of MVG Molded Products.
 c. McGuire Manufacturing.
 d. Plumberex.
 e. Truebro; a brand of IPS Corporation.
 f. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.

2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

B. Protective Shielding Piping Enclosures:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Truebro; a brand of IPS Corporation.
 b. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.

2. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
3.3 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.4 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves,
insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.

2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.

3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.

4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.6 INSTALLATION OF MINERAL-FIBER PREFORMED PIPE INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer’s recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.7 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below.
1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect for all exposed piping. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

E. All concealed piping shall be white.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.10 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Hot and Recirculated Hot Water: Insulation shall be the following:

 1. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Stormwater and Overflow: Insulation shall be one of the following:

 1. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

C. Roof Drain and Overflow Drain Bodies: Insulation shall be one of the following:

 1. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
D. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities: Insulation shall be [one of] the following:
 1. Flexible Elastomeric: 1 inch thick.
 2. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

3.11 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Domestic Water Piping: Insulation shall be the following:
 1. Flexible Elastomeric: 2 inches thick.

B. Domestic Hot and Recirculated Hot Water: Insulation shall be the following:
 1. Flexible Elastomeric: 2 inches thick.

C. Sanitary Waste Piping Where Heat Tracing Is Installed: Insulation shall be the following:
 1. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

END OF SECTION 220719
PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside
 the building.
 2. Specialty valves.
 3. Flexible connectors.
 4. Water meters furnished by utility company for installation by Contractor.
 5. Water meters.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

1.3 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.

1.4 QUALITY ASSURANCE
 A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
 B. Comply with NSF 14 for plastic, potable domestic water piping and components. Include marking "NSF-
 pw" on piping.
 C. Comply with NSF 61 for potable domestic water piping and components.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
 A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and
 joining methods for specific services, service locations, and pipe sizes.

2.2 COPPER TUBE AND FITTINGS
 A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

5. Copper Push-on-Joint Fittings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) NVent LLC.
 b. Description: Cast-copper fitting complying with ASME B16.18 or wrought-copper fitting complying with ASME B 16.22; with stainless-steel teeth and EPDM-rubber O-ring seal in each end instead of solder-joint ends.

B. Soft Copper Tube: ASTM B 88, Type L water tube, annealed temper.

2.3 DUCTILE-IRON PIPE AND FITTINGS

A. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 1. Standard-Pattern, Push-on-Joint Fittings: AWWA C110, ductile or gray iron.
 2. Compact-Pattern, Push-on-Joint Fittings: AWWA C153, ductile iron.

2.4 CPVC PIPING

2.5 PVC PIPE AND FITTINGS

 1. PVC Socket Fittings: ASTM D 2466 for Schedule 40

2.6 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free, unless otherwise indicated; full-face or ring type unless otherwise indicated.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.
E. Solvent Cements for Joining CPVC Piping and Tubing: ASTM F 493.
 1. CPVC solvent cement shall have a VOC content of 490 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

F. Solvent Cements for Joining PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

G. Plastic, Pipe-Flange Gaskets, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

2.7 SPECIALTY VALVES

A. Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for general-duty metal valves.

B. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves, drain valves, backflow preventers, and vacuum breakers.

C. CPVC Union Ball Valves:
 1. Description:
 b. Pressure Rating: **150 psig at 73 deg F**
 c. Body Material: CPVC.
 d. Body Design: Union type.
 e. End Connections for Valves NPS 2 and Smaller: Detachable, socket.
 f. End Connections for Valves NPS 2-1/2 to NPS 4: Flanged.
 g. Ball: CPVC; full port.
 h. Seals: PTFE or EPDM-rubber O-rings.
 i. Handle: Tee shaped.

D. CPVC Ball Check Valves:
 1. Description:
 a. Pressure Rating: **150 psig at 73 deg F**
 b. Body Material: CPVC.
 c. Body Design: Union-type ball check.
 d. End Connections for Valves NPS 2 and Smaller: Detachable, socket.
 e. End Connections for Valves NPS 2-1/2 to NPS 4: Flanged.
 f. Ball: CPVC.
 g. Seals: EPDM- or FKM-rubber O-rings.
2.8 TRANSITION FITTINGS

A. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

B. Sleeve-Type Transition Coupling: AWWA C219.

C. Plastic-to-Metal Transition Fittings:

1. Description: CPVC one-piece fitting with manufacturer's Schedule 40 equivalent dimensions; one end with threaded brass insert and one solvent-cement-socket or threaded end.

D. Plastic-to-Metal Transition Unions:

1. Description: CPVC four-part union. Include brass or stainless-steel threaded end, solvent-cement-joint plastic end, rubber O-ring, and union nut.

2.9 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.

B. Dielectric Unions:

1. Description:

 a. Pressure Rating: 250 psig at 180 deg F.
 b. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

1. Description:

 a. Factory-fabricated, bolted, companion-flange assembly.
 b. Pressure Rating: 175 psig minimum.
 c. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Kits:

1. Description:

 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.

E. Dielectric Nipples:

1. Description:

 a. Electroplated steel nipple.
 b. Pressure Rating: 300 psig at 225 deg F.
 c. End Connections: Male threaded or grooved.
 d. Lining: Inert and noncorrosive, propylene.
2.10 FLEXIBLE CONNECTORS

A. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.

1. Working-Pressure Rating: Minimum **250 psig**.
2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
3. End Connections NPS 2-1/2) and Larger: Flanged steel nipple.

2.11 WATER METERS

A. Displacement-Type Water Meters:

1. Description:
 b. Pressure Rating: 150-psig working pressure.
 c. Body Design: Nutating disc; totalization meter.
 d. Registration: In gallons or cubic feet as required by utility.
 e. Case: Bronze.
 f. End Connections: Threaded.

B. Compound-Type Water Meters:

1. Description:
 b. Pressure Rating: 150-psig working pressure.
 c. Body Design: With integral mainline and bypass meters; totalization meter.
 d. Registration: In gallons or cubic feet as required by utility company.
 e. Case: Bronze.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.

D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section
"Meters and Gages for Plumbing Piping" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.

E. Install shutoff valve immediately upstream of each dielectric fitting.

F. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for pressure-reducing valves.

G. Install domestic water piping level **without pitch** and plumb.

H. Rough-in domestic water piping for water-meter installation according to utility company's requirements.

I. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

J. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

K. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

L. Install piping adjacent to equipment and specialties to allow service and maintenance.

M. Install piping to permit valve servicing.

N. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.

O. Install piping free of sags and bends.

P. Install fittings for changes in direction and branch connections.

Q. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

R. Install pressure gages on suction and discharge piping from each plumbing pump and packaged booster pump. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages.

S. Install thermostats in hot-water circulation piping. Comply with requirements in Division 22 Section "Domestic Water Pumps" for thermostats.

T. Install thermometers on **inlet and outlet** piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.

U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.

E. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

F. Copper-Tubing, Push-on Joints: Clean end of tube. Measure insertion depth with manufacturer's depth gage. Join copper tube and push-on-joint fittings by inserting tube to measured depth.

G. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

H. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 3. PVC Piping: Join according to ASTM D 2855.

I. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE INSTALLATION

A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.

B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball or gate valves for piping NPS 2 and smaller. Use butterfly or gate valves for piping NPS 2-1/2 and larger.

C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.

D. Install balancing valve in each hot-water circulation return branch and discharge side of each pump and circulator. Set balancing valves partly open to restrict but not stop flow. Use ball valves for piping NPS 2 and smaller and butterfly valves for piping NPS 2-1/2and larger. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves.

3.5 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.
B. Transition Fittings in Underground Domestic Water Piping:
 1. NPS 1-1/2 and Smaller: Fitting-type coupling.
 2. NPS 2 and Larger: Sleeve-type coupling.

C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings or unions.

3.6 DIELECTRIC FITTING INSTALLATION
 A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples.
 C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flange kits
 D. Dielectric Fittings for NPS 5 to NPS 6: Use dielectric flange kits.

3.7 FLEXIBLE CONNECTOR INSTALLATION
 A. Install flexible connectors in suction and discharge piping connections to each domestic water pump and in suction and discharge manifold connections to each domestic water booster pump.
 B. Install bronze-hose flexible connectors in copper domestic water tubing.
 C. Install stainless-steel-hose flexible connectors in steel domestic water piping.

3.8 WATER METER INSTALLATION
 A. Rough-in domestic water piping for water meter installation, and install water meters according to utility company's requirements.
 B. Water meters will be furnished and installed by utility company.
 C. Install water meters according to AWWA M6, utility company's requirements, and the following:
 D. Install displacement-type water meters with shutoff valve on water-meter inlet. Install valve on water-meter outlet and valved bypass around meter unless prohibited by authorities having jurisdiction.
 E. Install compound-type water meters with shutoff valves on water-meter inlet and outlet and on valved bypass around meter. Support meters, valves, and piping on brick or concrete piers.
 F. Install remote registration system according to standards of utility company and of authorities having jurisdiction.

3.9 HANGER AND SUPPORT INSTALLATION
 A. Comply with requirements in Division 22 Section "Vibration for Plumbing Piping and Equipment" for seismic-restraint devices.
 B. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.
1. **Vertical Piping**: MSS Type 8 or 42, clamps.
2. **Individual, Straight, Horizontal Piping Runs**:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
3. **Base of Vertical Piping**: MSS Type 52, spring hangers.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 6. NPS 6: 10 feet with 5/8-inch rod.

F. Install supports for vertical copper tubing every 10 feet (3 m).

G. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod.
 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 3. NPS 2: 10 feet with 3/8-inch rod.
 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 5. NPS 3 and NPS 3-1/2: 12 feet with 1/2-inch rod.
 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
 7. NPS 6: 12 feet with 3/4-inch rod.

H. Install supports for vertical steel piping every 15 feet.

I. Install vinyl-coated hangers for CPVC piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1 and Smaller: 36 inches with 3/8-inch rod.
 2. NPS 1-1/4 to NPS 2: 48 inches with 3/8-inch rod.

J. Install supports for vertical CPVC piping every 60 inches for NPS 1 and smaller, and every 72 inches for NPS 1-1/4 and larger.

K. Install vinyl-coated hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 2 and Smaller: 48 inches with 3/8-inch rod.
 2. NPS 2-1/2 to NPS 3-1/2: 48 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 4. NPS 6: 48 inches with 3/4-inch rod.

L. Install supports for vertical PVC piping every 48 inches.

M. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer’s written instructions.
3.10 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment and machines to allow service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 3. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.
 4. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.11 IDENTIFICATION

A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation.

B. Label pressure piping with system operating pressure.

3.12 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Piping Inspections:
 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

C. Piping Tests:
 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
6. Prepare reports for tests and for corrective action required.

D. Domestic water piping will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.13 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

B. Prepare and submit reports of purging and disinfecting activities.

C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.14 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Under-building-slab, domestic water, building service piping, NPS 3 and smaller shall be the following:

D. Under-building-slab, domestic water piping, NPS 2 and smaller, shall be the following:

1. Hard copper tube, ASTM B 88, Type L wrought-copper solder-joint fittings; and brazed joints.

E. Aboveground domestic water piping, NPS 2 and smaller, shall be the following:

1. Hard copper tube, ASTM B 88, Type L cast-copper solder-joint fittings; and brazed joints.
F. Aboveground domestic water piping, **NPS 2-1/2 to NPS 4**, shall be the following:

1. Hard copper tube, **ASTM B 88, Type L** cast-copper solder-joint fittings; and **brazed** joints.

3.15 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

1. **Shutoff Duty:** Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
2. **Throttling Duty:** Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.
3. **Hot-Water Circulation Piping, Balancing Duty:** Memory-stop balancing valves.
4. **Drain Duty:** Hose-end drain valves.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

C. Iron grooved-end valves may be used with grooved-end piping.

END OF SECTION 221116
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following domestic water piping specialties:

1. Vacuum breakers.
2. Backflow preventers.
5. Temperature-actuated water mixing valves.
7. Hose bibs.
8. Wall hydrants.
10. Water hammer arresters.
11. Trap-seal primer valves.

B. See Division 22 Section "Domestic Water Piping" for water meters.

1.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 QUALITY ASSURANCE

A. NSF Compliance:

2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."
PART 2 - PRODUCTS

2.1 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Cash Acme.
 c. Conbraco Industries, Inc.
 d. FEBCO; SPX Valves & Controls.
 e. Rain Bird Corporation.
 f. Toro Company (The); Irrigation Div.
 g. Watts Industries, Inc.; Water Products Div.
 h. Zurn Plumbing Products Group; Wilkins Div.
 3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 5. Inlet and Outlet Connections: Threaded.
 6. Finish: Chrome plated.

B. Hose-Connection Vacuum Breakers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Arrowhead Brass Products, Inc.
 b. Cash Acme.
 c. Conbraco Industries, Inc.
 d. Legend Valve.
 e. MIFAB, Inc.
 f. Prier Products, Inc.
 g. Watts Industries, Inc.; Water Products Div.
 h. Woodford Manufacturing Company.
 i. Zurn Plumbing Products Group; Light Commercial Operation.
 j. Zurn Plumbing Products Group; Wilkins Div.
 5. Finish: Chrome or nickel plated

2.2 BACKFLOW PREVENTERS

A. Intermediate Atmospheric-Vent Backflow Preventers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cash Acme.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
 d. Honeywell Water Controls.
 e. Legend Valve.
 g. Zurn Plumbing Products Group; Wilkins Div.
 2. Standard: ASSE 1012.
 3. Operation: Continuous-pressure applications.
 5. Body: Bronze.
7. Finish: Chrome plated.

B. Reduced-Pressure-Principle Backflow Preventers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide a comparable product by one of the following:
 a. Ames Co.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
 d. Flomatic Corporation.
 e. Watts Industries, Inc.; Water Products Div.
 f. Zurn Plumbing Products Group; Wilkins Div.
4. Operation: Continuous-pressure applications.
5. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
6. Body: Bronze for NPS 2 and smaller; stainless steel for NPS 2-1/2 and larger.
7. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

C. Double-Check Backflow-Prevention Assemblies:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
 d. Flomatic Corporation.
 e. Watts Industries, Inc.; Water Products Div.
 f. Zurn Plumbing Products Group; Wilkins Div.
3. Operation: Continuous-pressure applications, unless otherwise indicated.
4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
5. Body: Bronze for NPS 2 and smaller; stainless steel for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

D. Backflow-Preventer Test Kits:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. FEBCO; SPX Valves & Controls.
 c. Flomatic Corporation.
 e. Zurn Plumbing Products Group; Wilkins Div.
2. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with test-procedure instructions.
2.3 WATER PRESSURE-REDUCING VALVES

A. Water Regulators:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cash Acme.
 b. Conbraco Industries, Inc.
 c. Honeywell Water Controls.
 e. Zurn Plumbing Products Group; Wilkins Div.

 3. Pressure Rating: Initial working pressure of 150 psig
 4. Body: Bronze with chrome-plated finish for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and NPS 3
 6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and NPS 3.

2.4 BALANCING VALVES

A. Memory-Stop Balancing Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Div.
 e. Hammond Valve.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Red-White Valve Corp.

 2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
 3. Pressure Rating: 400-psig minimum CWP.
 4. Size: NPS 2 or smaller.
 5. Body: Copper alloy.
 6. Port: Standard or full port.
 7. Ball: Chrome-plated brass.
 8. Seats and Seals: Replaceable.
 9. End Connections: Solder joint or threaded.

2.5 TEMPERATURE-ACTUATED WATER MIXING VALVES

A. Water-Temperature Limiting Devices:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Cash Acme.
 c. Conbraco Industries, Inc.
 d. Honeywell Water Controls.
 e. Legend Valve.
 f. Leonard Valve Company.
 g. Powers; a Watts Industries Co.
 h. Symmons Industries, Inc.
 i. Taco, Inc.
 k. Zurn Plumbing Products Group; Wilkins Div.
4. Type: Thermostatically controlled water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Valve Finish: Chrome plated.

B. Primary, Thermostatic, Water Mixing Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Lawler Manufacturing Company, Inc.
 c. Leonard Valve Company.
 d. Powers; a Watts Industries Co.
 e. Symmons Industries, Inc.
4. Type: Cabinet-type, thermostatically controlled water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Valve Pressure Rating: 125 psig minimum, unless otherwise indicated.
9. Valve Finish: Polished, chrome plated
10. Piping Finish: Chrome plated

2.6 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:
1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
2. Body: Bronze for NPS 2 and smaller; cast iron[with interior lining complying with AWWA C550 or FDA-approved, epoxy coating and] for NPS 2-1/2 and larger.
3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
4. Screen: Stainless steel with round perforations, unless otherwise indicated.
5. Perforation Size:
 a. Strainers NPS 2 and Smaller: 0.033 inch
 b. Strainers NPS 2-1/2 to NPS 4: 0.062 inch
 c. Strainers NPS 5 and Larger: 0.125 inch

2.7 HOSE BIBBS

A. Hose Bibbs:
5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
8. Finish for Equipment Rooms: chrome or nickel plated.
9. Finish for Service Areas: **Chrome or nickel plated**.
10. Finish for Finished Rooms: Chrome or nickel plated.
11. Operation for Equipment Rooms: operating key.
12. Operation for Service Areas: **Operating key**.
13. Operation for Finished Rooms: **Operating key**.
14. Include operating key with each operating-key hose bibb.
15. Include *integral* wall flange with each chrome- or nickel-plated hose bibb.

2.8 WALL HYDRANTS

A. Nonfreeze Wall Hydrants:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 c. Prier Products, Inc.
 e. Tyler Pipe; Wade Div.
 f. Watts Drainage Products Inc.
 g. Woodford Manufacturing Company.
 h. Zurn Plumbing Products Group; Light Commercial Operation.
 i. Zurn Plumbing Products Group; Specification Drainage Operation.

4. Operation: Loose key.
5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
6. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
7. Box: Deep, flush mounting with cover.
8. Box and Cover Finish: **Chrome plated**.
10. Nozzle and Wall-Plate Finish: **Polished nickel bronze**.
11. Operating Keys(s): **Two** with each wall hydrant.

B. Moderate-Climate Wall Hydrants <Insert drawing designation if any>:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 c. Prier Products, Inc.
 e. Tyler Pipe; Wade Div.
 f. Watts Drainage Products Inc.
 g. Woodford Manufacturing Company.
 h. Zurn Plumbing Products Group; Light Commercial Operation.
 i. Zurn Plumbing Products Group; Specification Drainage Operation.

4. Operation: Loose key.
5. Inlet: NPS 1.
6. Outlet: Concealed, with integral vacuum breaker or nonremovable hose-connection vacuum breaker complying with ASSE 1011; and garden-hose thread complying with ASME B1.20.7.
7. Box: Deep, flush mounting with cover.
8. Box and Cover Finish: **Polished nickel bronze**.
9. Outlet: Exposed, with integral vacuum breaker or nonremovable hose-connection vacuum breaker complying with ASSE 1011; and garden-hose thread complying with ASME B1.20.7.
10. Nozzle and Wall-Plate Finish: **Polished nickel bronze.**
11. Operating Keys(s): **One** with each wall hydrant.

C. Vacuum Breaker Wall Hydrants:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Arrowhead Brass Products, Inc.
b. Mansfield Plumbing Products LLC.
c. McDonald, A. Y., Mfg. Co.
d. Prier Products, Inc.
g. Woodford Manufacturing Company.
h. Zurn Plumbing Products Group; Light Commercial Operation.

2. Standard: ASSE 1019, Type A or Type B.
3. Type: Freeze-resistant, automatic draining with integral air-inlet valve.
4. Classification: **[Type A, for automatic draining with hose removed]**.
6. Operation: **Loose key.**
7. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.

2.9 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:

2. Pressure Rating: 400-psig minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.

2.10 WATER HAMMER ARRESTERS

A. Water Hammer Arresters:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. AMTROL, Inc.
b. Josam Company.
c. MIFAB, Inc.
d. PPP Inc.
e. Sioux Chief Manufacturing Company, Inc.
g. Tyler Pipe; Wade Div.
h. Watts Drainage Products Inc.
i. Zurn Plumbing Products Group; Specification Drainage Operation.

3. Type: **Metal bellows.**
4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.
2.11 TRAP-SEAL PRIMER VALVES

A. Supply-Type, Trap-Seal Primer Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. MIFAB, Inc.
 b. PPP Inc.
 c. Sioux Chief Manufacturing Company, Inc.
 e. Watts Industries, Inc.; Water Products Div.

 5. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
 6. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
 7. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 1. Locate backflow preventers in same room as connected equipment or system.
 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
 3. Do not install bypass piping around backflow preventers.

C. Install water regulators with inlet and outlet shutoff valves and bypass with memory-stop balancing valve. Install pressure gages on inlet and outlet.

D. Install balancing valves in locations where they can easily be adjusted.

E. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 1. Install thermometers and water regulators if specified.
 2. Install cabinet-type units recessed in or surface mounted on wall as specified.

F. Install Y-pattern strainers for water on supply side of each control valve, water pressure-reducing valve, solenoid valve, and pump.

G. Install water hammer arresters in water piping according to PDI-WH 201.

H. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

I. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.
J. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:

1. Intermediate atmospheric-vent backflow preventers.
2. Reduced-pressure-principle backflow preventers.
5. Primary, thermostatic, water mixing valves.

K. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and prepare test reports:

1. Test each reduced-pressure-principle backflow preventer and double-check backflow-prevention assembly according to authorities having jurisdiction and the device's reference standard.

B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.3 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow of balancing valves.

C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION 221119
SECTION 221123
DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. In-line, sealless centrifugal pumps.
 2. Horizontally mounted, in-line, close-coupled centrifugal pumps.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

1.3 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.

1.4 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

PART 2 - PRODUCTS

2.1 IN-LINE, SEALLESS CENTRIFUGAL PUMPS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Armstrong Pumps Inc.
 2. Bell & Gossett Domestic Pump; ITT Corporation.
 3. Grundfos Pumps Corp.
 4. TACO Incorporated.
 5. WILO USA LLC - WILO Canada Inc.
B. Description: Factory-assembled and -tested, in-line, close-coupled, canned-motor, sealless, overhung-impeller centrifugal pumps.
C. Pump Construction:
 1. Pump and Motor Assembly: Hermetically sealed, replaceable-cartridge type with motor and impeller on common shaft and designed for installation with pump and motor shaft horizontal.
 2. Casing: Bronze, with threaded or companion-flange connections.
 4. Motor: Single speed, unless otherwise indicated.
2.2 HORIZONTALLY MOUNTED, IN-LINE, CLOSE-COUPLED CENTRIFUGAL PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Alyan Pump Co.
2. Armstrong Pumps Inc.
3. Bell & Gossett Domestic Pump; ITT Corporation.
5. PACO Pumps; Grundfos Pumps Corporation, U.S.A.
6. Pentair Pump Group; Aurora Pump.
7. TACO Incorporated.
8. Thrush Company, Inc.

B. Description: Factory-assembled and -tested, in-line, single-stage, close-coupled, overhung-impeller centrifugal pumps designed for installation with pump and motor shaft mounted horizontal.

C. Pump Construction:

1. Casing: Radially split with threaded companion-flange connections for pumps with NPS 2 pipe connections and flanged connections for pumps with NPS 2-1/2 pipe connections.
2. Impeller: Statically and dynamically balanced, closed, and keyed to shaft.
3. Shaft and Shaft Sleeve: Steel shaft with deflector, with copper-alloy shaft sleeve. Include water slinger on shaft between motor and seal.
4. Seal: Mechanical, with carbon-steel rotating ring, stainless-steel spring, ceramic seat, and rubber bellows and gasket.
5. Bearings: Oil-lubricated; bronze-journal or ball type.
6. Shaft Coupling: Flexible, capable of absorbing torsional vibration and shaft misalignment.

D. Motor: Single speed, with grease-lubricated ball bearings; and resiliently or rigidly mounted to pump casing.

2.3 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 22 Section "Common Motor Requirements for Plumbing Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

2.4 CONTROLS

A. Timers: Electric, for control of hot-water circulation pump.

1. Type: Programmable, seven-day clock with manual override on-off switch.
2. Enclosure: NEMA 250, Type 1 suitable for wall mounting.
3. Operation of Pump: On or off.
4. Transformer: Provide if required.
5. Power Requirement: 120-V ac.
PART 3 - EXECUTION

3.1 PUMP INSTALLATION

A. Comply with HI 1.4.

B. Install in-line, sealless centrifugal pumps with shaft horizontal unless otherwise indicated.

C. Install horizontally mounted, in-line, close-coupled centrifugal pumps with shaft horizontal.

D. Install continuous-thread hanger rods and spring hangers with vertical-limit stop of size required to support pump weight.
 1. Comply with requirements for vibration isolation devices specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment." Fabricate brackets or supports as required.
 2. Comply with requirements for hangers and supports specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

E. Install thermostats in hot-water return piping.

F. Install timers on wall adjacent to pump

G. Comply with requirements for piping specified in Division 22 Section "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

H. Install piping adjacent to pumps to allow service and maintenance.

I. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.
 1. Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:
 a. Horizontally mounted, in-line, close-coupled centrifugal pumps.
 b. Comply with requirements for flexible connectors specified in Division 22 Section "Domestic Water Piping."
 2. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for valves specified in Division 22 Section "General-Duty Valves for Plumbing Piping" and comply with requirements for strainers specified in Division 22 Section "Domestic Water Piping Specialties."
 3. Install pressure gage and snubber at suction of each pump and pressure gage and snubber at discharge of each pump. Install at integral pressure-gage tappings where provided or install pressure-gage connectors in suction and discharge piping around pumps. Comply with requirements for pressure gages and snubbers specified in Division 22 Section "Meters and Gages for Plumbing Piping."

J. Comply with Division 26 Sections for electrical connections, and wiring methods.

K. Connect thermostats and timers to pumps that they control.

3.2 ADJUSTING

A. Adjust domestic water pumps to function smoothly, and lubricate as recommended by manufacturer.
B. Adjust initial temperature set points.

C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION 221123
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following for soil, waste, and vent piping inside the building:
 1. Pipe, tube, and fittings.
 2. Special pipe fittings.

1.3 DEFINITIONS
 A. PVC: Polyvinyl chloride plastic.
 B. TPE: Thermoplastic elastomer.

1.4 PERFORMANCE REQUIREMENTS
 A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:
 1. Soil, Waste, and Vent Piping: 10-foot head of water

1.5 SUBMITTALS
 A. Product Data: For pipe, tube, fittings, and couplings.
 B. Field quality-control inspection and test reports.

1.6 QUALITY ASSURANCE
 A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
 B. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-drain" for plastic drain piping; "NSF-tubular" for plastic continuous waste piping; and "NSF-sewer" for plastic sewer piping.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 PIPING MATERIALS

A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.

2.3 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop.

 a. Manufacturers:

 1) Clamp-All Corp.
 2) Ideal Div.; Stant Corp.

2.4 SPECIAL PIPE FITTINGS

A. Flexible, Nonpressure Pipe Couplings: Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition pattern. Include shear ring, ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.

1. Manufacturers:

 b. Fernco, Inc.
 c. Logan Clay Products Company (The).
 d. Mission Rubber Co.

2. Sleeve Materials:

 b. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 c. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

B. Shielded Nonpressure Pipe Couplings: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

1. Manufacturers:

 b. Mission Rubber Co.
C. Rigid, Unshielded, Nonpressure Pipe Couplings: ASTM C 1461, sleeve-type reducing- or transition-type mechanical coupling molded from ASTM C 1440, TPE material with corrosion-resistant-metal tension band and tightening mechanism on each end.

1. Manufacturers:
 a. ANACO.

D. Flexible Ball Joints: Ductile-iron fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include gasketed ball-joint section and ductile-iron gland, rubber gasket, and steel bolts.

1. Manufacturers:
 a. EBAA Iron Sales, Inc.

E. Expansion Joints: Two or three-piece, ductile-iron assembly consisting of telescoping sleeve(s) with gaskets and restrained-type, ductile-iron, bell-and-spigot end sections complying with AWWA C110 or AWWA C153. Select and assemble components for expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.

1. Manufacturers:
 a. EBAA Iron Sales, Inc.
 b. Romac Industries, Inc.
 c. Star Pipe Products; Star Fittings Div.

PART 3 - EXECUTION

3.1 EXCAVATION

A. Refer to Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS

A. Aboveground, soil and waste piping NPS 4 and smaller shall be any of the following:

1. Hubless cast-iron soil pipe and fittings heavy-duty shielded stainless-steel couplings; and hubless-coupling joints.
2. Dissimilar Pipe-Material Couplings: Shielded, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

B. Aboveground, soil and waste piping NPS 5 and larger shall be any of the following:

1. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.
2. Dissimilar Pipe-Material Couplings: Shielded, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

C. Aboveground, vent piping NPS 4 and smaller shall be any of the following:

1. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.
2. Dissimilar Pipe-Material Couplings: Flexible, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.
D. Aboveground, vent piping NPS 5 and larger shall be any of the following:
 1. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.
 2. Dissimilar Pipe-Material Couplings: Shielded, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

E. Underground, soil, waste, and vent piping NPS 4 and smaller shall be any of the following:
 1. Solid wall PVC pipes, PVC socket fittings, and solvent-cemented joints.

F. Underground, soil and waste piping NPS 5 and larger shall be any of the following:
 1. Solid-wall, Schedule 40, PVC pipe; PVC socket fittings; and solvent-cemented joints.

3.3 PIPING INSTALLATION

A. Basic piping installation requirements are specified in Division 22 Section "Common Work Results for Plumbing."

B. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers.

C. Install underground, ductile-iron, special pipe fittings according to AWWA C600.

D. Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Division 22 Section "Common Work Results for Plumbing."

E. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

F. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

G. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

H. Install soil and waste drainage and vent piping at the following minimum slopes, unless otherwise indicated:
 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

I. Install engineered soil and waste drainage and vent piping systems as follows:
 2. Sovent Drainage System: Comply with ASSE 1043 and sovent fitting manufacturer's written installation instructions.
3. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.

J. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.

K. Install underground PVC soil and waste drainage piping according to ASTM D 2321.

L. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

3.4 JOINT CONSTRUCTION

A. Basic piping joint construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."

B. Join hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-coupling joints.

C. PVC Nonpressure Piping Joints: Join piping according to ASTM D 2665.

3.5 VALVE INSTALLATION

A. General valve installation requirements are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

B. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.

3.6 HANGER AND SUPPORT INSTALLATION

A. Pipe hangers and supports are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment." Install the following:

1. Vertical Piping: MSS Type 8 or Type 42, clamps.
2. Install individual, straight, horizontal piping runs according to the following:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer than 100 Feet, if indicated: MSS Type 49, spring cushion rolls.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Install supports according to Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
2. NPS 3: 60 inches with 1/2-inch rod.
3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
4. NPS 6: 60 inches with 3/4-inch rod.
5. NPS 8 to NPS 12: 60 inches with 7/8-inch rod.

F. Install supports for vertical cast-iron soil piping every 15 feet.

G. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:
 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 4. Equipment: Connect drainage piping as indicated. Provide shutoff valve, if indicated, and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

3.8 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.

4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.

5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

6. Prepare reports for tests and required corrective action.

3.9 CLEANING

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION 221316
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following sanitary drainage piping specialties:
 1. Cleanouts.
 2. Floor drains.
 3. Roof flashing assemblies.
 4. Through-penetration fire stop assemblies.
 5. Miscellaneous sanitary drainage piping specialties.
 6. Flashing materials.
B. Related Sections include the following:
 1. Division 22 Section "Storm Drainage Piping Specialties" for channel drainage systems for storm water, roof drains, and catch basins.

1.3 DEFINITIONS
A. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS
A. Field quality-control test reports.
B. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE
A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.6 COORDINATION
A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
B. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 CLEANOUTS

A. Exposed Metal Cleanouts

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 b. MIFAB, Inc.
 c. Smith, Jay R, Mfg., Co.; Division of Smith Industries, Inc.
 d. Tyler Pipe; Wade Div.
 e. Zurn Plumbing Products Group; Specification Drainage Operation.

4. Size: Same as connected drainage piping.
5. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
7. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Cast-Iron Wall Cleanouts
 See Editing Instruction No. 1 in the Evaluations for cautions about naming manufacturers and products. Retain one of first three subparagraphs and list of manufacturers below. See Division 01 Section "Product Requirements."

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 b. MIFAB, Inc.
 c. Smith, Jay R, Mfg., Co.; Division of Smith Industries, Inc.
 d. Tyler Pipe; Wade Div.
 e. Zurn Plumbing Products Group; Specification Drainage Operation.

3. Standard: ASME A112.36.2M. Include wall access.
4. Size: Same as connected drainage piping.
5. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
7. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

2.2 FLOOR DRAINS

A. Cast-Iron Floor Drains

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
b. MIFAB, Inc.
d. Tyler Pipe; Wade Div.
e. Zurn Plumbing Products Group; Light Commercial Operation.
f. Zurn Plumbing Products Group; Specification Drainage Operation.

3. Standard: ASME A112.6.3
4. Pattern: Area drain.
5. Body Material: Cast iron.
7. Anchor Flange Required.
9. Outlet: Bottom Backwater Valve: Drain-outlet type Coating in first subparagraph below is usually used only on sanitary floor drains.
11. Dimensions of Top or Strainer: Top Loading Classification: Heavy Duty Funnel: Not required.
12. Inlet Fitting: Not required
13. Trap Material: Cast iron
15. Trap Features Not required.

2.3 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies See Editing Instruction No. 1 in the Evaluations for cautions about naming manufacturers and products. Retain one of first two subparagraphs and list of manufacturers below. See Division 01 Section "Product Requirements."

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ProSet Systems Inc.

2. Standard: UL 1479 assembly of sleeve and stack fitting with firestopping plug.
3. Size: Same as connected soil, waste, or vent stack.
4. Special Coating: Corrosion resistant on interior of fittings.

2.4 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Open Drains

1. Description: Shop or field fabricate from ASTM A 74, Service class, hub-and-spigot, cast-iron, soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C 564, rubber gaskets.
2. Size: Same as connected waste piping copy and edit paragraph and subparagraphs below for each type of floor-drain, trap-seal primer fitting required. If only one type is required, drawing designation may be omitted.

B. Floor-Drain, Trap-Seal Primer Fittings

1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
2. Size: Same as floor drain outlet with NPS 1/2 side inlet.

C. Sleeve Flashing Device
1. **Description:** Manufactured, cast-iron fitting, with clamping device that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 2 inches above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.

2. **Size:** As required for close fit to riser or stacks piping.

D. Stack Flashing Fittings

1. **Description:** Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.

2. **Size:** Same as connected stack vent or vent stack.

E. Frost-Resistant Vent Terminals

1. **Description:** Manufactured or shop-fabricated assembly constructed of copper, lead-coated copper or galvanized steel.

2. **Design:** To provide 1-inch enclosed air space between outside of pipe and inside of flashing collar extension, with counterflashing.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install backwater valves in building drain piping. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.

C. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:

1. **Size** same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.

2. Locate at each change in direction of piping greater than 45 degrees.

3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.

4. Locate at base of each vertical soil and waste stack.

D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

E. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.

1. Position floor drains for easy access and maintenance.

2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:

 a. **Radius, 30 Inches or Less:** Equivalent to 1 percent slope, but not less than 1/4-inch total depression.

 b. **Radius, 30 to 60 Inches:** Equivalent to 1 percent slope.

 c. **Radius, 60 Inches or Larger:** Equivalent to 1 percent slope, but not greater than 1-inch total depression.

3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

F. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.

G. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.

H. Assemble open drain fittings and install with top of hub 2 inches above floor.

I. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 2. Size: Same as floor drain inlet.

J. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.

K. Install frost-resistant vent terminals on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.

L. Install trap, vent, fresh-air inlet, and flow-control fitting according to authorities having jurisdiction. Install shelf fastened to reinforcement in wall construction and adjacent to unit, unless otherwise indicated. Install culture bottle, culture metering pump, timer, and control on shelf. Install tubing between culture bottle, metering pump, and chamber.

M. Install wood-blocking reinforcement for wall-mounting-type specialties.

N. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

O. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 LABELING AND IDENTIFYING

A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:
1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.5 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319
SECTION 221413
STORM DRAINAGE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following storm drainage piping inside the building:
 1. Pipe, tube, and fittings.
B. Related Sections include the following:
 1. Division 22 Section “Sump Pumps.”

1.3 DEFINITIONS
A. PVC: Polyvinyl chloride plastic.
B. TPE: Thermoplastic elastomer.

1.4 PERFORMANCE REQUIREMENTS
A. Components and installation shall be capable of withstanding the following minimum working-pressure, unless otherwise indicated:
 1. Storm Drainage Piping.

1.5 SUBMITTALS
A. Product Data: For pipe, tube, fittings, and couplings.

1.6 QUALITY ASSURANCE
A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
C. All cast iron soil pipe and fittings shall be marked with the collective trademark of the Cast Iron Soil Pipe Institute (CISPI) and be listed by NSF International.

PART 2 - PRODUCTS
2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 PIPING MATERIALS

A. Refer to Part 3 “Piping Applications” Article for applications of pipe, tube, fitting, and joining materials.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, class(es).

B. Gaskets: ASTM C 564, rubber.

2.4 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: Per CISPI 301.

B. Shielded Couplings: ASTM C 1540 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop.

a. Manufacturers:

 1) ANACO.
 2) Clamp-All Corp.
 3) Mission Rubber Co.
 4) Husky

2.5 PVC PIPE AND FITTINGS

A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.

B. Solvent Cement and Adhesive Primer:

1. Use PVC solvent cement that has a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

PART 3 - EXECUTION

3.1 EXCAVATION

A. Refer to Division 31 Section “Earth Moving” for excavating, trenching, and backfilling.
3.2 PIPING APPLICATIONS

A. Aboveground storm drainage piping shall be one of the following:
 1. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and coupled joints.
 2. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

B. Underground storm drainage piping shall be one of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

3.3 PIPING INSTALLATION

A. Storm sewer and drainage piping outside the building are specified in Civil Specifications “Storm Utility Drainage Piping.”

B. Basic piping installation requirements are specified in Division 22 Section “Common Work Results for Plumbing.”

C. Install cleanouts at grade and extend to where building storm drains connect to building storm sewers. Cleanouts are specified in Division 22 Section “Storm Drainage Piping Specialties.”

D. Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Division 22 Section “Common Work Results for Plumbing.”

F. Make changes in direction for storm drainage piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

G. Lay buried building storm drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer’s written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

H. Install storm drainage piping at the following minimum slopes, unless otherwise indicated:
 1. Storm Drain: Slope piping per Local Building Code or as shown on drawings.

I. Install engineered controlled-flow storm drainage piping in locations indicated.

J. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.

K. Install PVC storm drainage piping according to ASTM D 2665.

L. Install underground PVC storm drainage piping according to ASTM D 2321.

M. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
3.4 JOINT CONSTRUCTION

A. Basic piping joint construction requirements are specified in Division 22 Section “Common Work Results Plumbing.”

D. PVC Nonpressure Piping Joints: Join piping according to ASTM D 2665.

3.5 VALVE INSTALLATION

A. General valve installation requirements are specified in Division 22 Section “General-Duty Valves for Plumbing Piping.”

B. Backwater Valves: Install backwater valves in piping subject to backflow.

1. Horizontal Piping: Horizontal backwater valves. Use normally closed type, unless otherwise indicated.
2. Install backwater valves in accessible locations.
3. Backwater valve are specified in Division 22 Section “Storm Drainage Piping Specialties.”

3.6 HANGER AND SUPPORT INSTALLATION

A. Pipe hangers and supports are specified in Division 22 Section “Hangers and Supports for Plumbing Piping and Equipment.” Install the following:

1. Vertical Piping: MSS Type 8 or Type 42, clamps.
2. Individual, Straight, Horizontal Piping Runs: According to the following:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet, if Indicated: MSS Type 49, spring cushion rolls.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Install supports according to Division 22 Section “Hangers and Supports for Plumbing Piping and Equipment.”

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
2. NPS 3: 60 inches with ½-inch rod.
3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
4. NPS 6: 60 inches with ¾-inch rod.
5. NPS 8 to NPS 12: 60 inches with 7/8-inch rod.
6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
F. Install supports for vertical cast-iron soil piping every 15 feet.

G. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 2. NPS 3: 48 inches with ½-inch rod.
 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 4. NPS 6: 48 inches with ¾-inch rod.
 5. NPS 8 to NPS 12: 48 inches with 7/8-inch rod.

H. Install supports for vertical PVC piping every 48 inches.

I. Support piping and tubing not listed above according to MSS SP-69 and manufacturer’s written instructions.

3.7 CONNECTIONS

 A. Drawings indicate general arrangement of piping, fittings, and specialties.

 B. Connect interior storm drainage piping to exterior storm drainage piping. Use transition fitting to join dissimilar piping materials.

 C. Connect storm drainage piping to roof drains and storm drainage specialties.

3.8 CLEANING

 A. Clean interior of piping. Remove dirt and debris as work progresses.

 B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

 C. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION 221413
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following storm drainage piping specialties:
 1. Backwater valves.
 2. Cleanouts.
 3. Through-penetration firestop assemblies.
 4. Roof drains.
 5. Miscellaneous storm drainage piping specialties.
 6. Flashing materials.
B. Related Sections include the following:
 1. Division 22 Section "Sanitary Waste Piping Specialties" for backwater valves, floor drains, trench drains and channel drainage systems connected to sanitary sewer, air admittance valves, FOG disposal systems, grease interceptors and removal devices, oil interceptors, and solid interceptors.

1.3 DEFINITIONS
B. FOG: Fats, oils, and greases.
C. PE: Polyethylene plastic.
D. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated.

1.5 QUALITY ASSURANCE
A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

1.6 COORDINATION
A. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 CLEANOUTS
A. Exposed Metal Cleanouts See Editing Instruction No. 1 in the Evaluations for cautions about naming manufacturers and products. Retain one of three subparagraphs and list of manufacturers below. See Division 01 Section “Product Requirements.”

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 c. Zurn Plumbing Products Group; Specification Drainage Operation.

2. Standard: ASME A112.36.2M for cast iron for cleanout test tee.

3. Size: Same as connected drainage piping

4. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.

5. Closure: Countersunk

6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Metal Floor Cleanouts

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 c. Zurn Plumbing Products Group; Light Commercial Operation.
 d. Zurn Plumbing Products Group; Specification Drainage Operation.

2. Standard: ASME A112.36.2M for heavy-duty, adjustable housing cleanout.

3. Size: Same as connected branch.

4. Type: Heavy-duty, adjustable housing

5. Body or Ferrule: Cast iron.

7. Outlet Connection: Threaded.

8. Closure: Brass plug with straight threads and gasket

9. Adjustable Housing Material: Cast iron with threads

11. Top Loading Classification: Medium Duty.

12. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.

C. Cast-Iron Wall Cleanouts

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Zurn Plumbing Products Group; Specification Drainage Operation.

2. Standard: ASME A112.36.2M. Include wall access.

3. Size: Same as connected drainage piping.

4. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.

5. Closure: Countersunk Closure Plug Size: Same as or not more than one size smaller than cleanout size.

6. Wall Access: Round, deep, chrome-plated bronze Retain subparagraph above for cover plate or subparagraph below for frame and cover to be installed in drywall.

2.2 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies

B. See Editing Instruction No. 1 in the Evaluations for cautions about naming manufacturers and products. Retain one of first two subparagraphs and list of manufacturers below. See Division 01 Section “Product Requirements.”

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ProSet Systems Inc.

4. Size: Same as connected pipe.
5. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
7. Special Coating: Corrosion resistant on interior of fittings.

2.3 ROOF DRAINS

A. Metal Roof Drains
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.
 e. Zurn Plumbing Products Group; Light Commercial Operation.
 f. Zurn Plumbing Products Group; Specification Drainage Operation.
2. Standard: ASME A112.21.2M.
3. Pattern: Roof drain.
5. Dimensions of Body:
6. Combination Flashing Ring and Gravel Stop Required
7. Flow-Control Weirs: Not required
8. Outlet: Bottom.
11. Underdeck Clamp Required.

2.4 MISCELLANEOUS STORM DRAINAGE PIPING SPECIALTIES

A. Conductor Nozzles
1. Description: Bronze body with threaded inlet and bronze wall flange with mounting holes.
2. Size: Same as connected conductor.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
2. Locate at each change in direction of piping greater than 45 degrees.
3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
4. Locate at base of each vertical soil and waste stack.

C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
E. Install trench drains at low points of surface areas to be drained. Set grates of drains flush with finished surface, unless otherwise indicated.

F. Install through-penetration firestop assemblies in plasticat floor penetrations.

G. Install roof drains at low points of roof areas according to roof membrane manufacturer's written installation instructions. Roofing materials are specified in Division 07.
 1. Install roof-drain flashing collar or flange so that there will be no leakage between drain and adjoining roofing. Maintain integrity of waterproof membranes where penetrated.
 2. Position roof drains for easy access and maintenance.

H. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.

I. Install conductor nozzles at exposed bottom of conductors where they spill onto grade.

J. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
 2. Copper Sheets: Solder joints of copper sheets.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221423
<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>230010</td>
<td>BASIC MECHANICAL REQUIREMENTS</td>
</tr>
<tr>
<td>230513</td>
<td>COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT</td>
</tr>
<tr>
<td>230529</td>
<td>HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>230548</td>
<td>VIBRATION CONTROLS FOR HVAC PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>230553</td>
<td>IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>230593</td>
<td>TESTING, ADJUSTING, AND BALANCING FOR HVAC</td>
</tr>
<tr>
<td>230713</td>
<td>DUCT INSULATION</td>
</tr>
<tr>
<td>230719</td>
<td>HVAC PIPING INSULATION</td>
</tr>
<tr>
<td>230900</td>
<td>INSTRUMENTATION AND CONTROL FOR HVAC</td>
</tr>
<tr>
<td>231123</td>
<td>FACILITY NATURAL GAS PIPING</td>
</tr>
<tr>
<td>232113</td>
<td>HYDRONIC PIPING</td>
</tr>
<tr>
<td>232113.13</td>
<td>UNDERGROUND HYDRONIC PIPING</td>
</tr>
<tr>
<td>232123</td>
<td>HYDRONIC PUMPS</td>
</tr>
<tr>
<td>232300</td>
<td>REFRIGERANT PIPING</td>
</tr>
<tr>
<td>232500</td>
<td>HVAC WATER TREATMENT</td>
</tr>
<tr>
<td>233113</td>
<td>METAL DUCTS</td>
</tr>
<tr>
<td>233300</td>
<td>AIR DUCT ACCESSORIES</td>
</tr>
<tr>
<td>233423</td>
<td>HVAC POWER VENTILATORS</td>
</tr>
<tr>
<td>233600</td>
<td>AIR TERMINAL UNITS</td>
</tr>
<tr>
<td>233713</td>
<td>DIFFUSERS, REGISTERS, AND GRILLES</td>
</tr>
<tr>
<td>234100</td>
<td>PARTICULATE AIR FILTRATION</td>
</tr>
<tr>
<td>237313</td>
<td>MODULAR INDOOR CENTRAL STATION AIR HANDLING UNITS</td>
</tr>
<tr>
<td>238126</td>
<td>SPLIT-SYSTEM AIR-CONDITIONERS</td>
</tr>
<tr>
<td>262923</td>
<td>VARIABLE FREQUENCY MOTORS</td>
</tr>
</tbody>
</table>
SECTION 230010
BASIC MECHANICAL REQUIREMENTS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Basic Requirements: Requirements of the Contract Forms, Conditions of the Contract, Specifications, Drawings, and Addenda and Contract Modifications (the Contract Documents), apply to the requirements of each Section of Division 15.

B. Conflicts: Nothing contained in this Section shall be construed to conflict in any way with other provisions or requirements of the Contract documents. The intent is that this Section will take precedence. Where differences arise, the Architect shall decide which directions or instructions take precedence.

1.02 SUMMARY

A. General: Unless an item is specifically mentioned as being provided by others, the requirements of Division 15 Contract Documents shall be completed. The systems, equipment, devices and accessories shall be installed, finished, tested and adjusted for continuous and proper operation. Any apparatus, material or device not shown on the Drawings but mentioned in these Specifications, or vice versa, or any incidental accessories necessary to make the project complete and operational in all respects, shall be furnished, delivered and installed without additional expense to the Owner. Include all materials, equipment, supervision, operation, methods and labor for the fabrication, installation, start-up and tests necessary for complete and properly functioning systems.

1.03 APPLICABLE STANDARDS

A. Code Compliance: Refer to Division 1. As a minimum, unless otherwise indicated, comply with all rules, regulations, standards, codes, ordinances and laws of local, state and federal governments and the amendments and interpretation of such rules, regulations, standards, codes, ordinances and laws of local, state and federal governments by the authorities having lawful jurisdiction.

B. ADA: Comply with the requirements of the Americans with Disabilities Act (ADA).

C. Comply: With the National Fire Protection Association (NFPA) Standards and other Codes and Standards as adopted by the Local Authority having Jurisdiction.

1. International Mechanical Code, 2015 Edition

E. NATIONAL FIRE PROTECTION (NFPA) Standards:

1. NFPA-1, Uniform Fire Code™, 2006 Revision
2. NFPA-10, Standard for Portable Fire Extinguishers, 2002 Revision
4. NFPA-14, Standard for the Installation of Standpipe and Hose Systems, 2003 Revision
6. NFPA-17, Standard for Dry-Chemical Extinguishing Systems, 2002 Revision
10. NFPA-50, Standard for Bulk Oxygen Systems at Consumer Sites, 2001 Revision
13. NFPA-70, National Electrical Code, 2005 Revision
14. NFPA-72, National Fire Alarm Code, 2002 Revision
17. NFPA-90B, Standard for the Installation of Warm Air Heating and Air Conditioning Systems, 2006 Revision
25. NFPA-780, Installation of Lightning Protection Systems, 2004 Revision
26. NFPA-1962, Standard for Inspection, Care and Use of Fire Hose including Couplings and Nozzles; and the Service Testing of Fire Hose, 2003 Revision

F. Notification: Comply with all of the requirements of the Federal "Right-To-Know" Regulations and the Texas "Right-To-Know" Law and provide notification to all parties concerned as to the use of toxic substances.

G. Texas DOE Requirements: Comply with the requirements of the Department of Education's design standard, State Requirements for Educational Facilities (SREF), 1999.

H. Owner Design Guidelines: Comply with all the requirements of the latest Owner MEP Engineering Design Guidelines and the latest Owner Architectural Construction Standards.

1.04 DRAWINGS AND SPECIFICATIONS

A. Intent: The intent of the drawings and specifications is to establish minimum acceptable quality standards for materials, equipment and workmanship, and to provide operable mechanical systems complete in every respect.

B. Equipment Placement: The drawings are diagrammatic, intended to show general arrangement, capacity and location of various components, equipment and devices. Each location shall be determined by reference to the general building plans and by actual measurements in the building as built. Reasonable changes in locations ordered by the Architect prior to the performance of the affected Work shall be provided at no additional cost to the Owner.

C. Drawing Scale: Due to the small scale of the drawings, and to unforeseen job conditions, all required offsets, transitions and fittings may not be shown but shall be provided at no additional cost.

D. Conflict: In the event of a conflict, the Architect will render an interpretation in accordance with the General Conditions.

1.05 DEFINITIONS

A. Provide/Install: The word "provide" shall mean furnish, install, connect, test, complete, and leave ready for operation. The word "install" where used in conjunction with equipment furnished by the Owner or under another contract shall mean mount, connect, complete, and leave ready for operation.

B. Concealed: The surface of insulated or non-insulated piping, ductwork or equipment is concealed from view when standing inside a finished room, such as inside a chase or above a ceiling.
C. Exposed: The surface of insulated or non-insulated piping, ductwork or equipment is seen from inside a finished room, such as inside an equipment or air handling unit room.

D. Protected: The surface of insulated or non-insulated piping, ductwork or equipment on the exterior of the building but protected from direct exposure to rain by an overhang, eave, in an unconditioned parking garage or building crawl space.

E. Unprotected: The surface of insulated or non-insulated piping, ductwork or equipment on the exterior of the building and exposed to rain.

F. Abbreviations: Abbreviations, where not defined in the Contract Documents, shall be interpreted to mean the normal construction industry terminology, as determined by the Architect. Plural words shall be interpreted as singular and singular words shall be interpreted as plural where applicable for context of the Contract Documents.

1.06 SHOP DRAWINGS

A. General: Refer to paragraph entitled "SUBMITTAL" in this section. Include the following data:

1. Shop Drawings:
 a. Submit shop drawings for the following:
 (1) Each piping system
 (2) Ductwork systems as defined in Section 15890
 (3) Coordination drawings

1.07 RECORD DRAWINGS

A. Production: Maintain one set of black or blue line on white project record "as-built" drawings at the site. At all times the set shall be accurate, clear, and complete, indicating the actual installation. Record drawings shall be updated weekly to record the present stage of progress. These drawings shall be available to the Architect at all times. Equipment schedules, control diagrams, sequences of operation shall also be updated.

B. Completion: Prior to substantial completion, transfer onto an unmarked second set of drawings all changes, marked in colored pencil, and submit them to the Architect. Upon completion of all punch lists, transfer all "As-Built" conditions to the AutoCAD drawing files, package three (3) print sets of full size drawings and two (2) CDs of the AutoCAD drawing files with associated reference files and submit them to the Architect for review and approval.

1.08 SUBMITTAL

A. General: The provisions of this section are supplemental to the requirements in Division 1, and only apply to the material and equipment covered in Division 15.

B. Time: Submit manufacturer's literature, performance data and installation instructions covered in each Section of Division 15 under an individual letter of transmittal within 30 days after Notice to Proceed unless otherwise indicated.

C. Submitter's Review: All items required for each section shall be reviewed before submittal. Submittal information for each item shall bear a review stamp of approval, indicating the name of the Contractor and Subcontractor (where applicable), the material suppliers, the initials of submitter and date checked. Responsibility for errors or omissions in submittals shall not be relieved by the Architect's review of submittals. Responsibility for submittals cannot be subrogated to material suppliers by Contractors or Subcontractors.

1. Review of the submittal data, whether indicated with "APPROVED" or with review comments, does not constitute authorization for or acceptance of a change in the contract price.
D. Architect's Review: The submittal data shall be reviewed only for general conformance with the design concept of the project and for general compliance with the Contract Documents. Any action indicated is subject to the requirements of the Contract Documents. Reviews of submittal data review shall not include quantities; dimensions (which shall be confirmed and correlated at the job site); fabrication processes; techniques of construction; and co-ordination of the submittal data with all other trades. Copies of the submittal data will be returned marked "ACCEPTED AS SUBMITTED", "ACCEPTED AS NOTED", "REVISED AS NOTED AND RESUBMIT", "REJECTED, REVISED AS NOTED AND RESUBMIT".

E. Submittal Items: Submittal items shall be inserted in a Technical Information Brochure. Mark the appropriate specification section or drawing reference number in the right hand corner of each item. All typewritten pages shall be on the product or equipment manufacturer's printed letterhead.

1. Manufacturer's Literature: Where indicated, include the manufacturer's printed literature. Literature shall be clearly marked to indicate the item intended for use.

2. Performance Data: Provide performance data, wiring and control diagrams and scale drawings which show that proposed equipment will fit into allotted space (indicate areas required for service access, connections, etc.), and other data required for the Architect to determine that the equipment complies with the Contract Documents. Where noted, performance data shall be certified by the manufacturer at the design rating points.

3. Installation Instructions: Where requested, each product submittal shall include the manufacturer's installation instructions. Generic installation instructions are not acceptable. Instructions shall be the same as those included with the product when it is shipped from the factory.

4. Written Operating Instructions: Instructions shall be the manufacturer's written operating instructions for the specified product. If the instructions cover more than one model or type of product they shall be clearly marked to identify the instructions that cover the product delivered to the project. Operating Instructions shall be submitted immediately after the product or equipment submittal has been returned from the Architect marked "APPROVED" or "APPROVED AS NOTED".

5. Maintenance Instructions: Information shall be the manufacturer's printed instructions and parts lists for the equipment furnished. If the instructions cover more than one model or type of equipment they shall be marked to identify the instructions for the furnished product. Submit maintenance instructions immediately after the product or equipment submittal has been returned from the Architect marked "APPROVED" or "APPROVED AS NOTED".

F. Substitutions:

1. General: Refer to Division 1. Substitutions may be considered for any product or equipment of a manufacturer. See paragraph entitled "MANUFACTURER" in this Section. Any product or equipment may be submitted for review; however, only one substitution per item will be considered. If a substituted product or equipment item is rejected, provide the specified product or equipment.

 a. Submittal shall include the name of the material or equipment to be substituted, equipment model numbers, drawings, catalog cuts, performance and test data and any other data or information necessary for the Architect to determine that the equipment meets the specification requirements. If the Architect accepts any proposed substitutions, such acceptance will be set forth in writing.

 b. Substituted equipment with all accessories installed or optional equipment where permitted and found acceptable, must conform to space requirements. Substituted equipment that cannot meet space requirements, whether accepted or not, shall be replaced at no additional expense to the Owner. If the substituted item affects the work of other trades, the Request for Substitution form shall include a list of the necessary modifications.

2. Deviations: The Request for Substitution form shall include a complete list of deviations from the scheduled item stating both the features and functions of the scheduled item and the comparable features and functions of the proposed substitution.

 a. Any deviation not indicated in writing will be assumed to be identical to the specified item even if it is shown otherwise on the submittal data.
b. If a deviation not listed is found anytime after review and acceptance by the Architect and that deviation, in the opinion of the Architect, renders the substituted item as unacceptable, the item shall be removed and replaced by the scheduled item at no additional cost to the Owner.

c. The Architect shall retain the right to specify modifications to the substituted item, correcting or adjusting for the deviation, if the Architect deems it to be in the best interest of the Owner.

3. Scheduled Item: A scheduled item is a product or item of equipment indicated in the Contract Documents by manufacturer's name and model number identifying a single item. The manufacturer's trade name for a group of products that does not signify a single item including type, style, quality, performance, and sound rating shall not be classified as a scheduled item. Where more than one manufacturer and product model number are indicated, each shall be considered as a scheduled item.

4. Form: When a product or item of equipment is proposed as a substitution a "REQUEST FOR SUBSTITUTION" form shall be completed and submitted with the required data. A copy of the form is included after the end of this section.

5. Rejection: Substituted products or equipment will be rejected if, in the opinion of the Architect, the submittal does not meet any one of the following conditions or requirements:

 a. The submittal data is insufficient or not clearly identified. The Architect may or may not request additional information.

 b. The product or equipment will not fit the space available and still provide the manufacturers published service area requirements.

 c. The product or equipment submitted is not equivalent to or better than the specified item. Products or equipment of lesser quality may be considered provided an equitable financial rebate, satisfactory to the Architect, is to be returned to the Owner.

 d. The product or equipment submitted has less capacity, efficiency and safety provisions than the specified item.

 e. The product or equipment submitted does not have warranty, service and factory representation equivalent to that specified.

 f. The Owner prefers not to accept the submitted product.

G. Technical Information Brochure:

1. Binder: Include binders with the first submittal for the Technical Information Brochure. Each binder shall be size 3 inch, hardcover, 3-ring type for 8-1/2" X 11" sheets. Provide correct designation on outside cover and on spine of each binder, i.e., MECHANICAL SUBMITTAL DATA, MECHANICAL OPERATION INSTRUCTION and MECHANICAL MAINTENANCE INSTRUCTIONS.

2. Number: Submit not less than five sets of binders for each of the three mechanical brochures indicated above. Each set shall consist of a minimum of two binders for submittal data and 1 binder each for operating instructions and for maintenance instructions. Additional binders shall be submitted at the request of the Architect. One set of binders shall be retained by the Architect. Three sets of binders shall be maintained for the Owner and the remaining set shall become the property of the Engineer.

3. Index: First sheet in each brochure shall be a photocopy of the "Division 15 Index" of the specifications. Second sheet shall list the firm name, address, phone number, superintendent's name for the contractor and all major subcontractors and suppliers associated with the project.

4. Dividers: Provide reinforced separation sheets tabbed with the appropriate specifications Section reference number for each Section in which submittal data or operation and maintenance instructions is required.

1.09SHOP DRAWINGS FOR PIPING SYSTEMS

A. Revit requirements: Make Shop Drawings for piping systems at a minimum scale of 1/4 inch per foot in AutoCAD Version 2000 (or later) and print on reproducible transparencies to verify clearances and equipment locations. Show required maintenance and operational clearances. Identify Shop Drawings by project name and include names of Architect, Engineer, Contractors, Subcontractors and supplier, date in Shop Drawing title block. Number drawings sequentially and indicate:
1. Architectural and structural backgrounds with room names and numbers, etc., including but not limited to plans, sections, elevations, details, etc.
2. Fabrication and erection dimensions.
3. Arrangements and sectional views.
4. Necessary details, including complete information for making connections to equipment.
5. Descriptive names of equipment.
6. Modifications and options to standard equipment required by Contract Documents.

B. Stamp Area: Leave 4 inch by 2-1/2 inch blank area near title block for Architect's shop drawing stamp. The acceptance of a shop drawing by indicating "APPROVED" does not relieve the contractor from full compliance with the sizes and equipment connections shown on the contract documents unless the changes are specifically indicated on the shop drawing.

C. Reference Key: Indicate by cross-reference the Contract Drawings, notes, or Specification paragraph numbers where item(s) occur in the Contract Documents.

D. Additional Requirements: See specific Sections for additional requirements.

1.10 SHOP DRAWINGS FOR DUCT SYSTEMS

A. Revit Requirements: Make Shop Drawings for duct systems at a minimum scale of 1/4 inch per foot in AutoCAD Version 2000 (or later) and print on reproducible transparencies to verify clearances and equipment locations. Show required maintenance and operational clearances. Identify Shop Drawings by project name and include names of Architect, Engineer, Contractors, Subcontractors and supplier, date in Shop Drawing title block. Number drawings sequentially and indicate:

1. Architectural and structural backgrounds with room names and numbers, etc., including but not limited to plans, sections, elevations, details, etc.
2. Fabrication and erection dimensions.
3. Arrangements and sectional views.
4. Necessary details, including complete information for making connections to air distribution devices and air handling equipment.
5. Kinds of materials and finishes.
6. Descriptive names of equipment.
7. Modifications and options to standard equipment required.

B. Stamp Area: Leave 4 inch by 2-1/2 inch blank area near title block for Architect's shop drawing stamp. The acceptance of a shop drawing by indicating "APPROVED" does not relieve the contractor from full compliance with the sizes and connections shown on the contract documents unless the changes are specifically indicated on the shop drawing.

C. Reference Key: Indicate by cross-reference the Contract Drawings, notes, or Specification paragraph numbers where item(s) occur in the Contract Documents.

D. Additional Requirements: See specific Sections for additional requirements.

1.11 COORDINATION DRAWINGS

A. General: Provide detailed (minimum 1/4 inch per foot) scaled coordination drawings showing locations and positions of all architectural, structural, (FF&E) equipment, electrical, plumbing, fire protection and mechanical elements for all installations. Provide overlay drawings, prior to beginning work, indicating work in and above ceilings and in mechanical and electrical rooms with horizontal and vertical dimensions, to avoid interference with structural framing, ceilings, partitions and other services. Accommodate phasing and
temporary conditions indicated on the contract drawings as necessary to complete the work without
disruption to the Owner's use of the existing occupied areas of the building(s).

B. Coordination of Space: Coordinate use of project space and sequence of installation of mechanical and
electrical work which is indicated diagrammatically on drawings. Follow routings shown for pipes, ducts and
conduits as closely as practicable, with due allowance for available physical space; make runs parallel with
lines of building. Utilize space efficiently to maximize accessibility for other installations, for maintenance,
and for repairs.
In finished areas except as otherwise shown, conceal pipes, ducts, and wiring in construction. Coordinate
locations of fixtures and outlets with finish elements. Contractor shall provide background drawings
showing partitions, ceiling heights, and structural framing locations and elevations, and existing
obstructions. Contractor shall resolve major interferences at initial coordination meeting prior to production
of coordination drawings.

C. Precedence of Services: In event of conflicts and interferences involving location and layout of work, use
the following priority to resolve interferences:

1. Structure has highest priority.
2. Walls systems.
3. Ceiling grid/light fixtures.
4. Gravity drainage lines.
5. Large pipe mains.
6. Ductwork/diffusers, registers and grilles.
7. Sprinkler heads.
8. Small piping and tubing/electrical conduit.

D. Drawings shall be developed on AutoCAD Version 2000 (or later), and utilize AIA Standard layering
conventions. At the completion of the project construction, the Contractor shall provide two (2) full-sized
print sets and two (2) CDs of all drawing files with related reference files representing as-built installations
for Architect review. Upon approval that the submitted information is complete, a similar submittal shall be
provided to the Owner.

E. Stamp Area: Leave 4 inch by 2-1/2 inch blank area near title block for Architect's shop drawing stamp.

F. Reference Key: Indicate by cross-reference the Contract Drawings, notes, or Specification paragraph
numbers where item(s) occur in the Contract Documents.

G. Additional Requirements: See specific Sections for additional requirements.

1.12 MANUFACTURER'S CHECKOUT

A. Start-up and Checkout: At completion of installation and prior to performance verification, a factory-trained
representative of the manufacturer shall provide start-up and checkout service. After the performance
verification the manufacturer's representative shall examine performance information and check the
equipment in operation, and sign "Check-Out Memo" for the record. Submit a copy of Memo on each item
of equipment where indicated in individual sections of these specifications for inclusion in each Technical
Information Brochure. The "Check-Out Memo" shall be included with the performance verification data. Do
not request "Instruction in Operation Conference" or request final inspection until Memos have been
submitted and found acceptable.

1.13 INSTRUCTION TO OWNER

A. General: Instructions to the Owner shall be by competent representatives of the manufacturers involved,
with time allowed for complete coverage of all operating procedures. Provide classroom instruction and
field training in the design, operation and maintenance of the equipment and troubleshooting procedures.
Explain the identification system, operational diagrams, emergency and alarm provisions, sequencing
requirements, seasonal provisions, security, safety, efficiency and similar provisions of the systems. On the
date of substantial completion, turn over the prime responsibility for operation of the mechanical equipment
and systems to the Owner's operating personnel.
B. Training Period: Unless otherwise indicated training periods shall encompass the following number of hours of classroom and hands-on instructions with a maximum period of 4 hours per day for either. Mixing classroom instructions and hands on training in the same day is unacceptable.

C. Scheduling: Submit any remaining required items for checking at least one week before final inspection of building. When submittal items are found acceptable, notify Owner, in writing, that an "Instruction in Operation Conference" may proceed. Conference will be scheduled by the Owner. After the conference, copies of a memo certifying that the "Instruction in Operation Conference" and "Completed Demonstration" have been made will be signed by Owner and the instructors, and one copy will be inserted in each Technical Information Brochure.

D. Documentation: Provide video documentation of all owner classroom and training instruction.

1.14 ALLOWANCES
A. General: Division 1.

1.15 ALTERNATES
A. Refer to Division 1.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
A. Specified Products: Manufacturer's names and product model numbers indicated on the drawings and in these specifications establish the type, style, quality, performance, and sound rating of the desired product. Listing of other manufacturers indicates that their equivalent products would be acceptable if they meet the specification requirements, the specific use and installation shown on the drawings, including space and clearance requirements, and the energy consumption and efficiency of the specified product. The listing of additional manufacturers in no way indicates that the manufacturer can provide an acceptable product.

B. Space Requirements: All manufactured products furnished on this project must have the required space and service areas indicated in the manufacturer's printed literature or shown on their shop drawing. When the manufacturer does not indicate the space required for servicing the equipment, the space shown on the drawings or as required by the Architect must be provided.

2.02 MATERIAL AND EQUIPMENT
A. General: Material and equipment used shall be produced by manufacturers regularly engaged in the production of similar items, and with a history of satisfactory use as judged by the Architect.

B. Specified Equipment: Equipment shall be the capacity and types indicated or shall be equivalent in the opinion of the Architect. Material and equipment furnished and installed shall be new, recently manufactured, of standard first grade quality and designed for the specific purpose. Equipment and material furnished shall be the manufacturer's standard item of production unless specified or required to be modified to suit job conditions. Sizes, material, finish, dimensions and the capacities for the specified application shall be published in catalogs for national distribution. Ratings and capacities shall be certified by a recognized rating bureau. Products shall be complete with accessories, trim, finish, safety guards and other devices and details needed for a complete installation and for the intended use and effect.

C. Compatibility: Material and equipment of one and the same kind, type or classification and used for identical or similar purposes shall be made by the same manufacturer. Where more than one choice is available, select the options which are compatible with other products already selected. Compatibility is a basic general requirement of product selection.

PART 3 - EXECUTION
3.01 WORKMANSHIP

A. General: The installation of materials and equipment shall be done in a neat, workmanlike and timely manner by an adequate number of craftsmen knowledgeable of the requirements of the Contract Documents. They shall be skilled in the methods and craftsmanship needed to produce a first-quality installation. Personnel who install materials and equipment shall be qualified by training and experience to perform their assigned tasks. All materials and equipment shall be installed per the manufacturer’s written requirements.

B. Acceptable Workmanship: Acceptable workmanship is characterized by first-quality appearance and function which conforms to applicable standards of building system construction and exhibits a degree of quality and proficiency which is judged by the Architect as equivalent or better than that ordinarily produced by qualified industry tradesmen.

C. Performance: Personnel shall not be used in the performance of the installation of material and equipment who, in the opinion of the Architect, are deemed to be careless or unqualified to perform the assigned tasks. Material and equipment installations not in compliance with the Contract Documents, or installed with substandard workmanship in the opinion of the Architect, shall be removed and reinstalled by qualified craftsmen at no change in the contract price.

3.02 CLEANING AND PROTECTION

A. General: Refer to Division 1.

B. Emergency Contacts: Prior to the beginning of the project, provide the Owner with a list of names, email and emergency telephone numbers of individuals who can be contacted during working and non-working hours, including weekends, for assistance throughout the warranty period if leaks, equipment failure or other damages occur. Update the list throughout installation and warranty to provide continuous availability of responsible parties to the Owner. If the Owner cannot contact the responsible party during an emergency situation, the Owner may effect emergency repairs through other means and may backcharge for the costs of repair material and labor incurred.

C. Emergency Contacts: Along with the operating and maintenance manual submittal, provide the Owner with a list of the names and emergency telephone and beeper numbers of individuals who can be contacted during working and non-working hours, including weekends, for assistance throughout the warranty period should leaks, equipment failure or other damage occur. Update the list throughout warranty to provide continuous availability of responsible parties to the Owner. If the Owner cannot contact the responsible party during an emergency situation, the Owner may effect emergency repairs through other means and may backcharge for the costs of repair material and labor incurred.

D. Housekeeping: Keep interiors of duct and pipe systems clean and free from dirt, rubbish and foreign matter. Close open ends of piping and ductwork at all times throughout the installation. Install 30% efficient filter media over each return air grille and open return duct opening; change media regularly during construction when dirty to keep duct interiors clean. Prevent dust, debris and foreign material from entering the piping and ductwork.

E. Equipment Protection: Protect fan motors, switches, equipment, fixtures, and other items from dirt, rubbish and foreign matter. Do not operate air-handling equipment if the building is not clean or if dust can enter the coils or the fan housings.

F. Equipment Cleaning: Thoroughly clean equipment and entire piping systems internally upon completion of installation and immediately prior to final acceptance. Open dirt pockets and strainers, blow down each piping system and clean strainer screens of accumulated debris. Remove accumulated dirt, scale, oil and foreign substances. Thoroughly wipe clean internal surfaces of ductwork and air handling units prior to request for substantial completion. (See para. 3.2 above.)

G. Building Cleanup: Remove debris, rubbish, leftover materials, tools and equipment from work areas and site. Clean tunnels and closed off spaces of packing boxes, wood frame members and other waste materials used in the installation. Final acceptance shall not be approved until site is cleaned.

H. Fixture Cleanup: Remove temporary labels, stickers, etc., from fixtures and equipment. Do not remove permanent nameplates, equipment model numbers, ratings, etc.
I. Filter Replacement: Provide filters, with the same efficiency rating as required for the final installation, for the protection of the air moving equipment and ductwork continuously throughout the construction phase. Provide replacement clean filters as required to maintain system operation during construction. Provide a new set of clean filters for the test and balance of the air side equipment.

J. Protection of Finished Installation: Where installation is required in areas previously finished by other trades, protect the area from marring, soiling or other damage.

K. Air Handling Unit Operation During Construction Phase: Do not operate air handling equipment during building construction phase unless filter fabric is fastened to all duct systems’ inlets and all specified and scheduled air filters are installed to minimize dirt entry into ductwork and air moving equipment. When running air handling units to dry out the building, control the building temperature to drop very slowly, and verify all HVAC insulation is completed and doors and windows are installed and closed, to prevent condensation of water from humid air on building interior surfaces, equipment, materials and ductwork.

3.03 CORRECTION OF WORK

A. General: At no additional cost to the Owner, rectify discrepancies between the actual installation and contract documents when in the opinion of the T&B Agency or the Architect the discrepancies will affect system balance and performance.

B. Drive Changes: Include the cost of all pulley, belt, and drive changes, as well as balancing dampers, valves and fittings, and access panels to achieve proper system balance recommended by the T&B Agency.

3.04 COORDINATION AND ASSISTANCE

A. General: Provide all labor, equipment, tools and material required to operate the equipment and systems necessary for the testing and balancing of the systems and for the adjustment, calibration or repair of all electric or pneumatic automated control devices and components. These services shall be available on each working day during the period of final testing and balancing.

B. Drawings and Specifications: Provide to the T&B Agency a complete set of project record drawings and specifications and an approved copy of all HVAC shop drawings and equipment submittals. The T&B Agency shall be informed of all changes made to the system during construction, including applicable change orders.

C. Coordination: Coordinate the work of all trades and equipment suppliers to complete the modifications recommended by the T&B Agency and accepted by the Architect. Cut or drill holes for the insertion of air measuring devices as directed for test purposes; repair to as-new condition, inserting plastic caps or covers to prevent air leakage. Repair or replace insulation and re-establish the integrity of the vapor retardant.

3.05 PREPARATIONS FOR PERFORMANCE VERIFICATION

A. Verification: Prior to commencement of the balancing by the T&B Agency, the Contractor shall verify in writing:

1. That air filters have been replaced and are in clean condition.

2. That linkages between dampers and their actuators are secure, non-overloading and non-binding.

3. That ductwork specialties are in their normal operating positions.

4. That fans are operating at the correct rotation and specified RPM.

5. That ductwork has been pressure tested and accepted.

6. That strainers have been removed, cleaned and replaced, and that temporary construction strainers have been removed.

7. That compression or expansion tanks have been inspected, are not air-bound or water-logged and are pre-charged, and that the piping systems have been completely vented and filled with water.
8. That air vents at coils and high points of the piping systems have been inspected and installed and operating freely.
9. That automatic valves, hand valves, and balancing valves have been placed in a fixed open position for full flow through all devices.
10. That linkages between valves and their actuators are secure, non-overloading and non-binding.
11. That pressures for hydronic reducing valves have been set.
12. That operating temperatures have been set for chillers, regulating valves, etc.
13. That pumps are operating at the correct rotation and specified horsepower.
14. That piping has been pressure tested and accepted and piping systems have been cleaned, flushed, sterilized and refilled with chemicals and prescribed treated water and vented.
15. That operating temperatures have been set for boilers, regulating valves, etc.
16. That the operating safeties (thermal overloads, firestat/freezestats, smoke detectors, relief valves, etc.), are installed and fully functional.
17. That equipment has been lubricated and can be operated without damage.
18. That the systems are operational and complete.
19. That no latent residual work remains to be completed.

3.06 ACCEPTANCE TESTING PROCEDURE

A. General: Each HVAC system shall be tested to confirm proper operation and function in accordance with the construction documents and control sequence of operations.

B. The enclosed checklists shall be completed for each system and signed off by the mechanical sub-contractor project representative, then verified and signed-off by the mechanical sub-contractor project supervisor and the construction manager systems engineer. All checklists shall be incorporated into the project's close-out manuals submitted for Owner record.

C. On-site testing by the Architect and Engineer shall be performed at the discretion of the Architect/Engineer for any or all systems to confirm test results and system function.

D. The Contractor is responsible to provide adequate time in the completion of the construction to perform these system tests prior to the AHCA final inspections in the affected areas/systems.

E. The Contractor is responsible for ensuring all required system tests are conducted successfully and recording associated test data and results.

F. The Contractor is responsible for contacting the Architect and Engineer at least two weeks prior to system test availability and schedule acceptable to Architect/Engineer for on-site testing.

G. If, in the Architect's and Engineer's opinion, the test results indicate that the systems' installation is not adequately complete for testing, the testing shall be re-scheduled and the Contractor shall be responsible to prepare for such re-test.

H. Prior to Owner occupancy, all system testing shall be completed and approved.

3.07 PROTECTION OF MATERIALS AND EQUIPMENT

A. Requirements: Do not store fiberglass insulation or any equipment within the building until it has been "dried in". If dry space is unavailable and the insulation and equipment must be installed or stored before the building is "dried in" and completely enclosed, provide polyethylene film cover for protection.
B. Replacement of Damaged Stored Material and Equipment: Any material and equipment that has been wet or otherwise damaged prior to installation, in the opinion of the Architect, shall be replaced with new material regardless of the condition of the material and equipment at the time of installation.

C. Repair of Damaged Installed Material and Equipment: After installation correct or repair dents, scratches and other visible blemishes. At the direction of Architect replace or repair to "as new" condition equipment which has been damaged during construction.

D. During construction, all piping and ductwork system openings shall be capped with at least two layers of polyethylene film, fastened tightly in place with banding material or foil tape until connection of the continuation of such piping or ductwork is occurring.
REQUEST FOR SUBSTITUTION (Must be Submitted Prior to Bid)

Project Name: _________________________ Location: _______________________

Date of Request: ____________________________

Name of Party Requesting Substitute:

Reason for Substitution Request:

<table>
<thead>
<tr>
<th>Drawing</th>
<th>Spec. Sect. No.</th>
<th>Paragraph</th>
<th>Specified Item</th>
<th>Manu</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>______</td>
<td>_______________</td>
<td>_______</td>
<td>_____________</td>
<td>______</td>
<td>_____</td>
</tr>
</tbody>
</table>

Proposed Substitute: ___

Manufacturer and Model Number:

Deviations from the Specified Item: (See paragraph entitled "Deviations").

Reason for Substitution:

Changes to Other Systems to Permit Use of Proposed Substitute:
(List changes. Submit drawings if required for clarity.)

Technical Data to Support Request for Acceptance:
(List ASTM or other standards designations, testing laboratory reports, experience records, etc.)

Other Supporting Data:
(Submit brochures, samples, drawings, etc.)
REQUEST FOR SUBSTITUTION (Continued)

Certification: In making request for substitution, the party whose authorized signature appears below, certifies that all of the following statements are correct and are accepted without exception:

- The proposed substitution has been personally investigated and is equal or superior in all significant respects to the product specified for the specific applications required;

- The proposed substitution will be warranted under the same terms required for the specified product;

- Coordination aspects necessitated by the proposed substitution will be accomplished in a complete and proper fashion by the party signing this form without any additional cost to the Owner; and

- Claims against the Owner for additional costs related to the proposed substitution which subsequently become apparent after acceptance by the Architect are hereby waived.

Credit: If this substitution is acceptable the following credit shall be given to the Owner; $__________________________

CERTIFICATION OF EQUIVALENT PERFORMANCE AND ASSUMPTION OF LIABILITY FOR EQUIVALENT PERFORMANCE

The undersigned states that the function, appearance and quality are equivalent or superior to the specified item.

Submitted by: ___

Typed Name: ______________________________________

Company: __

Signature shall be by person having authority to legally bind his firm to the above terms. Failure to provide a legally binding signature will invalidate this request.

END OF SECTION 230010
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.2 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:

1. Motor controllers.
2. Torque, speed, and horsepower requirements of the load.
3. Ratings and characteristics of supply circuit and required control sequence.
4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.

B. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.

1. For motors with 2:1 speed ratio, consequent pole, single winding.
2. For motors with other than 2:1 speed ratio, separate winding for each speed.

F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

G. Temperature Rise: Match insulation rating.

H. Insulation: Class F.

I. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513
SECTION 230529
HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Thermal-hanger shield inserts.
 4. Fastener systems.
 5. Equipment supports.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.
1.5 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Stainless-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

C. Copper Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 THERMAL-HANGER SHIELD INSERTS

A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.

B. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.
2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.6 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

D. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

H. Install lateral bracing with pipe hangers and supports to prevent swaying.

I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

J. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

L. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.
3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.

F. Use stainless-steel pipe hangers and stainless-steel attachments for hostile environment applications.
G. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
5. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
6. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
7. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
8. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
9. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.

M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:

 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
c. Heavy (MSS Type 33): 3000 lb.

8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.

P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 230529
SECTION 230548
VIBRATION CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:

1. Isolation pads.
2. Isolation mounts.
3. Restrained elastomeric isolation mounts.
4. Freestanding and restrained spring isolators.
5. Housed spring mounts.
6. Elastomeric hangers.
7. Spring hangers.
8. Spring hangers with vertical-limit stops.
9. Pipe riser resilient supports.
10. Resilient pipe guides.
11. Restraining braces and cables.

1.2 ACTION SUBMITTALS

A. Product Data: For each product indicated.

1.3 INFORMATIONAL SUBMITTALS

A. Welding certificates.
B. Field quality-control test reports.

1.4 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Ace Mountings Co., Inc.
2. Amber/Booth Company, Inc.
4. Isolation Technology, Inc.
7. Vibration Eliminator Co., Inc.
8. Vibration Isolation.

B. Pads: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.

1. Resilient Material: Oil- and water-resistant neoprene.

C. Mounts: Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.

1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.

D. Restrained Mounts: All-directional mountings with seismic restraint.

1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.

E. Spring Isolators: Freestanding, laterally stable, open-spring isolators.

1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch-thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig.
6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

F. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic or limit-stop restraint.

1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch-thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
2. Restraint: Seismic or limit stop as required for equipment and authorities having jurisdiction.
3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

G. Housed Spring Mounts: Housed spring isolator with integral seismic snubbers.

1. Housing: Ductile-iron or steel housing to provide all-directional seismic restraint.
2. Base: Factory drilled for bolting to structure.
3. Snubbers: Vertically adjustable to allow a maximum of 1/4-inch travel up or down before contacting a resilient collar.

H. Elastomeric Hangers: Single or double-deflection type, fitted with molded, oil-resistant elastomeric isolator elements bonded to steel housings with threaded connections for hanger rods. Color-code or otherwise identify to indicate capacity range.

I. Spring Hangers: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.

 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

J. Spring Hangers with Vertical-Limit Stop: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression and with a vertical-limit stop.

 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 7. Adjustable Vertical Stop: Steel washer with neoprene washer “up-stop” on lower threaded rod.
 8. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

K. Pipe Riser Resilient Support: All-directional, acoustical pipe anchor consisting of 2 steel tubes separated by a minimum of 1/2-inch-thick neoprene. Include steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions. Design support for a maximum load on the isolation material of 500 psig and for equal resistance in all directions.

L. Resilient Pipe Guides: Telescopic arrangement of 2 steel tubes or post and sleeve arrangement separated by a minimum of 1/2-inch-thick neoprene. Where clearances are not readily visible, a factory-set guide height with a shear pin to allow vertical motion due to pipe expansion and contraction shall be fitted. Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by OSHPD.

B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.2 **VIBRATION-CONTROL DEVICE INSTALLATION**

A. Comply with requirements in Division 07 Section "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.

B. Equipment Restraints:
 1. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.

C. Piping Restraints:
 1. Comply with requirements in MSS SP-127.
 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 3. Brace a change of direction longer than 12 feet.

D. Install cables so they do not bend across edges of adjacent equipment or building structure.

E. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

F. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

G. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Set anchors to manufacturer’s recommended torque, using a torque wrench.
 5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 **FIELD QUALITY CONTROL**

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days’ advance notice.
 4. Test at least **four** of each type and size of installed anchors and fasteners selected by Architect.
5. Test to 90 percent of rated proof load of device.
7. Measure isolator deflection.
8. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.

C. Remove and replace malfunctioning units and retest as specified above.

D. Prepare test and inspection reports.

3.4 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

C. Adjust active height of spring isolators.

D. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 230548
SECTION 230553
IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Duct labels.

1.2 ACTION SUBMITTAL

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

1. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
2. Letter Color: Black.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Red.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.4 DUCT LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

B. Letter Color: Black.

C. Background Color: White.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 25 feet along each run. Reduce intervals to 10 feet in areas of congested piping and equipment.

B. Pipe Label Color Schedule:
 1. Refrigerant Piping:
 a. Background Color: Green.
 b. Letter Color: Black.
 2. Condensate Piping:
3.4 DUCT LABEL INSTALLATION

A. Install **self-adhesive** duct labels with permanent adhesive on air ducts in the following color codes:

1. **Blue**: For cold-air supply ducts.
2. **Yellow**: For hot-air supply ducts.
3. **Green**: For exhaust-, outside-, relief-, return-, and mixed-air ducts.
4. **ASME A13.1 Colors and Designs**: For hazardous material exhaust.

B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of **25 feet** in each space where ducts are exposed or concealed by removable ceiling system.

END OF SECTION 230553
PART 1 - GENERAL

1.1 SUMMARY

A. Test and Balance Contractor to be hired by the owner. Contractor to coordinate with selected Agency for support of the test and balance of all systems.

B. Section Includes:
 1. Balancing Air Systems:
 a. Constant-volume air systems.
 b. Variable-air-volume systems.

1.2 DEFINITIONS

C. TAB: Testing, adjusting, and balancing.
D. TABB: Testing, Adjusting, and Balancing Bureau.
E. TAB Specialist: An entity engaged to perform TAB Work.

1.3 ACTION SUBMITTALS

1.4 INFORMATIONAL SUBMITTALS

B. Certified TAB reports.

1.5 QUALITY ASSURANCE

A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC or TABB.
 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC or TABB.
 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC or TABB a TAB technician.

B. Certify TAB field data reports and perform the following:
 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.

D. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, “Instrumentation.”

E. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

F. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems’ designs that may preclude proper TAB of systems and equipment.

B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems’ output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine equipment performance data including fan and pump curves.

1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA’s "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

F. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

G. Examine test reports specified in individual system and equipment Sections.

H. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

I. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.

J. Examine operating safety interlocks and controls on HVAC equipment.
K. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.

B. Complete system-readiness checks and prepare reports. Verify the following:

1. Permanent electrical-power wiring is complete.
2. Automatic temperature-control systems are operational.
3. Equipment and duct access doors are securely closed.
4. Balance, smoke, and fire dampers are open.
5. Isolating and balancing valves are open and control valves are operational.
6. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
7. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" and in this Section.

1. Comply with requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Division 23 Section "HVAC Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Division 23 Section "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow.
 a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.

2. Measure fan static pressures as follows to determine actual static pressure:
 a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 b. Measure static pressure directly at the fan outlet or through the flexible connection.
 c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.

3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 a. Report the cleanliness status of filters and the time static pressures are measured.

4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.

5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

6. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Division 23 Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.

1. Measure airflow of submain and branch ducts.
a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.

2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.

3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflow within specified tolerances.

C. Measure air outlets and inlets without making adjustments.

1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.

D. Adjust air outlets and inlets for each space to indicated airflow within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.

1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.

2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a minimum set-point airflow with the remainder at maximum airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.

B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:

1. Set outdoor-air dampers at minimum, and set return- and exhaust-air dampers at a position that simulates full-cooling load.

2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.

3. Measure total system airflow. Adjust to within indicated airflow.

4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.

5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.

a. If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.

6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.

a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.
7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.
8. Record final fan-performance data.

C. Pressure-Dependent, Variable-Air-Volume Systems without Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:

1. Balance variable-air-volume systems the same as described for constant-volume air systems.
2. Set terminal units and supply fan at full-airflow condition.
3. Adjust inlet dampers of each terminal unit to indicated airflow and verify operation of the static-pressure controller. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
4. Readjust fan airflow for final maximum readings.
5. Measure operating static pressure at the sensor that controls the supply fan if one is installed, and verify operation of the static-pressure controller.
6. Set supply fan at minimum airflow if minimum airflow is indicated. Measure static pressure to verify that it is being maintained by the controller.
7. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
 a. If air outlets are out of balance at minimum airflow, report the condition but leave the outlets balanced for maximum airflow.
8. Measure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.

D. Pressure-Dependent, Variable-Air-Volume Systems with Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:

1. Set system at maximum indicated airflow by setting the required number of terminal units at minimum airflow. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.
2. Adjust supply fan to maximum indicated airflow with the variable-airflow controller set at maximum airflow.
3. Set terminal units at full-airflow condition.
4. Adjust terminal units starting at the supply-fan end of the system and continuing progressively to the end of the system. Adjust inlet dampers of each terminal unit to indicated airflow. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
5. Adjust terminal units for minimum airflow.
6. Measure static pressure at the sensor.
7. Measure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.

3.7 PROCEDURES FOR MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:

1. Manufacturer's name, model number, and serial number.
4. Efficiency rating.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter thermal-protection-element rating.

B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.8 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.
B. Measure entering- and leaving-air temperatures.
C. Record compressor data.

3.9 PROCEDURES FOR HEAT-TRANSFER COILS

A. Measure, adjust, and record the following data for each electric heating coil:
 1. Nameplate data.
 2. Airflow.
 3. Entering- and leaving-air temperature at full load.
 4. Voltage and amperage input of each phase at full load and at each incremental stage.
 5. Calculated kilowatt at full load.
 6. Fuse or circuit-breaker rating for overload protection.

B. Measure, adjust, and record the following data for each refrigerant coil:
 1. Dry-bulb temperature of entering and leaving air.
 2. Wet-bulb temperature of entering and leaving air.
 3. Airflow.
 4. Air pressure drop.
 5. Refrigerant suction pressure and temperature.

3.10 TOLERANCES

A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 2. Air Outlets and Inlets: Plus or minus 10 percent.
 3. Heating-Water Flow Rate: Plus or minus 10 percent.
 4. Cooling-Water Flow Rate: Plus or minus 10 percent.

3.11 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare biweekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being
tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.12 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Pump curves.
2. Fan curves.
3. Manufacturers' test data.
4. Field test reports prepared by system and equipment installers.
5. Other information relative to equipment performance; do not include Shop Drawings and product data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB contractor.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Water and steam flow rates.
3. Duct, outlet, and inlet sizes.
4. Pipe and valve sizes and locations.
5. Terminal units.

3.13 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593
SECTION 230713
DUCT INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following duct services:

1. Indoor, concealed supply and outdoor air.
2. Indoor, exposed supply and outdoor air.
3. Indoor, concealed return located in unconditioned space.
4. Indoor, exposed return located in unconditioned space.
5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.

B. Related Sections:

1. Division 23 Section "HVAC Equipment Insulation."
2. Division 23 Section "HVAC Piping Insulation."
3. Division 23 Section "Metal Ducts" for duct liners.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
3. Detail application of field-applied jackets.
4. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, **Type III with factory-applied FSK jacket**. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; SoftTouch Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Friendly Feel Duct Wrap.
 d. Manson Insulation Inc.; Alley Wrap.
 e. Owens Corning; SOFTR All-Service Duct Wrap.

G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with **factory-applied FSK jacket**. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; Commercial Board.
 b. Fibrex Insulations Inc.; FBX.
 c. Johns Manville; 800 Series Spin-Glas.
 d. Knauf Insulation; Insulation Board.
 e. Manson Insulation Inc.; AK Board.
 f. Owens Corning; Fiberglas 700 Series.

H. SOUND LININGS

Provide sound linings in all internally lined ductwork as called out in the mechanical drawings and specifications. Minimum of 25 feet within the supply and return of all units except units serving pool rooms.

1. Duct lining shall be roll form, 2” thick or as called out in the drawings. It shall be installed on all interior surfaces of sheet metal ductwork serving sound critical spaces and where shown on the drawings or specifications.

2. Duct lining shall be adhered by 100% covering of a fire retardant adhesive. The black acrylic face shall face the air stream. When width of duct exceeds 12” and also on sides when height exceeds
24", use non-ferrous mechanical fasteners in addition to 100% adhesive coverage. All transverse and longitudinal abutting edges of duct lining shall be sealed and lapped 3" with a heavy coat of adhesive, in accordance with the manufacturer’s recommendations.

3. Duct lining shall be fiberglass insulation with a surface acrylic EPA registered anti-microbial coating that will not support biological growth, and meets ASTM G21 and G22 specifications. This coating shall also guard against incursion of dust and dirt into the insulation. This coating shall be damage resistant, i.e. does not tear or abrade easily. Duct lining shall be capable of being cleaned per NAIMA Duct Cleaning Standards. Duct lining shall be black, 1.5 lb/ft3 density meeting the requirements of NFPA 90A and 90B, FHC 25/50, and limited combustibility. Duct lining shall be suitable up to 5000 fpm. Duct lining and adhesives shall comply with ASTM E-84 and shall have a maximum flame spread rating of 25 and smoke rating of 50. Duct lining adhesive shall conform to ASTM C916 “Specifications for Adhesives for Duct Thermal Insulation.” Fasteners shall comply with SMACNA HVAC Duct Construction Standards Article S2.11.

4. Metal nosings shall be securely installed over transversely-oriented liner edges facing the airstream at forward discharge and at any point where lined duct is preceded by unlined duct. When velocities exceed 4000 FPM, use metal nosings on every leading edge. Nosing may be formed on duct or be channel or zee attached by screws, rivets or welds.

5. Duct lining shall conform to ASTM C1071 standard “Thermal and Acoustical Insulation” and have a 1.00 NRC for 2” thick when tested in accordance with ASTM C423 and E795 procedures mounting Type A.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Products: Subject to compliance with requirements, provide one of the following:

 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.

2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

1. Products: Subject to compliance with requirements, provide one of the following:

 b. Eagle Bridges - Marathon Industries; 225.
2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
1. Products: Subject to compliance with requirements, provide one of the following:
 b. Vimasco Corporation; 749.
2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 550.
 e. Vimasco Corporation; WC-1/WC-5.
2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: 60 percent by volume and 66 percent by weight.

2.4 SEALANTS

A. FSK Sealants:
1. Products: Subject to compliance with requirements, provide one of the following:
b. Eagle Bridges - Marathon Industries; 405.
c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
d. Mon-Eco Industries, Inc.; 44-05.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.
6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

2.5 FACTORY-APPLIED JACKETS
A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.6 FIELD-APPLIED FABRIC-REINFORCING MESH
A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for ducts.
1. Products: Subject to compliance with requirements, provide one of the following:
 b. Vimasco Corporation; Elastafab 894.

2.7 FIELD-APPLIED JACKETS
A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
C. Self-Adhesive Outdoor Jacket: 60-mil-thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with white aluminum-foil facing.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Polyguard Products, Inc.; Alumaguard 60.

2.8 TAPES
A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 491 AWF FSK.
b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
c. Compac Corporation; 110 and 111.
d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.

2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.9 SECUREMENTS

A. Aluminum Bands: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.

B. Insulation Pins and Hangers:

1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. Products: Subject to compliance with requirements, provide one of the following:
 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.
 2) GEMCO; Perforated Base.
 3) Midwest Fasteners, Inc.; Spindle.
 b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 c. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 a. Products: Subject to compliance with requirements, provide one of the following:
 1) AGM Industries, Inc.; RC-150.
 2) GEMCO; R-150.
 3) Midwest Fasteners, Inc.; WA-150.
 4) Nelson Stud Welding; Speed Clips.
 b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

D. Wire: 0.080-inch nickel-copper alloy.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer’s recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.3 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 1. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

E. Insulation Installation at Floor Penetrations:
 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.4 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation.
section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.5 FIELD-APPLIED JACKET INSTALLATION

A. Where FSK jackets are indicated, install as follows:

1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.6 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Division 07 Section "Penetration Firestopping."

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections.
B. Tests and Inspections:

1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the “Duct Insulation Schedule, General” Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.8 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:

1. Indoor, concealed supply and outdoor air. (Externally insulated except for internally lined duct called out for sound attenuation on drawings)
2. Indoor, exposed supply and outdoor air (internally lined ductwork).
3. Indoor, concealed return located in unconditioned space. (Externally insulated except for internally lined duct called out for sound attenuation on drawings)
4. Indoor, exposed return located in unconditioned space (internally lined ductwork).

B. Items Not Insulated:

1. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
2. Factory-insulated flexible ducts.
3. Factory-insulated plenums and casings.
4. Flexible connectors.
5. Vibration-control devices.
6. Factory-insulated access panels and doors.

3.9 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, Supply-Air Duct and Plenum Insulation Mineral-fiber blanket, 2 inches thick and 1.5-lb/cu. ft. nominal density.

B. Concealed, Return-Air Duct and Plenum Insulation: Mineral-fiber blanket 2 inches thick and 1.5-lb/cu. ft. nominal density.

C. Concealed, Outdoor-Air Duct and Plenum Insulation: Mineral-fiber blanket, 2 inches thick and 1.5-lb/cu. ft. nominal density.

D. Exposed, Supply-Air Duct and Plenum Insulation (internally lined ductwork): Mineral-fiber board, 2 inches thick and 1.5-lb/cu. ft. nominal density.

E. Exposed, Return-Air Duct and Plenum Insulation (internally lined ductwork): Mineral-fiber board, 2 inches thick and 1.5-lb/cu. ft. nominal density.

F. Exposed, Outdoor-Air Duct and Plenum Insulation (internally lined ductwork): Mineral-fiber board 2 inches thick and 1.5-lb/cu. ft. nominal density.

END OF SECTION 230713
SECTION 230719
HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes insulating the following HVAC piping systems:
 1. Refrigerant suction and hot-gas piping, indoors and outdoors.
B. Related Sections:
 1. Division 23 Section "HVAC Equipment Insulation."
 2. Division 23 Section "Duct Insulation."

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

1.3 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

1.4 QUALITY ASSURANCE
A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS
A. Products shall not contain asbestos, lead, mercury, or mercury compounds.
B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
E. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
1. Products: Subject to compliance with requirements, **provide one of the following**:
 a. Pittsburgh Corning Corporation; Foamglas.
2. Block Insulation: ASTM C 552, Type I.
3. Special-Shaped Insulation: ASTM C 552, Type III.
4. Board Insulation: ASTM C 552, Type IV.
5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.

1. Products: Subject to compliance with requirements, **provide one of the following**:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.

1. Products: Subject to compliance with requirements, **provide one of the following**:
2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. Products: Subject to compliance with requirements, **provide one of the following**:
 a. Aeroflex USA, Inc.; Aeroseal.
 b. Armacell LLC; Armaflex 520 Adhesive.
 d. K-Flex USA; R-373 Contact Adhesive.
2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. PVC Jacket Adhesive: Compatible with PVC jacket.
1. Products: Subject to compliance with requirements, **provide one of the following**:
 a. Dow Corning Corporation; 739, Dow Silicone.
 d. Speedline Corporation; Polyco VP Adhesive.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

2.3 SEALANTS

A. Joint Sealants:

1. Joint Sealants for Cellular-Glass Products: Subject to compliance with requirements, **provide one of the following**:
 b. Eagle Bridges - Marathon Industries; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Pittsburgh Corning Corporation; Pittseal 444.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Permanently flexible, elastomeric sealant.
4. Service Temperature Range: Minus 100 to plus 300 deg F.
5. Color: White or gray.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

B. PVC Jacket Flashing Sealants:

1. Products: Subject to compliance with requirements, **provide one of the following**:

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”
2.4 FACTORY-APPLIED JACKETS
A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. PVDC Jacket for Outdoor Applications: 6-mil-thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perm when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.
 a. Products: Subject to compliance with requirements, provide one of the following:
 1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.

2.5 FIELD-APPLIED JACKETS
A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Zeston.
 c. Proto Corporation; LoSmoke.
 d. Speedline Corporation; SmokeSafe.
 2. Adhesive: As recommended by jacket material manufacturer.
 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. PVDC Jacket for Outdoor Applications: 6-mil-thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perms when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Dow Chemical Company (The); Saran 560 Vapor Retarder Film.

2.6 TAPES
A. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.
2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

B. PVDC Tape for Outdoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Dow Chemical Company (The); Saran 560 Vapor Retarder Tape.

2. Width: 3 inches.
3. Film Thickness: 6 mils.
4. Adhesive Thickness: 1.5 mils.
5. Elongation at Break: 145 percent.
6. Tensile Strength: 55 lbf/inch in width.

2.7 SECUREMENTS

A. Aluminum Bands: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

C. Wire: 0.080-inch nickel-copper alloy.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer’s recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:

 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.

 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer’s written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
P. For above-ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

3.3 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.4 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word “union.” Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.
3.5 INSTALLATION OF CELLULAR-GLASS INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of cellular-glass insulation to valve body.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer’s recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

C. Where PVDC jackets are indicated, install as follows:

1. Apply three separate wraps of filament tape per insulation section to secure pipe insulation to pipe prior to installation of PVDC jacket.
2. Wrap factory-presized jackets around individual pipe insulation sections with one end overlapping the previously installed sheet. Install presized jacket with an approximate overlap at butt joint of 2 inches over the previous section. Adhere lap seal using adhesive or SSL, and then apply 1-1/4 circumferences of appropriate PVDC tape around overlapped butt joint.
3. Continuous jacket can be spiral-wrapped around a length of pipe insulation. Apply adhesive or PVDC tape at overlapped spiral edge. When electing to use adhesives, refer to manufacturer's written instructions for application of adhesives along this spiral edge to maintain a permanent bond.
4. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. The 33-1/2-inch-circumference limit allows for 2-inch-overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for “fishmouthing,” and use PVDC tape along lap seal to secure joint.
5. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

3.8 FINISHES

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer’s recommended protective coating.

B. Color: White. Vary first and second coats to allow visual inspection of the completed Work.

C. Do not field paint aluminum or stainless-steel jackets.
3.9 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

3.11 INDOOR PIPING INSULATION SCHEDULE

A. Refrigerant Suction and Hot-Gas Piping: **Flexible elastomeric, 1 inch** thick.

B. Refrigerant Suction and Hot-Gas Flexible Tubing: **Flexible elastomeric 1 inch** thick.

C. Chilled Water Piping: Cellular Glass 2" thick.

D. Heating Hot Water Piping: Cellular Glass 2" thick.

3.12 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Refrigerant Suction and Hot-Gas Piping: Insulation shall be the following:

 1. Flexible Elastomeric: **2 inches** thick.

B. Refrigerant Suction and Hot-Gas Flexible Tubing: Insulation shall be **one of** the following:

 1. Flexible Elastomeric: **2 inches** thick.

3.13 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:

 1. None.

D. Piping, Exposed:
1. None.

3.14 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed:
 1. PVC: **40 mils** thick.

END OF SECTION 230719
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Coordinate electric meter data output connection to building energy management system.

C. Coordinate connection to campus building energy management system.

1.2 SUMMARY

A. This Section includes control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls.

B. The project shall be served by a new UNT approved control system matching existing campus system. This shall include new modules, cards, sensors, control valves and actuators, damper actuators, wiring and graphics. Refer to the Drawings for reference and additional project requirements.

C. The Contractor shall provide either the latest version of Reliable Controls by Enviromatics System, **TD Industries**, or Johnson Controls Metasys. Control system will be based on a BACnet Tridium Platform

D. Engage the services of one of the approved temperature control contractors to furnish and install the temperature control system as specified. The systems shall be direct digital control (DDC) BACnet compatible, and shall be complete including, but not limited to, control and instrumentation equipment, automation equipment, communication equipment, and supporting electric/electronic control installation. System shall be a turn-key installation, with components, system engineering, installation, programming and supervision provided by the approved manufacturer under an Temperature Control Sub-Contract.

E. District has first right of refusal for any actuators. Coordinate with district's representative as required.

F. Related Sections include the following:
 1. Division 23 Section "Meters and Gages for HVAC Piping" for measuring equipment that relates to this Section.
 2. Division 23 Section "Sequence of Operations for HVAC Controls" for requirements that relate to this Section.

1.3 DEFINITIONS

A. DDC: Direct digital control.

B. I/O: Input/output.

C. MS/TP: Master slave/token passing.

D. PC: Personal computer.

E. PID: Proportional plus integral plus derivative.

F. RTD: Resistance temperature detector.
1.4 PROJECT REQUIREMENTS

A. The Electrical Contractor shall provide 120 volt power in each mechanical room to a single point. Control and interlock wiring, both low-voltage and 120 volts, shall be by the temperature controls. Sub-contractor. Interlock wiring between fire alarm system shut down relays and mechanical system starters, VFD’s and temperature controls devices shall be provided by the Temperature Controls Contractor. All wiring shall be run in conduit except plenum rated, low voltage wiring above accessible ceilings may be installed without conduit if installed near structure. All temperature controls wiring shall follow the applicable sections of Division 26. Controls contractor shall provide surge suppression (TVSS) protection for their equipment.

B. The temperature control Sub-contractor shall provide complete control wiring diagrams and interlock wiring diagrams which have been approved by the Architect and shall provide on-the-job supervision for the wiring installation.

C. After completion of the installation, EMS Contractor shall place the system in operation and shall perform all necessary testing and debugging operations of the EMS. This commissioning shall include point-to-point verification by the EMS Contractor on Owner approved forms.

D. The temperature control system and its proper operation shall be guaranteed for a period of one year after substantial completion and any control devices which prove to be defective during the guarantee period shall be repaired or replaced without cost to the Owner. After the initial warranty period, an additional twelve months preventative maintenance contract shall be included in the base price of this Contract. This maintenance contract shall include quarterly preventive maintenance, all repair labor, parts and equipment. The system shall be warranted for parts and labor for a total of two years.

E. The temperature control contractor shall furnish corrected copies of the final control wiring diagram and a letter stating that he has made final adjustments and instructed the Owner in the system operation at job completion.

F. Provide 8 hours of instructions on system operation to Owner's personnel.

G. Technical support for 3 years over the phone shall be provided at no additional cost to the Owner.

H. All setpoints, including time, temperature, humidity, pressure and flow, shall be adjustable.

I. System shall be capable of transmitting data over fiberoptic cable, being accessed through the internet and through the school’s internal network system via standard web browsers.

J. Provide as-built drawings as a part of the online software for the building which shows the exact location of all installed equipment.

1.5 SYSTEM PERFORMANCE

A. Comply with the following performance requirements:

1. Graphic Display: Display graphic with minimum 20 dynamic points with current data within 10 seconds.

2. Graphic Refresh: Update graphic with minimum 20 dynamic points with current data within 8 seconds.

3. Object Command: Reaction time of less than two seconds between operator command of a binary object and device reaction.

4. Object Scan: Transmit change of state and change of analog values to control units or workstation within six seconds.

5. Alarm Response Time: Annunciate alarm at workstation within 45 seconds. Multiple workstations must receive alarms within five seconds of each other.

6. Program Execution Frequency: Run capability of applications as often as five seconds, but selected consistent with mechanical process under control.

7. Performance: Programmable controllers shall execute DDC PID control loops, and scan and update process values and outputs at least once per second.
8. Reporting Accuracy and Stability of Control: Report values and maintain measured variables within tolerances as follows:
 a. Water Temperature: Plus or minus 1 deg F.
 b. Water Flow: Plus or minus 5 percent of full scale.
 c. Water Pressure: Plus or minus 2 percent of full scale.
 d. Space Temperature: Plus or minus 1 deg F.
 e. Ducted Air Temperature: Plus or minus 1 deg F.
 f. Outside Air Temperature: Plus or minus 5 percent of full scale.
 g. Dew Point Temperature: Plus or minus 3 deg F.
 h. Temperature Differential: Plus or minus 0.25 deg F.
 i. Relative Humidity: Plus or minus 5 percent.
 j. Airflow (Pressurized Spaces): Plus or minus 3 percent of full scale.
 k. Airflow (Measuring Stations): Plus or minus 5 percent of full scale.
 l. Airflow (Terminal): Plus or minus 10 percent of full scale.
 m. Air Pressure (Space): Plus or minus 0.01-inch wg.
 n. Air Pressure (Ducts): Plus or minus 0.1-inch wg.
 o. Carbon Monoxide: Plus or minus 5 percent of reading.
 p. Carbon Dioxide: Plus or minus 50 ppm.
 q. Electrical: Plus or minus 5 percent of reading.

1.6 SEQUENCE OF OPERATION

A. See plans.

1.7 SUBMITTALS

A. Product Data: Include manufacturer's technical literature for each control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.
 1. DDC System Hardware: Bill of materials of equipment indicating quantity, manufacturer, and model number. Include technical data for operator workstation equipment, interface equipment, control units, transducers/transmitters, sensors, actuators, valves, relays/switches, control panels, and operator interface equipment.
 2. Control System Software: Include technical data for operating system software, operator interface, color graphics, and other third-party applications.
 3. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 1. Bill of materials of equipment indicating quantity, manufacturer, and model number.
 2. Schematic flow diagrams showing fans, pumps, coils, dampers, valves, and control devices.
 4. Details of control panel faces, including controls, instruments, and labeling.
 5. Written description of sequence of operation.
 6. Schedule of dampers including size, leakage, and flow characteristics.
 7. Schedule of valves including flow characteristics.
 8. DDC System Hardware:
 a. Wiring diagrams for control units with termination numbers.
 b. Schematic diagrams and floor plans for field sensors and control hardware.
 c. Schematic diagrams for control, communication, and power wiring, showing trunk data conductors and wiring between operator workstation and control unit locations.
 9. Control System Software: List of color graphics indicating monitored systems, data (connected and calculated) point addresses, output schedule, and operator notations.
 10. Controlled Systems:
 a. Schematic diagrams of each controlled system with control points labeled and control elements graphically shown, with wiring.
b. Scaled drawings showing mounting, routing, and wiring of elements including bases and special construction.
c. Written description of sequence of operation including schematic diagram.
d. Points list.

C. Data Communications Protocol Certificates: Certify that each proposed DDC system component complies with ASHRAE 135.

D. Samples for Initial Selection: For each color required, of each type of thermostat or sensor cover with factory-applied color finishes.

E. Samples for Verification: For each color required, of each type of thermostat or sensor cover.

F. Software and Firmware Operational Documentation: Include the following:
 1. Software operating and upgrade manuals.
 2. Program Software Backup: On a magnetic media or compact disc, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.
 5. Software license required by and installed for DDC workstations and control systems.

G. Software Upgrade Kit: For Owner to use in modifying software to suit future systems revisions or monitoring and control revisions.

H. Qualification Data: For Installer and manufacturer.

I. Field quality-control test reports.

J. Operation and Maintenance Data: For HVAC instrumentation and control system to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 1. Maintenance instructions and lists of spare parts for each type of control device and compressed-air station.
 2. Interconnection wiring diagrams with identified and numbered system components and devices.
 4. Inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.
 5. Calibration records and list of set points.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: Automatic control system manufacturer's authorized representative who is trained and approved for installation of system components required for this Project.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with ASHRAE 135 for DDC system components.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to equipment manufacturer.

B. System Software: Update to latest version of software at Project completion.

1.10 COORDINATION
A. Coordinate location of thermostats, humidistats, and other exposed control sensors with plans and room details before installation.

B. Coordinate equipment with Division 28 Section "Intrusion Detection" to achieve compatibility with equipment that interfaces with that system and with building master clock.

C. Coordinate equipment with Division 28 Section "Access Control" to achieve compatibility with equipment that interfaces with that system.

D. Coordinate equipment with Division 27 Section "Clock Systems" to achieve compatibility with equipment that interfaces with that system.

E. Coordinate equipment with Division 28 Section "PLC Electronic Detention Monitoring and Control Systems" to achieve compatibility with equipment that interfaces with that system.

F. Coordinate equipment with Division 26 Section "Network Lighting Controls" to achieve compatibility with equipment that interfaces with that system.

G. Coordinate equipment with Division 28 Section "Fire Detection and Alarm" to achieve compatibility with equipment that interfaces with that system.

H. Coordinate supply of conditioned electrical branch circuits for control units and operator workstation.

I. Coordinate equipment with Division 26 Section "Electrical Power Monitoring and Control" to achieve compatibility of communication interfaces.

J. Coordinate equipment with Division 26 Section "Panelboards" to achieve compatibility with starter coils and annunciation devices.

K. Coordinate equipment with Division 26 Section "Motor-Control Centers" to achieve compatibility with motor starters and annunciation devices.

L. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03 Section "Cast-in-Place Concrete."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 CONTROL SYSTEM

A. Control system shall consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, and accessories to control mechanical systems.

B. Control system shall consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, accessories, and software connected to distributed controllers operating in multiuser, multitasking environment on token-passing network and programmed to control mechanical systems. An operator workstation permits interface with the network via dynamic color graphics with each mechanical system, building floor plan, and control device depicted by point-and-click graphics.
C. General Conditions:
1. Contractor Responsibility: The BAS Contractor shall be fully responsible for the complete installation and proper operation of the Building Automation System equipment, sensors, controls, and controller. After the installation, the contractor shall be responsible for "debugging" and calibration of the BAS, including software for the duration of the warranty. All equipment shall be the latest standard design that complies with the specification requirements. During the warranty period, Contractor shall monitor system remotely and provide assistance to Owner in operational issues encountered. Should software control schemes provide unsatisfactory operation, as determined by the Engineer, during the warranty period, Contractor shall modify control schemes, setpoints, timing sequences or other software features to provide satisfactory operation as a part of his warranty package.

2. System Architecture: The system shall possess fully modular architecture that permits the expansion of the system through the addition of field modules, sensors and actuators. Module communications to be through a local area network (LAN). The central site system shall be used only as an interface to the LAN.

D. Graphic Construction:
1. Space temperature and its deviation from zone setpoint shall be displayed on a floor plan map by color. These colors shall represent a defined temperature value and be implemented by the same standard throughout the entire system, including all graphic displays and parameter pages. The central site shall be able to display graphically, in up to 64 different colors, the following system information:
 a. General area maps shall show locations of controlled buildings in relation to local landmarks.
 b. Floor plan maps shall show heating and cooling zones throughout the buildings in a range of colors which provide a visual display of temperature relative to their respective setpoints. The colors shall be updated automatically without operator action. Set point adjustment and color band displays shall be operator definable through the two-button mouse. Floor plan maps shall also show the relative position of sensors, exact location of mechanical rooms and AHU’s, and all other mechanical equipment. Each zone shall display the setpoint temperature and measured temperature.
 c. Mechanical system graphics shall show the type of mechanical system components servicing any zone through the use of pictorial representation of components. It shall also provide a current status of all I/O points being controlled and applicable to each piece of equipment including analog readouts in appropriate locations on the graphic representation of the setpoint and measured value.
 d. All system graphics shall come programmed and require no owner modification. Individual graphics shall be as minimum the following:
 1) Each air handling unit
 2) Each zone of multi-zone
 3) Each single or double duct mixing box
 4) Each chiller
 5) Complete chilled water piping system
 6) Complete condenser water piping system
 7) Complete hot water piping system

E. Information Access: The following information shall be selectable from a pop up menu within the graphics.
1. Alarms
2. Message
3. Module status
4. Programmin parameters
5. Quit
6. Schedules
7. Temperature Reports
8. Schedule Graphs
9. Schedule Groups
10. Setpoints
11. Trends
12. Utilities
13. AHU report
14. EF/SF Report

F. Programming, scheduling and setpoint changes shall be accessible for modification of each menu for the associated equipment. Operator shall be able to automatically download changes from the central site to the appropriate program for the equipment being controlled. Operator shall be able to upload information from the field modules to the central site. In addition to having the ability to adjust setpoints on zones individually, the system shall allow the operator to make global setpoint changes that would take one command and automatically download it to the individual pieces of equipment and adjust their setpoints up or down by the operator defined deviation. A global command shall be able to be input that will automatically affect all installations connected to the network.

G. Specific Graphic Requirements:

1. Data Format
 a. Temperature Tenths xx.x °F
 b. Percentage Units xx %
 c. Amps Units xx A
 d. Humidity Units xx %
 e. Air Quantity Units xxxx CFM
 f. GPM Units xxx GPM

2. Main Building Screen
 a. Provide an overview of the entire building with color coding of zones based on temperature relative to setpoint, with light gray indicating zone is off. Green shall be area within setpoint tolerance, and varying shades of light to darker blue for lower than setpoint, and varying shades of light to dark red for higher than setpoint.
 b. Clicking on an area of the building will change to a more detailed graphic of that area.
 c. Provide table listing outside air temperature and RH percentage, and status for Fire Alarm, Emergency Generator and Air Conditioning Emergency Shutdown.
 d. Provide button to click to go to equipment and mechanical systems graphics.

3. Detailed Area Graphics
 a. Individual zones shall be color coded based on temperature relative to setpoint, with light gray indicating zone is off. Green shall be area within setpoint tolerance, and varying shades of light to darker blue for lower than setpoint, and varying shades of light to dark red for higher than setpoint.
 b. Label zone by AHU, AHU and Zone or AHU and CVT/VAV Box as applicable with zone temperature listed.
 c. Clicking on zone cooling source or heating source shall transfer to applicable AHU or CVT/VAV box.
 d. Provide button for each AHU serving this area that transfers to the AHU graphic.
 e. Each piece of equipment shall be labeled and have a text indication whether it is ON, OFF or ALARM. Additionally, equipment that is on shall have some graphical indication of its status, either by color or animation. Animations shall be observable but not distracting. Status shall be based on equipment status sensors, not condition of the enabling point.
4. Main Equipment Graphic
 a. Provide composite graphic for the chilled water system at the central plant yard. The off/on condition of each chiller and pump shall be a color coded element of the equipment: gray off, blue on, red failed. Additionally, equipment that is on shall have some graphical indication of its status by animation. Animations shall be observable but not distracting. Status shall be based on equipment status sensors, not condition of the enabling point.
 b. Provide composite graphic for the heating water system. The off/on condition of each boiler and pump shall be a color coded element of the equipment: gray off, blue on, red failed.
 c. Provide buttons for each AHU and RTU that will transfer to the associated graphic.
 d. Provide buttons for chilled water and heating water systems that transfer to the associated graphic.
 e. Each data point shall be displayed adjacent to an appropriate graphical symbol located in the proper position in the system.
 f. Each piece of equipment shall be labeled and have a text indication whether it is ON, OFF or ALARM. Additionally, equipment that is on shall have some graphical indication of its status, either by color or animation. Animations shall be observable but not distracting. Status shall be based on equipment status sensors, not condition of the enabling point.

5. Chilled Water System Graphic
 a. Provide graphic that shows the chilled water system including pumps and chillers. Chilled water shall be light blue for water returning to the chiller and dark blue for water supplied by the chillers.
 b. Each piece of equipment shall be labeled and have a text indication whether it is ON, OFF or ALARM. Additionally, equipment that is on shall have some graphical indication of its status, either by color or animation. Animations shall be observable but not distracting. Status shall be based on equipment status sensors, not condition of the enabling point.
 c. Each data point shall be displayed adjacent to a appropriate graphical symbol located in the proper position in the system. Include enable, status, alarm, run amps and % loaded for each chiller.

6. Heating Water System
 a. Provide graphic that shows the heating water system including all pumps and boilers. Heating water shall be light red for return hot water and dark red for supply hot water.
 b. Each piece of equipment shall be labeled and have a text indication whether it is ON, OFF or ALARM. Additionally, equipment that is on shall have some graphical indication of its status, either by color or animation. Animations shall be observable but not distracting. Status shall be based on equipment status sensors, not condition of the enabling point.
 c. Each data point shall be displayed adjacent to a appropriate graphical symbol located in the proper position in the system. Include enable, alarm and status of each piece of equipment.

7. Air Handling Unit Graphic
 a. Provide graphic that shows all coils, valves and dampers. Outside air and return air shall be shown.
b. Each piece of equipment shall be labeled and have a text indication whether it is ON, OFF or ALARM. Additionally, equipment that is on shall have some graphical indication of its status, either by color or animation. Animations shall be observable but not distracting. Status shall be based on equipment status sensors, not condition of the enabling point.

c. Each data point shall be displayed adjacent to a appropriate graphical symbol located in the proper position on the graphic. Include enable, alarm and status of each piece of equipment.

8. VAV Box

a. Provide individual graphic for each box and equipment.

b. Provide graphic that shows all coils, valves and dampers.

c. Each piece of equipment shall be labeled and have a text indication whether it is ON, OFF or ALARM. Additionally, equipment that is on shall have some graphical indication of its status, either by color or animation. Animations shall be observable but not distracting. Status shall be based on equipment status sensors, not condition of the enabling point.

d. Each data point shall be displayed adjacent to a appropriate graphical symbol located in the proper position on the graphic.

9. Fans and Unit Heaters

a. Equipment with local/room thermostat shall have graphic noting state of unit and associated space temperature.

b. Fans associated with a particular air handling unit shall be a part of the air handling unit graphic.

10. Utility Graphics

a. Provide screen graphics to display utility information (building water, pool makeup water, gas and electrical usage). Provide all meters required for monitoring the main services.

2.3 DDC EQUIPMENT

A. Operator Workstation: One PC-based microcomputer(s) and remote panel for fire department control in fire command room with minimum configuration as follows:

1. Motherboard: With 8 integrated USB 2.0 ports, integrated Intel Pro 10/100 (Ethernet), integrated audio, bios, and hardware monitoring.

2. Processor: Intel Pentium 4, MHz.

3. Random-Access Memory: 512 MB.

5. Monitor: 19 inches, LCD color.

7. Floppy-Disk Drive: 1.44 MB.

8. Hard-Disk Drive: 80 GB.

9. CD-ROM Read/Write Drive: 48x24x48.

10. Mouse: Three button, optical.

12. Operating System: Microsoft Windows XP Professional with high-speed Internet access.

a. ASHRAE 135 Compliance: Workstation shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.

13. Printer: Color, ink-jet type as follows:

a. Print Head: 4800 x 1200 dpi optimized color resolution.
14. Application Software:
 a. I/O capability from operator station.
 b. System security for each operator via software password and access levels.
 c. Automatic system diagnostics; monitor system and report failures.
 d. Database creation and support.
 e. Automatic and manual database save and restore.
 f. Dynamic color graphic displays with up to 10 screen displays at once.
 g. Custom graphics generation and graphics library of HVAC equipment and symbols.
 h. Alarm processing, messages, and reactions.
 i. Trend logs retrievable in spreadsheets and database programs.
 j. Alarm and event processing.
 k. Object and property status and control.
 l. Automatic restart of field equipment on restoration of power.
 m. Data collection, reports, and logs. Include standard reports for the following:
 1) Current values of all objects.
 2) Current alarm summary.
 3) Disabled objects.
 4) Alarm lockout objects.
 5) Logs.
 n. Custom report development.
 o. Utility and weather reports.
 p. ASHRAE Guideline 3 report.
 q. Workstation application editors for controllers and schedules.
 r. Maintenance management.

15. Custom Application Software:
 a. English language oriented.
 b. Full-screen character editor/programming environment.
 c. Allow development of independently executing program modules with debugging/simulation capability.
 d. Support conditional statements.
 e. Support floating-point arithmetic with mathematic functions.
 f. Contains predefined time variables.

B. Diagnostic Terminal Unit: Portable notebook-style, PC-based microcomputer terminal capable of accessing system data by connecting to system network with minimum configuration as follows:
 1. System: With one integrated USB 2.0 port, integrated Intel Pro 10/100 (Ethernet), integrated audio, bios, and hardware monitoring.
 2. Processor: Intel Pentium 4, MHz.
 4. Graphics: Video adapter, minimum 1024 x 768 pixels, 64-MB video memory.
 7. Floppy-Disk Drive: 1.44 MB.
 8. Hard-Disk Drive: 800 MB.
 9. CD-ROM Read/Write Drive: 48x24x48.
 10. Pointing Device: Touch pad or other internal device.

C. Control Units: Modular, comprising processor board with programmable, nonvolatile, random-access memory; local operator access and display panel; integral interface equipment; and backup power source.
 1. Units monitor or control each I/O point; process information; execute commands from other control units, devices, and operator stations; and download from or upload to operator workstation or diagnostic terminal unit.
 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 a. Global communications.
 b. Discrete/digital, analog, and pulse I/O.
 c. Monitoring, controlling, or addressing data points.
 d. Software applications, scheduling, and alarm processing.
3. **Standard Application Programs:**
 a. **Electric Control Programs:** Demand limiting, duty cycling, automatic time scheduling, start/stop time optimization, night setback/setup, on-off control with differential sequencing, staggered start, antishort cycling, PID control, DDC with fine tuning, and trend logging.
 b. **HVAC Control Programs:** Optimal run time, supply-air reset, and enthalpy switchover.
 c. **Chiller Control Programs:** Control function of condenser-water reset, chilled-water reset, and equipment sequencing.
 d. **Programming Application Features:** Include trend point; alarm processing and messaging; weekly, monthly, and annual scheduling; energy calculations; run-time totalization; and security access.
 e. **Remote communications.**
 f. **Maintenance management.**
 g. **Units of Measure:** Inch-pound and SI (metric).

4. **Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.**

5. **ASHRAE 135 Compliance:** Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.

D. **Local Control Units:** Modular, comprising processor board with electronically programmable, nonvolatile, read-only memory; and backup power source.
 1. Units monitor or control each I/O point, process information, and download from or upload to operator workstation or diagnostic terminal unit.
 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 a. Global communications.
 b. Discrete/digital, analog, and pulse I/O.
 c. Monitoring, controlling, or addressing data points.
 3. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
 4. **ASHRAE 135 Compliance:** Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.

E. **I/O Interface:** Hardwired inputs and outputs may tie into system through controllers. Protect points so that shorting will cause no damage to controllers.
 1. **Binary Inputs:** Allow monitoring of on-off signals without external power.
 2. **Pulse Accumulation Inputs:** Accept up to 10 pulses per second.
 3. **Analog Inputs:** Allow monitoring of low-voltage (0- to 10-V dc), current (4 to 20 mA), or resistance signals.
 4. **Binary Outputs:** Provide on-off or pulsed low-voltage signal, selectable for normally open or normally closed operation with three-position (on-off-auto) override switches and status lights.
 5. **Analog Outputs:** Provide modulating signal, either low voltage (0- to 10-V dc) or current (4 to 20 mA) with status lights, two-position (auto-manual) switch, and manually adjustable potentiometer.
 6. **Tri-State Outputs:** Provide two coordinated binary outputs for control of three-point, floating-type electronic actuators.
 7. **Universal I/Os:** Provide software selectable binary or analog outputs.

F. **Power Supplies:** Transformers with Class 2 current-limiting type or overcurrent protection; limit connected loads to 80 percent of rated capacity. DC power supply shall match output current and voltage requirements and be full-wave rectifier type with the following:
 1. Output ripple of 5.0 mV maximum peak to peak.
 2. Combined 1 percent line and load regulation with 100-mic.sec. response time for 50 percent load changes.
 3. Built-in overvoltage and overcurrent protection and be able to withstand 150 percent overload for at least 3 seconds without failure.

G. **Power Line Filtering:** Internal or external transient voltage and surge suppression for workstations or controllers with the following:
 1. Minimum dielectric strength of 1000 V.
3. Minimum transverse-mode noise attenuation of 65 dB.
4. Minimum common-mode noise attenuation of 150 dB at 40 to 100 Hz.

2.4 UNITARY CONTROLLERS

A. Unitized, capable of stand-alone operation with sufficient memory to support its operating system, database, and programming requirements, and with sufficient I/O capacity for the application.
 1. Configuration: Local keypad and display; diagnostic LEDs for power, communication, and processor; wiring termination to terminal strip or card connected with ribbon cable; memory with bios; and 72-hour battery backup.
 2. Operating System: Manage I/O communication to allow distributed controllers to share real and virtual object information and allow central monitoring and alarms. Perform scheduling with real-time clock. Perform automatic system diagnostics; monitor system and report failures.
 3. ASHRAE 135 Compliance: Communicate using read (execute and initiate) and write (execute and initiate) property services defined in ASHRAE 135. Reside on network using MS/TP datalink/physical layer protocol and have service communication port for connection to diagnostic terminal unit.
 4. Enclosure: Dustproof rated for operation at 32 to 120 deg F.
 5. Enclosure: Waterproof rated for operation at 40 to 150 deg F.

2.5 ALARM PANELS

A. Unitized cabinet with suitable brackets for wall or floor mounting. Fabricate of 0.06-inch-thick, furniture-quality steel or extruded-aluminum alloy, totally enclosed, with hinged doors and keyed lock and with manufacturer's standard shop-painted finish. Provide common keying for all panels.

B. Indicating light for each alarm point, single horn, acknowledge switch, and test switch, mounted on hinged cover.
 1. Alarm Condition: Indicating light flashes and horn sounds.
 2. Acknowledge Switch: Horn is silent and indicating light is steady.
 3. Second Alarm: Horn sounds and indicating light is steady.
 4. Alarm Condition Cleared: System is reset and indicating light is extinguished.
 5. Contacts in alarm panel allow remote monitoring by independent alarm company.

2.6 ANALOG CONTROLLERS

A. Step Controllers: 6- or 10-stage type, with heavy-duty switching rated to handle loads and operated by electric motor.

B. Electric, Outdoor-Reset Controllers: Remote-bulb or bimetal rod-and-tube type, proportioning action with adjustable throttling range, adjustable set point, scale range minus 10 to plus 70 deg F, and single- or double-pole contacts.

C. Electronic Controllers: Wheatstone-bridge-amplifier type, in steel enclosure with provision for remote-resistance readjustment. Identify adjustments on controllers, including proportional band and authority.
 1. Single controllers can be integral with control motor if provided with accessible control readjustment potentiometer.

D. Fan-Speed Controllers: Solid-state model providing field-adjustable proportional control of motor speed from maximum to minimum of 55 percent and on-off action below minimum fan speed. Controller shall briefly apply full voltage, when motor is started, to rapidly bring motor up to minimum speed. Equip with filtered circuit to eliminate radio interference.

E. Receiver Controllers: Single- or multiple-input models with control-point adjustment, direct or reverse acting with mechanical set-point adjustment with locking device, proportional band adjustment, authority adjustment, and proportional control mode.
1. Remote-control-point adjustment shall be plus or minus 20 percent of sensor span, input signal of 3 to 13 psig.
2. Proportional band shall extend from 2 to 20 percent for 5 psig.
3. Authority shall be 20 to 200 percent.
4. Air-supply pressure of 18 psig, input signal of 3 to 15 psig, and output signal of zero to supply pressure.
5. Gages: 1-1/2 inches in diameter, 2.5 percent wide-scale accuracy, and range to match transmitter input or output pressure.

2.7 ELECTRONIC SENSORS

A. Description: Vibration and corrosion resistant; for wall, immersion, or duct mounting as required.

B. Thermistor Temperature Sensors and Transmitters:
 1. Manufacturers:
 a. BEC Controls Corporation.
 b. Ebtron, Inc.
 c. Heat-Timer Corporation.
 d. I.T.M. Instruments Inc.
 e. MAMAC Systems, Inc.
 f. RDF Corporation.
 2. Accuracy: Plus or minus 0.5 deg F at calibration point.
 4. Insertion Elements in Ducts: Single point, 8 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft..
 5. Averaging Elements in Ducts: 36 inches long, flexible; use where prone to temperature stratification or where ducts are larger than 10 sq. ft..
 6. Insertion Elements for Liquids: Brass or stainless-steel socket with minimum insertion length of 2-1/2 inches.
 7. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 a. Set-Point Adjustment: Concealed.
 b. Set-Point Indication: Concealed.
 c. Thermometer: Concealed.
 d. Color: white
 e. Orientation: Vertical.
 8. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.

C. RTDs and Transmitters:
 1. Manufacturers:
 a. BEC Controls Corporation.
 b. MAMAC Systems, Inc.
 c. RDF Corporation.
 2. Accuracy: Plus or minus 0.2 percent at calibration point.
 4. Insertion Elements in Ducts: Single point, 8 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft..
 5. Averaging Elements in Ducts: 18 inches long, rigid; use where prone to temperature stratification or where ducts are larger than 9 sq. ft.; length as required.
 6. Insertion Elements for Liquids: Brass socket with minimum insertion length of 2-1/2 inches.
 7. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 a. Set-Point Adjustment: Concealed.
 b. Set-Point Indication: Concealed.
 c. Thermometer: Concealed.
 d. Color: white
 e. Orientation: Vertical.
 8. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.
D. Humidity Sensors: Bulk polymer sensor element.
 1. Manufacturers:
 a. BEC Controls Corporation.
 b. General Eastern Instruments.
 c. MAMAC Systems, Inc.
 d. ROTRONIC Instrument Corp.
 e. TCS/Basys Controls.
 f. Vaisala.
 2. Accuracy: 5 percent full range with linear output.
 3. Room Sensor Range: 20 to 80 percent relative humidity.
 4. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 a. Set-Point Adjustment: Concealed.
 b. Set-Point Indication: Concealed.
 c. Thermometer: Concealed.
 d. Color: white
 e. Orientation: Vertical.
 5. Duct Sensor: 20 to 80 percent relative humidity range with element guard and mounting plate.
 6. Outside-Air Sensor: 20 to 80 percent relative humidity range with mounting enclosure, suitable for operation at outdoor temperatures of 32 to 120 deg min.
 7. Duct and Sensors: With element guard and mounting plate, range of 0 to 100 percent relative humidity.

E. Pressure Transmitters/Transducers:
 1. Manufacturers:
 a. BEC Controls Corporation.
 b. General Eastern Instruments.
 c. MAMAC Systems, Inc.
 d. ROTRONIC Instrument Corp.
 e. TCS/Basys Controls.
 f. Vaisala.
 2. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 a. Accuracy: 2 percent of full scale with repeatability of 0.5 percent.
 b. Output: 4 to 20 mA.
 c. Building Static-Pressure Range: 0- to 0.25-inch wg.
 d. Duct Static-Pressure Range: 0- to 5-inch wg.
 3. Water Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure; linear output 4 to 20 mA.
 4. Water Differential-Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure and tested to 300-psig; linear output 4 to 20 mA.
 5. Differential-Pressure Switch (Air or Water): Snap acting, with pilot-duty rating and with suitable scale range and differential.
 6. Pressure Transmitters: Direct acting for gas, liquid, or steam service; range suitable for system; linear output 4 to 20 mA.

F. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 1. Set-Point Adjustment: Concealed.
 2. Set-Point Indication: Concealed.
 3. Thermometer: Concealed.
 4. Color: white
 5. Orientation: Vertical.

G. Room sensor accessories include the following:
 1. Insulating Bases: For sensors located on exterior walls.
 2. Adjusting Key: As required for calibration and cover screws.

2.8 STATUS SENSORS
A. Status Inputs for Fans: Differential-pressure switch with pilot-duty rating and with adjustable range of 0- to 5-inch wg.

B. Status Inputs for Pumps: Differential-pressure switch with pilot-duty rating and with adjustable pressure-differential range of 8 to 60 psig, piped across pump.

C. Status Inputs for Electric Motors: Comply with ISA 50.00.01, current-sensing fixed- or split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.

D. Voltage Transmitter (100- to 600-V ac): Comply with ISA 50.00.01, single-loop, self-powered transmitter, adjustable, with suitable range and 1 percent full-scale accuracy.

E. Power Monitor: 3-phase type with disconnect/shorting switch assembly, listed voltage and current transformers, with pulse kilowatt hour output and 4- to 20-mA kW output, with maximum 2 percent error at 1.0 power factor and 2.5 percent error at 0.5 power factor.

F. Current Switches: Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements.

G. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.

H. Water-Flow Switches: Bellows-actuated mercury or snap-acting type with pilot-duty rating, stainless-steel or bronze paddle, with appropriate range and differential adjustment, in NEMA 250, Type 1 enclosure.

1. Manufacturers:
 a. BEC Controls Corporation.
 b. I.T.M. Instruments Inc.

2.9 GAS DETECTION EQUIPMENT

A. Manufacturers:
 1. B. W. Technologies.
 2. CEA Instruments, Inc.
 3. Ebtron, Inc.
 4. Gems Sensors Inc.
 5. Greystone Energy Systems Inc.
 7. INTEC Controls, Inc.
 8. I.T.M. Instruments Inc.
 9. MSA Canada Inc.
 10. QEL/Quatrosense Environmental Limited.
 11. Sauter Controls Corporation.
 12. Sensidyne, Inc.
 13. TSI Incorporated.
 15. Vulcain Inc.

B. Carbon Monoxide Detectors: Single or multichannel, dual-level detectors using solid-state plug-in sensors with a 3-year minimum life; suitable over a temperature range of 32 to 104 deg F; with 2 factory-calibrated alarm levels at 50 and 100 ppm.

C. Carbon Dioxide Sensor and Transmitter: Single detectors using solid-state infrared sensors; suitable over a temperature range of 23 to 130 deg F and calibrated for 0 to 2 percent, with continuous or averaged reading, 4- to 20-mA output; for wall mounting.

D. Occupancy Sensor: Passive infrared, with time delay, daylight sensor lockout, sensitivity control, and 180-degree field of view with vertical sensing adjustment; for flush mounting.
2.10 FLOW MEASURING STATIONS

A. Duct Airflow Station: Combination of air straightener and multiport, self-averaging pitot tube station.
1. Manufacturers:
 a. Air Monitor Corporation.
 b. Wetmaster Co., Ltd.
2. Casing: Galvanized-steel frame.
4. Sensing Manifold: Copper manifold with bullet-nosed static pressure sensors positioned on equal area basis.

2.11 THERMOSTATS

A. Manufacturers:
1. Erie Controls.
4. Sauter Controls Corporation.
5. tekmar Control Systems, Inc.
6. Theben AG - Lumilite Control Technology, Inc.

B. Combination Thermostat and Fan Switches: Line-voltage thermostat with push-button or lever-operated fan switch.
1. Label switches "FAN ON-OFF".
2. Mount on single electric switch box.

C. Electric, solid-state, microcomputer-based room thermostat with remote sensor.
1. Automatic switching from heating to cooling.
2. Preferential rate control to minimize overshoot and deviation from set point.
3. Set up for four separate temperatures per day.
4. Instant override of set point for continuous or timed period from 1 hour to 31 days.
5. Short-cycle protection.
6. Programming based on every day of week.
7. Selection features include degree F or degree C display, 12- or 24-hour clock, keyboard disable, remote sensor, and fan on-auto.
8. Battery replacement without program loss.
9. Thermostat display features include the following:
 a. Time of day.
 b. Actual room temperature.
 c. Programmed temperature.
 d. Programmed time.
 e. Duration of timed override.
 f. Day of week.
 g. System mode indications include "heating," "off," "fan auto," and "fan on."

D. Low-Voltage, On-Off Thermostats: NEMA DC 3, 24-V, bimetal-operated, mercury-switch type, with adjustable or fixed anticipation heater, concealed set-point adjustment, 55 to 85 deg F set-point range, and 2 deg F maximum differential.

E. Line-Voltage, On-Off Thermostats: Bimetal-actuated, open contact or bellows-actuated, enclosed, snap-switch or equivalent solid-state type, with heat anticipator; listed for electrical rating; with concealed set-point adjustment, 55 to 85 deg F set-point range, and 2 deg F maximum differential.
1. Electric Heating Thermostats: Equip with off position on dial wired to break ungrounded conductors.

F. Remote-Bulb Thermostats: On-off or modulating type, liquid filled to compensate for changes in ambient temperature; with copper capillary and bulb, unless otherwise indicated.
1. Bulbs in water lines with separate wells of same material as bulb.
2. Bulbs in air ducts with flanges and shields.
3. Averaging Elements: Copper tubing with either single- or multiple-unit elements, extended to cover full width of duct or unit; adequately supported.
4. Scale settings and differential settings are clearly visible and adjustable from front of instrument.
5. On-Off Thermostat: With precision snap switches and with electrical ratings required by application.
6. Modulating Thermostats: Construct so complete potentiometer coil and wiper assembly is removable for inspection or replacement without disturbing calibration of instrument.

G. Fire-Protection Thermostats: Listed and labeled by an NRTL acceptable to authorities having jurisdiction; with fixed or adjustable settings to operate at not less than 75 deg F above normal maximum operating temperature, and the following:
 2. Reset: Automatic, with control circuit arranged to require manual reset at central control panel; with pilot light and reset switch on panel labeled to indicate operation.

H. Immersion Thermostat: Remote-bulb or bimetal rod-and-tube type, proportioning action with adjustable throttling range and adjustable set point.

I. Airstream Thermostats: Two-pipe, fully proportional, single-temperature type; with adjustable set point in middle of range, adjustable throttling range, plug-in test fitting or permanent pressure gage, remote bulb, bimetal rod and tube, or averaging element.

J. Electric, Low-Limit Duct Thermostat: Snap-acting, single-pole, single-throw, manual- or automatic- reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or below set point.
 2. Quantity: One thermostat for every 20 sq. ft. of coil surface.

K. Electric, High-Limit Duct Thermostat: Snap-acting, single-pole, single-throw, manual- or automatic- reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or above set point.
 2. Quantity: One thermostat for every 20 sq. ft. of coil surface.

L. Heating/Cooling Valve-Top Thermostats: Proportional acting for proportional flow, with molded-rubber diaphragm, remote-bulb liquid-filled element, direct and reverse acting at minimum shutoff pressure of 25 psig, and cast housing with position indicator and adjusting knob.

2.12 HUMIDISTATS

A. Manufacturers:
 1. MAMAC Systems, Inc.
 2. ROTRONIC Instrument Corp.

B. Duct-Mounting Humidistats: Electric insertion, 2-position type with adjustable, 2 percent throttling range, 20 to 80 percent operating range, and single- or double-pole contacts.

2.13 ACTUATORS

A. Electric Motors: Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 1. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 2. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
 3. Nonspring-Return Motors for Valves Larger Than NPS 2-1/2: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.
4. **Spring-Return Motors for Valves Larger Than NPS 2-1/2**: Size for running and breakaway torque of 150 in. x lbf.

5. **Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft.**: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.

6. **Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.**: Size for running and breakaway torque of 150 in. x lbf.

B. Electronic Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.

1. **Manufacturers**:
 a. Belimo Aircontrols (USA), Inc.
 b. Delta
 c. Siemens

2. **Valves**: Size for torque required for valve close off at maximum pump differential pressure.

3. **Dampers**: Size for running torque calculated as follows:
 b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
 c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft. of damper.
 d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. of damper.
 e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
 f. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.

4. **Coupling**: V-bolt and V-shaped, toothed cradle.

5. **Overload Protection**: Electronic overload or digital rotation-sensing circuitry.

6. **Fail-Safe Operation**: Mechanical, spring-return mechanism. Provide external, manual gear release on nonspring-return actuators.

7. **Power Requirements (Two-Position Spring Return)**: 24-V ac.

8. **Power Requirements (Modulating)**: Maximum 10 VA at 24-V ac or 8 W at 24-V dc.

9. **Proportional Signal**: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.

10. **Temperature Rating**: Minus 22 to plus 122 deg F.

11. **Temperature Rating (Smoke Dampers)**: Minus 22 to plus 250 deg F.

12. **Run Time**: 12 seconds open, 5 seconds closed.

2.14 CONTROL VALVES

A. Manufacturers:

2. Erie Controls.
3. Hayward Industrial Products, Inc.
5. Neles-Jamesbury.
6. Parker Hannifin Corporation; Skinner Valve Division.
7. Pneuline Controls.
8. Sauter Controls Corporation.
9. Belimo
10. Delta
11. Siemens

B. Control Valves: All control valves shall be provided by control contractor. Factory fabricated, of type, body material, and pressure class based on maximum pressure and temperature rating of piping system, unless otherwise indicated.

C. Hydronic system globe valves shall have the following characteristics:

1. **NPS 2 and Smaller**: Class 125 bronze body, bronze trim, rising stem, renewable composition disc, and screwed ends with backseating capacity repackable under pressure.
2. **NPS 2-1/2 and Larger**: Class 125 iron body, bronze trim, rising stem, plug-type disc, flanged ends, and renewable seat and disc.
3. **Internal Construction**: Replaceable plugs and stainless-steel or brass seats.
a. Single-Seated Valves: Cage trim provides seating and guiding surfaces for plug on top and bottom.
b. Double-Seated Valves: Balanced plug; cage trim provides seating and guiding surfaces for plugs on top and bottom.

4. Sizing: 5-psig maximum pressure drop at design flow rate or the following:
 b. Two-Way Modulating: Either the value specified above or twice the load pressure drop, whichever is more.
 c. Three-Way Modulating: Twice the load pressure drop, but not more than value specified above.

5. Flow Characteristics: Two-way valves shall have equal percentage characteristics; three-way valves shall have linear characteristics.

6. Close-Off (Differential) Pressure Rating: Combination of actuator and trim shall provide minimum close-off pressure rating of 150 percent of total system (pump) head for two-way valves and 100 percent of pressure differential across valve or 100 percent of total system (pump) head.

D. Butterfly Valves: 200-psig, 150-psig maximum pressure differential, ASTM A 126 cast-iron or ASTM A 536 ductile-iron body and bonnet, extended neck, stainless-steel stem, field-replaceable EPDM or Buna N sleeve and stem seals.
 2. Disc Type: Nickel-plated ductile iron.
 3. Sizing: 1-psig maximum pressure drop at design flow rate.

E. Self-Contained Control Valves: Bronze body, bronze trim, two or three ports as indicated, replaceable plugs and seats, and union and threaded ends.
 1. Rating: Class 125 for service at 125 psig and 250 deg F operating conditions.
 2. Thermostatic Operator: -filled remote sensor with integral adjustable dial.

2.15 DAMPERS

A. Manufacturers:
 1. Air Balance Inc.
 2. Don Park Inc.; Autodamp Div.
 3. TAMCO (T. A. Morrison & Co. Inc.).
 4. United Enertech Corp.
 5. Vent Products Company, Inc.

B. Dampers: AMCA-rated, parallel opposed-blade design; 0.108-inch- minimum thick, galvanized-steel or 0.125-inch- minimum thick, extruded-aluminum frames with holes for duct mounting; damper blades shall not be less than 0.064-inch- thick galvanized steel with maximum blade width of 8 inches and length of 48 inches.
 1. Secure blades to 1/2-inch- diameter, zinc-plated axles using zinc-plated hardware, with nylon blade bearings, blade-linkage hardware of zinc-plated steel and brass, ends sealed against spring-stainless-steel blade bearings, and thrust bearings at each end of every blade.
 2. Operating Temperature Range: From minus 40 to plus 200 deg F.
 3. Edge Seals, Standard Pressure Applications: Closed-cell neoprene.
 4. Edge Seals, Low-Leakage Applications: Use inflatable blade edging or replaceable rubber blade seals and spring-loaded stainless-steel side seals, rated for leakage at less than 10 cfm per sq. ft. of damper area, at differential pressure of 4-inch wg when damper is held by torque of 50 in. x lbf; when tested according to AMCA 500D.

2.16 CONTROL CABLE

A. Electronic and fiber-optic cables for control wiring are specified in Division 27 Section "Communications Horizontal Cabling."

PART 3 - EXECUTION
3.1 EXAMINATION

A. Verify that conditioned power supply is available to control units and operator workstation.

3.2 INSTALLATION

A. Install software in control units and operator workstation(s). Implement all features of programs to
specified requirements and as appropriate to sequence of operation.

B. Connect and configure equipment and software to achieve sequence of operation specified.

C. Verify location of thermostats, humidistats, and other exposed control sensors with Drawings and room
details before installation. Install devices 46 inches above the floor aligned with centerline of light
switches.
 1. Install averaging elements in ducts and plenums in crossing or zigzag pattern.

D. Install automatic dampers according to Division 23 Section "Air Duct Accessories."

E. Install damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.

F. Install labels and nameplates to identify control components according to Division 23 Section
"Identification for HVAC Piping and Equipment."

G. Install hydronic instrument wells, valves, and other accessories according to Division 23 Section "Hydronic
Piping."

H. Install steam and condensate instrument wells, valves, and other accessories according to Division 23
Section "Steam and Condensate Heating Piping."

I. Install refrigerant instrument wells, valves, and other accessories according to Division 23 Section
"Refrigerant Piping."

J. Install duct volume-control dampers according to Division 23 Sections specifying air ducts.

K. Install electronic and fiber-optic cables according to Division 27 Section "Communications Horizontal
Cabling."

3.3 ELECTRICAL WIRING AND CONNECTION INSTALLATION

A. Install raceways, boxes, and cabinets according to Division 26 Section "Raceway and Boxes for Electrical
Systems."

B. Install building wire and cable according to Division 26 Section "Low-Voltage Electrical Power Conductors
and Cables."

C. Install signal and communication cable according to Division 27 Section "Communications Horizontal
Cabling."
 1. Conceal cable, except in mechanical rooms and areas where other conduit and piping are
 exposed.
 2. Install exposed cable in raceway.
 3. Install concealed cable in raceway.
 4. Bundle and harness multiconductor instrument cable in place of single cables where several cables
 follow a common path.
 5. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion.
 Tie and support conductors.
6. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.
7. Install wire and cable with sufficient slack and flexible connections to allow for vibration of piping and equipment.

D. Connect manual-reset limit controls independent of manual-control switch positions. Automatic duct heater resets may be connected in interlock circuit of power controllers.

E. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections. Report results in writing.

B. Perform the following field tests and inspections and prepare test reports:
 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove and replace malfunctioning units and retest.
 2. Test and adjust controls and safeties.
 3. Test calibration of electronic controllers by disconnecting input sensors and stimulating operation with compatible signal generator.
 4. Test each point through its full operating range to verify that safety and operating control set points are as required.
 5. Test each control loop to verify stable mode of operation and compliance with sequence of operation. Adjust PID actions.
 6. Test each system for compliance with sequence of operation.
 7. Test software and hardware interlocks.

C. DDC Verification:
 1. Verify that instruments are installed before calibration, testing, and loop or leak checks.
 2. Check instruments for proper location and accessibility.
 3. Check instrument installation for direction of flow, elevation, orientation, insertion depth, and other applicable considerations.
 4. Check instrument tubing for proper fittings, slope, material, and support.
 5. Check installation of air supply for each instrument.
 6. Check flow instruments. Inspect tag number and line and bore size, and verify that inlet side is identified and that meters are installed correctly.
 7. Check pressure instruments, piping slope, installation of valve manifold, and self-contained pressure regulators.
 8. Check temperature instruments and material and length of sensing elements.
 9. Check control valves. Verify that they are in correct direction.
 10. Check DDC system as follows:
 a. Verify that DDC controller power supply is from emergency power supply, if applicable.
 b. Verify that wires at control panels are tagged with their service designation and approved tagging system.
 c. Verify that spare I/O capacity has been provided.
 d. Verify that DDC controllers are protected from power supply surges.

D. Replace damaged or malfunctioning controls and equipment and repeat testing procedures.

3.5 ADJUSTING

A. Calibrating and Adjusting:
 1. Calibrate instruments.
 2. Make three-point calibration test for both linearity and accuracy for each analog instrument.
3. Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.

4. Control System Inputs and Outputs:
 a. Check analog inputs at 0, 50, and 100 percent of span.
 b. Check analog outputs using milliampere meter at 0, 50, and 100 percent output.
 c. Check digital inputs using jumper wire.
 d. Check digital outputs using ohmmeter to test for contact making or breaking.
 e. Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.

5. Flow:
 a. Set differential pressure flow transmitters for 0 and 100 percent values with 3-point calibration accomplished at 50, 90, and 100 percent of span.
 b. Manually operate flow switches to verify that they make or break contact.

6. Pressure:
 a. Calibrate pressure transmitters at 0, 50, and 100 percent of span.
 b. Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.

7. Temperature:
 a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.
 b. Calibrate temperature switches to make or break contacts.

8. Stroke and adjust control valves and dampers without positioners, following the manufacturer's recommended procedure, so that valve or damper is 100 percent open and closed.

9. Stroke and adjust control valves and dampers with positioners, following manufacturer's recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.

10. Provide diagnostic and test instruments for calibration and adjustment of system.

11. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.

B. Adjust initial temperature and humidity set points.

C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 230900
PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Pipes, tubes, and fittings.
 2. Piping specialties.
 3. Piping and tubing joining materials.
 4. Valves.
 5. Pressure regulators.

1.2 PERFORMANCE REQUIREMENTS
A. Minimum Operating-Pressure Ratings:
 1. Piping and Valves: \textbf{100 psig} minimum unless otherwise indicated.
 2. Service Regulators: \textbf{65 psig} minimum unless otherwise indicated.

B. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 0.5 psig but not more than 2 psig, and is reduced to secondary pressure of 0.5 psig or less.

C. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

1.4 INFORMATIONAL SUBMITTALS
A. Welding certificates.

B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.
1.6 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 4. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.

2.2 PIPING SPECIALTIES

A. Appliance Flexible Connectors:
 4. Corrugated stainless-steel tubing with polymer coating.
 5. Operating-Pressure Rating: 0.5 psig.

B. Quick-Disconnect Devices: Comply with ANSI Z21.41.
 1. Copper-alloy convenience outlet and matching plug connector.
 2. Nitrile seals.
 3. Hand operated with automatic shutoff when disconnected.
 4. For indoor or outdoor applications.
 5. Adjustable, retractable restraining cable.

C. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
D. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.4 MANUAL GAS SHUTOFF VALVES

A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.

B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 1. CWP Rating: **125 psig**
 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

C. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 1. Manufacturers: Subject to compliance with requirements, **provide products by one of the following**:
 a. BrassCraft Manufacturing Company; a Masco company.
 c. Lyall, R. W. & Company, Inc.
 e. Perfection Corporation; a subsidiary of American Meter Company.
 3. Ball: Chrome-plated bronze.
 4. Stem: Bronze; blowout proof.
 5. Seats: Reinforced TFE; blowout proof.
 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 8. CWP Rating: 600 psig.
 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

D. Bronze Plug Valves: MSS SP-78.
 1. Manufacturers: Subject to compliance with requirements, **provide products by one of the following**:
a. Lee Brass Company.

5. Operator: Square head or lug type with tamperproof feature where indicated.
6. Pressure Class: 125 psig.
7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

E. Valve Boxes:

1. Cast-iron, two-section box.
2. Top section with cover with "GAS" lettering.
3. Bottom section with base to fit over valve and barrel a minimum of 5 inches in diameter.
4. Adjustable cast-iron extensions of length required for depth of bury.
5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.

2.5 MOTORIZED GAS VALVES

A. Electrically Operated Valves: Comply with UL 429.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. ASCO Power Technologies, LP; Division of Emerson.
 b. Dungs, Karl, Inc.
 c. Eclipse Combustion, Inc.
 d. Goyen Valve Corp.; Tyco Environmental Systems.
 e. Magnatrol Valve Corporation.
 f. Parker Hannifin Corporation; Climate & Industrial Controls Group; Skinner Valve Div.
 g. Watts Regulator Co.; Division of Watts Water Technologies, Inc.

2. Pilot operated.
3. Body: Brass or aluminum.
5. Springs and Valve Trim: Stainless steel.
6. 120-V ac, 60 Hz, Class B, continuous-duty molded coil, and replaceable.
7. NEMA ICS 6, Type 4, coil enclosure.

2.6 PRESSURE REGULATORS

A. General Requirements:

1. Single stage and suitable for natural gas.
2. Steel jacket and corrosion-resistant components.
3. Elevation compensator.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Actaris.
 b. American Meter Company.
 c. Eclipse Combustion, Inc.
 d. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 e. Invensys.
 f. Maxitrol Company.
 g. Richards Industries; Jordan Valve Div.

2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
6. Orifice: Aluminum; interchangeable.
8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
12. Maximum Inlet Pressure: 5 psig

C. Appliance Pressure Regulators: Comply with ANSI Z21.18.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Canadian Meter Company Inc.
 b. Eaton Corporation; Controls Div.
 c. Harper Wyman Co.
 d. Maxitrol Company.
 e. SCP, Inc.

5. Seat Disc: Nitrile rubber.
8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.
9. Maximum Inlet Pressure: 5 psig

2.7 DIELECTRIC UNIONS

A. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 d. Jomar International Ltd.
 e. Matco-Norca, Inc.
2. Description:
 b. Pressure Rating: 150 psig.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.8 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 OUTDOOR PIPING INSTALLATION

B. Install underground, natural-gas piping buried at least 36 inches below finished grade. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.
 1. If natural-gas piping is installed less than 36 inches below finished grade, install it in containment conduit.

C. Install underground, PE, natural-gas piping according to ASTM D 2774.

D. Steel Piping with Protective Coating:
 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 3. Replace pipe having damaged PE coating with new pipe.

E. Install fittings for changes in direction and branch connections.

F. Install pressure gage upstream and downstream from each service regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."

3.2 INDOOR PIPING INSTALLATION

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

G. Locate valves for easy access.

H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Verify final equipment locations for roughing-in.

L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.

1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

P. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

Q. Connect branch piping from top or side of horizontal piping.

R. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment.

S. Do not use natural-gas piping as grounding electrode.

T. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

U. Install pressure gage **upstream and downstream** from each line regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."

V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."

W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 23 Section “Escutcheons for HVAC Piping.”

3.3 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing or copper connector.

B. Install underground valves with valve boxes.

C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

D. Install earthquake valves aboveground outside buildings according to listing.

E. Install anode for metallic valves in underground PE piping.

3.4 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.

F. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

G. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.
3.5 HANGER AND SUPPORT INSTALLATION

A. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

B. Comply with requirements for pipe hangers and supports specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.

D. Install hangers for horizontal, corrugated stainless-steel tubing with the following maximum spacing and minimum rod sizes:

1. NPS 3/8: Maximum span, 48 inches; minimum rod size, 3/8 inch.
2. NPS 1/2: Maximum span, 72 inches; minimum rod size, 3/8 inch.
3. NPS 3/4 and Larger: Maximum span, 96 inches; minimum rod size, 3/8 inch.

3.6 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.7 LABELING AND IDENTIFYING

A. Comply with requirements in Division 23 Section "Identification for HVAC Piping and Equipment" for piping and valve identification.

B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.8 FIELD QUALITY CONTROL

A. Test, inspect, and purge natural gas according to NFPA 54 and the International Fuel Gas Code and authorities having jurisdiction.

B. Natural-gas piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.
3.9 OUTDOOR PIPING SCHEDULE

A. Underground natural-gas piping shall be the following:
 1. PE pipe and fittings joined by heat fusion; service-line risers with tracer wire terminated in an accessible location.

B. Aboveground natural-gas piping shall be the following:
 1. Steel pipe with wrought-steel fittings and welded joints.

C. Branch Piping in Cast-in-Place Concrete to Single Appliance: Annealed-temper copper tube with wrought-copper fittings and brazed joints. Install piping embedded in concrete with no joints in concrete.

D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

3.10 INDOOR PIPING SCHEDULE

A. Aboveground, branch piping NPS 1 and smaller shall be the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be the following:
 1. Steel pipe with wrought-steel fittings and welded joints.

C. Underground, below building, piping shall be the following:
 1. Steel pipe with wrought-steel fittings and welded joints.

D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

E. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.11 UNDERGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Connections to Existing Gas Piping: Use valve and fitting assemblies made for tapping utility’s gas mains and listed by an NRTL.

B. Underground: Bronze plug valves.

3.12 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Valves for pipe sizes NPS 2 and smaller at service meter shall be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

B. Distribution piping valves for pipe sizes NPS 2 and smaller shall be the following:
 1. Two-piece, full port, bronze ball valves with bronze trim.

C. Valves in branch piping for single appliance shall be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION 231123
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:
 1. Chilled-water piping.
 2. Makeup-water piping.
 3. Condensate-drain piping.
 5. Safety-valve-inlet and -outlet piping.
B. Related Sections include the following:
 1. Division 23 Section "Hydronic Pumps" for pumps, motors, and accessories for hydronic piping.

1.3 DEFINITIONS
A. PTFE: Polytetrafluoroethylene.

1.4 PERFORMANCE REQUIREMENTS
A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature:
 1. Chilled-Water Piping: 150-PSG at 150 deg F.
 2. Makeup-Water Piping: 80 psig at 150 deg F.
 3. Condensate-Drain Piping: 150 deg F.
 4. Air-Vent Piping: 200 deg F.
 5. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

1.5 SUBMITTALS
A. Product Data: For each type of the following:
 1. Pressure-seal fittings.
2. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
3. Air control devices.
4. Hydronic specialties.

B. Shop Drawings: Detail, at 1/4 scale, the piping layout, fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

C. Welding certificates.

D. Qualification Data: For Installer.

E. Operation and Maintenance Data: For air control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Installer Qualifications:
1. Installers of Pressure-Sealed Joints: Installers shall be certified by the pressure-seal joint manufacturer as having been trained and qualified to join piping with pressure-seal pipe couplings and fittings.

B. Steel Support Welding: Qualify processes and operators according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

C. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

D. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 01.

E. For all positive pressure piping systems, make branch connections to piping mains at no less than 45 degrees above horizontal. Do not make branch connections at bottom of mains.

1.7 EXTRA MATERIALS

A. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.

B. Annealed-Temper Copper Tubing: ASTM B 88, Type K.
C. Wrought-Copper Fittings: ASME B16.22.
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 a. Anvil International, Inc.
 b. S. P. Fittings; a division of Star Pipe Products.
 c. Victaulic Company of America.
 4. Grooved-End Copper Fittings: ASTM B 75, copper tube or ASTM B 584, bronze casting.
 5. Grooved-End-Tube Couplings: Rigid pattern, unless otherwise indicated; gasketed fitting. Ductile-iron housing with keys matching pipe and fitting grooves, prelubricated EPDM gasket rated for minimum 230 deg F for use with housing, and steel bolts and nuts.

D. Copper or Bronze Pressure-Seal Fittings:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 a. Stadler-Viega.
 4. Housing: Copper.
 5. O-Rings and Pipe Stops: EPDM.
 6. Tools: Manufacturer's special tools.
 7. Minimum 200-psig working-pressure rating at 250 deg F.

E. Wrought-Copper Unions: ASME B16.22.

2.2 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.

B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in Part 3 "Piping Applications" Article.

C. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.

D. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

E. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 2. End Connections: Butt welding.
 3. Facings: Raised face.

F. Grooved Mechanical-Joint Fittings and Couplings:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:

 a. Victaulic Company of America.

4. Joint Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47/A 47M, Grade 32510 malleable iron; ASTM A 53/A 53M, Type F, E, or S, Grade B fabricated steel; or ASTM A 106, Grade B steel fittings with grooves or shoulders constructed to accept grooved-end couplings; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.

5. Couplings: Ductile- or malleable-iron housing and synthetic rubber gasket of central cavity pressure-responsive design; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.

G. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

H. Provide non-ferrous piping, hangers, and sprinkler heads in MRI procedure room to avoid interference with magnetic field. Coordinate installation details with actual vendor.

I. Provide schedule 10 stainless steel pipe from point of connection to MRI cryogen vent system to the point of termination outdoors. All joints to be fully welded with certification provided on each weld joint.

2.3 PLASTIC PIPE AND FITTINGS

2.4 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless thickness or specific material is indicated.

 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

D. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.

E. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

F. Fiberglass Pipe Adhesive: As furnished or recommended by pipe manufacturer.

G. Solvent Cements for Joining Plastic Piping:

 1. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
a. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

b. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

c. Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

H. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.5 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper-alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Dielectric Unions:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Central Plastics Company.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 e. Zurn Plumbing Products Group; AquaSpec Commercial Products Division.

3. Factory-fabricated union assembly, for 250-psig minimum working pressure at 180 deg F.

D. Dielectric Flanges:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Central Plastics Company.
 c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

3. Factory-fabricated companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.

E. Dielectric-Flange Kits:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
3. Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.

4. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.

F. Dielectric Couplings:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Calpico, Inc.
 b. Lochinvar Corporation.

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Galvanized-steel coupling with inert and noncorrosive thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.

G. Dielectric Nipples:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Perfection Corporation; a subsidiary of American Meter Company.
 b. Precision Plumbing Products, Inc.
 c. Sioux Chief Manufacturing Company, Inc.
 d. Victaulic Company of America.

3. Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

2.6 VALVES

A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Division 23 Section "General-Duty Valves for HVAC Piping."

B. Bronze, Calibrated-Orifice, Balancing Valves:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Armstrong Pumps, Inc.
 b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 c. Flow Design Inc.
 d. Gerard Engineering Co.
 e. Griswold Controls.
 f. Taco.

3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:

 a. Body: Bronze, ball or plug type with calibrated orifice or venturi.
 b. Ball: Brass or stainless steel.
 c. Plug: Resin.
 d. Seat: PTFE.
 e. End Connections: Threaded or socket.
 f. Pressure Gage Connections: Integral seals for portable differential pressure meter.
2.7 AIR CONTROL DEVICES

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Amtrol, Inc.
2. Armstrong Pumps, Inc.
3. Bell & Gossett Domestic Pump; a division of ITT Industries.
4. Taco.
5. Elbi of America, Inc.

C. Manual Air Vents:

1. Body: Bronze.
2. Internal Parts: Nonferrous.
3. Operator: Screwdriver or thumbscrew.
4. Inlet Connection: NPS 1/2.
7. Maximum Operating Temperature: 225 deg F.

D. Expansion Tanks:

1. Tank: Welded steel, rated for 125-psig working pressure and 375 deg F maximum operating temperature, with taps in bottom of tank for tank fitting and taps in end of tank for gage glass. Tanks shall be factory tested with taps fabricated and labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
2. Air-Control Tank Fitting: Cast-iron body, copper-plated tube, brass vent tube plug, and stainless-steel ball check, 100-gal. unit only; sized for compression-tank diameter. Provide tank fittings for 125-psig working pressure and 250 deg F maximum operating temperature.
3. Tank Drain Fitting: Brass body, nonferrous internal parts; 125-psig working pressure and 240 deg F maximum operating temperature; constructed to admit air to compression tank, drain water, and close off system.

E. Bladder-Type Expansion Tanks:

1. Tank: Welded steel, rated for 125-psig working pressure and 375 deg F maximum operating temperature. Factory test with taps fabricated and supports installed and labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
2. Bladder: Securely sealed into tank to separate air charge from system water to maintain required expansion capacity.

F. Tangential-Type Air Separators:

1. Tank: Welded steel; ASME constructed and labeled for 125-psig minimum working pressure and 375 deg F maximum operating temperature.
2. Air Collector Tube: Perforated stainless steel, constructed to direct released air into expansion tank.
3. Tangential Inlet and Outlet Connections: Threaded for NPS 2 and smaller; flanged connections for NPS 2-1/2 and larger.
5. Size: Match system flow capacity.

2.8 CHEMICAL TREATMENT

A. Bypass Chemical Feeder: Welded steel construction; 125-psig (860-kPa) working pressure; 5-gal. (19-L) capacity; with fill funnel and inlet, outlet, and drain valves.
 1. Chemicals: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.

B. Ethylene and Propylene Glycol: Industrial grade with corrosion inhibitors and environmental-stabilizer additives for mixing with water in systems indicated to contain antifreeze or glycol solutions.

2.9 HYDRONIC PIPING SPECIALTIES

A. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

B. Basket Strainers:
 1. Body: ASTM A 126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

C. Stainless-Steel Bellow, Flexible Connectors:
 2. End Connections: Threaded or flanged to match equipment connected.
 4. CWP Rating: 150 psig.
 5. Maximum Operating Temperature: 250 deg F.

D. Spherical, Rubber, Flexible Connectors:
 2. End Connections: Steel flanges drilled to align with Classes 150 and 300 steel flanges.
 4. CWP Rating: 150 psig.
 5. Maximum Operating Temperature: 250 deg F.

E. Expansion fittings are specified in Division 23 Section "Expansion Fittings and Loops for HVAC Piping."

PART 3 - EXECUTION
3.1 **PIPE APPLICATIONS**

A. Hot-water heating piping, aboveground, NPS 2 and smaller, shall be any of the following:

1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
2. Schedule 40 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.

B. Hot-water heating piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:

1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
2. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
3. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.

C. Chilled-water piping, aboveground, NPS 2 and smaller, shall be any of the following:

1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
2. Schedule 40 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.

D. Chilled-water piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:

1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
2. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
3. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.

E. Makeup-water piping installed aboveground shall be the following:

1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

F. Condensate-Drain Piping: Type M, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

G. Condenser-Water Piping: Schedule 80 PVC plastic pipe and fittings and solvent-welded joints. All exposed piping on the exterior shall be treated with UV inhibiting coating.

H. Air-Vent Piping:

1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.
2. Outlet: Type K, annealed-temper copper tubing with soldered or flared joints.

I. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.

3.2 **VALVE APPLICATIONS**

A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment.

B. Install calibrated-orifice, balancing valves at each branch connection to return main.
C. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.

D. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.3 PIPING INSTALLATIONS

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Select system components with pressure rating equal to or greater than system operating pressure.

K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.

N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

O. Install branch connections to mains using mechanically formed tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.

P. Install valves according to Division 23 Section "General-Duty Valves for HVAC Piping."

Q. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

R. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.

S. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, in-line pump, and elsewhere as indicated. Install NPS 3/4 nipple and ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.
T. Install expansion loops, expansion joints, anchors, and pipe alignment guides as specified in Division 23 Section "Expansion Fittings and Loops for HVAC Piping."

U. Identify piping as specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.4 HANGERS AND SUPPORTS

A. Hanger, support, and anchor devices are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment." Comply with the following requirements for maximum spacing of supports.

B. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
 6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.

C. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 3/4: Maximum span, 7 feet; minimum rod size, 1/4 inch.
 2. NPS 1: Maximum span, 7 feet; minimum rod size, 1/4 inch.
 3. NPS 1-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 4. NPS 2: Maximum span, 10 feet; minimum rod size, 3/8 inch.
 5. NPS 2-1/2: Maximum span, 11 feet; minimum rod size, 3/8 inch.
 6. NPS 3: Maximum span, 12 feet; minimum rod size, 3/8 inch.
 7. NPS 4: Maximum span, 14 feet; minimum rod size, 1/2 inch.
 8. NPS 6: Maximum span, 17 feet; minimum rod size, 1/2 inch.
 9. NPS 8: Maximum span, 19 feet; minimum rod size, 5/8 inch.
 10. NPS 10: Maximum span, 20 feet; minimum rod size, 3/4 inch.
 11. NPS 12: Maximum span, 23 feet; minimum rod size, 7/8 inch.
 12. NPS 14: Maximum span, 25 feet; minimum rod size, 1 inch.
 13. NPS 16: Maximum span, 27 feet; minimum rod size, 1 inch.
 14. NPS 18: Maximum span, 28 feet; minimum rod size, 1-1/4 inches.
 15. NPS 20: Maximum span, 30 feet; minimum rod size, 1-1/4 inches.

D. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.

2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.

3. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.

4. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.

5. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.

6. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.

E. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.

2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

I. Grooved Joints: Assemble joints with coupling and gasket, lubricant, and bolts. Cut or roll grooves in ends of pipe based on pipe and coupling manufacturer's written instructions for pipe wall thickness. Use grooved-end fittings and rigid, grooved-end-pipe couplings.

J. Mechanically Formed, Copper-Tube-Outlet Joints: Use manufacturer-recommended tool and procedure, and brazed joints.

K. Pressure-Sealed Joints: Use manufacturer-recommended tool and procedure. Leave insertion marks on pipe after assembly.

3.6 HYDRONIC SPECIALTIES INSTALLATION
A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.

B. Install piping from boiler air outlet, air separator, or air purger to expansion tank with a 2 percent upward slope toward tank.

C. Install tangential air separator in pump suction. Install blowdown piping with gate or full-port ball valve; extend full size to nearest floor drain.

D. Install expansion tanks above the air separator. Install tank fitting in tank bottom and charge tank. Use manual vent for initial fill to establish proper water level in tank.
 1. Install tank fittings that are shipped loose.
 2. Support tank from floor or structure above with sufficient strength to carry weight of tank, piping connections, fittings, plus tank full of water. Do not overload building components and structural members.

E. Install expansion tanks on the floor. Vent and purge air from hydronic system, and ensure tank is properly charged with air to suit system Project requirements.

3.7 TERMINAL EQUIPMENT CONNECTIONS

A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.

B. Install control valves in accessible locations close to connected equipment.

C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.

D. Install ports for pressure gages and thermometers at coil inlet and outlet connections according to Division 23 Section "Meters and Gages for HVAC Piping."

3.8 CHEMICAL TREATMENT

A. Fill system with fresh water and add liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products from piping. Circulate solution for a minimum of 24 hours, drain, clean strainer screens, and refill with fresh water.

B. Add initial chemical treatment and maintain water quality in ranges noted above for the first year of operation.

3.9 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:
 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
B. Perform the following tests on hydronic piping:

1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing.
 Another liquid that is safe for workers and compatible with piping may be used.
2. While filling system, use vents installed at high points of system to release air. Use drains installed
 at low points for complete draining of test liquid.
3. Isolate expansion tanks and determine that hydronic system is full of water.
4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's
 working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve,
 or other component in system under test. Verify that stress due to pressure at bottom of vertical
 runs does not exceed 90 percent of specified minimum yield strength or 1.7 times “SE” value in
 Appendix A in ASME B31.9, "Building Services Piping."
5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and
 connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and
 repeat hydrostatic test until there are no leaks.
6. Prepare written report of testing.

C. Perform the following before operating the system:

1. Open manual valves fully.
2. Inspect pumps for proper rotation.
3. Set makeup pressure-reducing valves for required system pressure.
4. Inspect air vents at high points of system and determine if all are installed and operating freely
 (automatic type), or bleed air completely (manual type).
5. Set temperature controls so all coils are calling for full flow.
6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling
 towers, to specified values.
7. Verify lubrication of motors and bearings.

END OF SECTION 232113
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
 1. Close-coupled, end-suction centrifugal pumps.
 2. Vertical in-line

1.3 DEFINITIONS
A. Buna-N: Nitrile rubber.
B. EPT: Ethylene propylene terpolymer.

1.4 SUBMITTALS
A. Product Data: Include certified performance curves and rated capacities, operating characteristics, furnished specialties, final impeller dimensions, and accessories for each type of product indicated. Indicate pump's operating point on curves.
B. Shop Drawings: Show pump layout and connections. Include setting drawings with templates for installing foundation and anchor bolts and other anchorages.
C. Operation and Maintenance Data: For pumps to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE
A. Source Limitations: Obtain hydronic pumps through one source from a single manufacturer.
B. Product Options: Drawings indicate size, profiles, and dimensional requirements of hydronic pumps and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
D. UL Compliance: Comply with UL 778 for motor-operated water pumps.
1.6 DELIVERY, STORAGE, AND HANDLING

A. Manufacturer's Preparation for Shipping: Clean flanges and exposed machined metal surfaces and treat with anticorrosion compound after assembly and testing. Protect flanges, pipe openings, and nozzles with wooden flange covers or with screwed-in plugs.

B. Store pumps in dry location.

C. Retain protective covers for flanges and protective coatings during storage.

D. Protect bearings and couplings against damage from sand, grit, and other foreign matter.

E. Comply with pump manufacturer's written rigging instructions.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.

2.2 CLOSE-COUPLED, END-SUCTION CENTRIFUGAL PUMPS

A. Available Manufacturers:
 1. Armstrong Pumps Inc.
 2. Goulds Pumps
 3. Taco
 4. Grundfos

B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, close-coupled, end-suction pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted horizontally. Rate pump for 125-psig minimum working pressure and a continuous water temperature of 225 deg F.

C. Pump Construction:

1. Casing: Radially split, cast iron, with replaceable bronze wear rings, drain plug at bottom and air vent at top of volute, threaded gage tappings at inlet and outlet, and flanged connections.
2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. Trim impeller to match specified performance.
3. Pump Shaft: Steel, with copper-alloy shaft sleeve.
4. Mechanical Seal: Carbon rotating ring against a ceramic seat held by a stainless-steel spring, and EPT bellows and gasket. Include water slinger on shaft between motor and seal.
5. Pump Bearings: Permanently lubricated ball bearings.
6. **Motor:** Single speed, with grease-lubricated ball bearings, unless otherwise indicated; rigidly mounted to pump casing with integral pump support. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."

2.3 VERTICAL IN-LINE

2.4 PUMP SPECIALTY FITTINGS

A. Suction Diffuser: Angle pattern, 175-psig pressure rating, cast-iron body and end cap, pump-inlet fitting; with bronze startup and bronze or stainless-steel permanent strainers; bronze or stainless-steel straightening vanes; drain plug; and factory-fabricated support.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine equipment foundations and anchor-bolt locations for compliance with requirements for installation tolerances and other conditions affecting performance of work.

B. Examine roughing-in for piping systems to verify actual locations of piping connections before pump installation.

C. Examine foundations and inertia bases for suitable conditions where pumps are to be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CONCRETE BASES

A. Install concrete bases of dimensions indicated for pumps and controllers. Refer to Division 23 Section "Common Work Results for HVAC."

1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around full perimeter of base.
2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
4. Install anchor bolts to elevations required for proper attachment to supported equipment.

B. Cast-in-place concrete materials and placement requirements are specified in Division 03.

3.3 PUMP INSTALLATION

A. Install pumps with access for periodic maintenance including removal of motors, impellers, couplings, and accessories.

B. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.

3.4 CONNECTIONS
A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to machine to allow service and maintenance.

C. Connect piping to pumps. Install valves that are same size as piping connected to pumps.

D. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.

E. Install check valve and throttling valve on discharge side of pumps.

F. Install suction diffuser and shutoff valve on suction side of pumps.

G. Install pressure gages on pump suction and discharge, at integral pressure-gage tapping, or install single gage with multiple input selector valve.

H. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

I. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

END OF SECTION 232123
SECTION 232300
REFRIGERANT PIPING

PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes refrigerant piping used for air-conditioning applications.

1.2 PERFORMANCE REQUIREMENTS
A. Line Test Pressure for Refrigerant R-22:
 3. Hot-Gas and Liquid Lines: 325 psig.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop based on manufacturer's test data.
B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.

1. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.

1.4 INFORMATIONAL SUBMITTALS
A. Field quality-control test reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.

1.6 QUALITY ASSURANCE
B. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."
1.7 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Copper Tube: ASTM B 280, Type ACR.

B. Wrought-Copper Fittings: ASME B16.22.

C. Wrought-Copper Unions: ASME B16.22.

D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.

E. Brazing Filler Metals: AWS A5.8.

F. Flexible Connectors:

2. End Connections: Socket ends.
3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch-long assembly.
5. Maximum Operating Temperature: 250 deg F.

2.2 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:

1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
3. Operator: Rising stem and hand wheel.
5. End Connections: Socket, union, or flanged.
7. Maximum Operating Temperature: 275 deg F.

B. Packed-Angle Valves:

1. Body and Bonnet: Forged brass or cast bronze.
2. Packing: Molded stem, back seating, and replaceable under pressure.
3. Operator: Rising stem.
5. Seal Cap: Forged-brass or valox hex cap.
6. End Connections: Socket, union, threaded, or flanged.
8. Maximum Operating Temperature: 275 deg F.

C. Check Valves:

1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
6. End Connections: Socket, union, threaded, or flanged.
7. Maximum Opening Pressure: 0.50 psig.
9. Maximum Operating Temperature: 275 deg F.

D. Service Valves:
1. Body: Forged brass with brass cap including key end to remove core.
2. Core: Removable ball-type check valve with stainless-steel spring.
4. End Connections: Copper spring.

E. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL.
4. End Connections: Threaded.
5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 115-208-V ac coil.
7. Maximum Operating Temperature: 240 deg F.

F. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
4. End Connections: Threaded.
6. Maximum Operating Temperature: 240 deg F.

G. Thermostatic Expansion Valves: Comply with ARI 750.
1. Body, Bonnet, and Seal Cap: Forged brass or steel.
4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
5. Suction Temperature: 40 deg F
7. Reverse-flow option (for heat-pump applications).
8. End Connections: Socket, flare, or threaded union.

H. Straight-Type Strainers:
2. Screen: 100-mesh stainless steel.
3. End Connections: Socket or flare.
5. Maximum Operating Temperature: 275 deg F.

I. Angle-Type Strainers:
1. Body: Forged brass or cast bronze.
2. Drain Plug: Brass hex plug.
3. Screen: 100-mesh monel.
4. End Connections: Socket or flare.
6. Maximum Operating Temperature: 275 deg F.

J. Moisture/Liquid Indicators:

2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
3. Indicator: Color coded to show moisture content in ppm.
5. End Connections: Socket or flare.
7. Maximum Operating Temperature: 240 deg F.

K. Replaceable-Core Filter Dryers: Comply with ARI 730.

1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
4. Designed for reverse flow (for heat-pump applications).
5. End Connections: Socket.
7. Maximum Pressure Loss: 2 psig
9. Maximum Operating Temperature: 240 deg F.

L. Liquid Accumulators: Comply with ARI 495.

2. End Connections: Socket or threaded.
4. Maximum Operating Temperature: 275 deg F.

2.3 REFRIGERANTS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Atofina Chemicals, Inc.
2. DuPont Company; Fluorochemicals Div.
3. Honeywell, Inc.; Genetron Refrigerants.
4. INEOS Fluor Americas LLC.

C. ASHRAE 34, R-22: Monochlorodifluoromethane.
PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Suction Lines NPS 1-1/2 and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed joints.

B. Suction Lines NPS 4 and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed joints.

C. Hot-Gas and Liquid Lines and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed joints.

D. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, [ACR] [K] [L], drawn-temper tubing and wrought-copper fittings with soldered joints.

E. Safety-Relief-Valve Discharge Piping:
 1. NPS 1-1/2 and Smaller: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

A. Install packed-angle valves in suction and discharge lines of compressor.

B. Install service valves for gage taps at strainers if they are not an integral part of strainers.

C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.

D. Except as otherwise indicated, install packed-angle valves on inlet and outlet side of filter dryers.

E. Install a full-sized, three-valve bypass around filter dryers.

F. Install solenoid valves upstream from each expansion valve. Install solenoid valves in horizontal lines with coil at top.

G. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 1. Install valve so diaphragm case is warmer than bulb.
 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.

H. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.

I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.

J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 1. Solenoid valves.
 2. Thermostatic expansion valves.
 3. Compressor.
K. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor.

L. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Install refrigerant piping according to ASHRAE 15.

C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Refer to Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operations for HVAC Controls" for solenoid valve controllers, control wiring, and sequence of operation.

K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Division 08 Section "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

M. Install refrigerant piping in protective conduit where installed belowground.

N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

O. Slope refrigerant piping as follows:

1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
2. Install horizontal suction lines with a uniform slope downward to compressor.
3. Install traps and double risers to entrain oil in vertical runs.
4. Liquid lines may be installed level.

P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

Q. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
R. Identify refrigerant piping and valves according to Division 23 Section "Identification for HVAC Piping and Equipment."

S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."

T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."

U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 23 Section "Escutcheons for HVAC Piping."

3.4 PIPE JOINT CONSTRUCTION

A. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."

B. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

3.5 HANGERS AND SUPPORTS

A. Hanger, support, and anchor products are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

B. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 1. NPS 1/2: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.
 4. NPS 1-1/4: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 5. NPS 1-1/2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 6. NPS 2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 7. NPS 2-1/2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 8. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.
 9. NPS 4: Maximum span, 12 feet; minimum rod size, 1/2 inch.

D. Support multifloor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:
 1. Comply with ASME B31.5, Chapter VI.
2. Test refrigerant piping and specialties. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.

3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 “Performance Requirements” Article.
 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure at the manifold gage throughout duration of test.
 c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.7 SYSTEM CHARGING

A. Charge system using the following procedures:
 1. Install core in filter dryers after leak test but before evacuation.
 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
 4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.

B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.

C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.

D. Perform the following adjustments before operating the refrigeration system, according to manufacturer’s written instructions:
 1. Open shutoff valves in condenser water circuit.
 2. Verify that compressor oil level is correct.
 3. Open compressor suction and discharge valves.
 4. Open refrigerant valves except bypass valves that are used for other purposes.
 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.

E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 232300
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SCOPE OF WORK
A. Contractor shall provide the following and supervise the installation of all chemical water treatment systems. This shall include applicable equipment, piping, tubing, interconnecting components, electrical controls, water treatment materials, chemical test equipment and cleaning chemicals necessary for all waterside systems (excluding domestic water).
B. Equipment, material and chemicals shall be provided by a single water treatment firm providing individual responsibility to ensure system compatibility.
C. The water treatment supplier shall provide the necessary products for the following systems:
 1. Closed Water System(s) Chilled Water
 2. Closed Water System(s) Heating Hot Water
 3. Closed Water System(s) Clean-Out
D. Chemicals shall be supplied for the initial cleaning, start-up and passivation of all systems and for a treatment period of one year from the initial date of Substantial Completion.
E. The chemical water treatment company representative shall develop a program of routine chemical treatment and testing for use by the operating personnel after the systems have been placed into regular operation.

1.3 SUMMARY
A. This Section includes the following HVAC water-treatment systems:
 1. Bypass chemical-feed equipment and controls.
 2. Chemical treatment test equipment.
 3. HVAC water-treatment chemicals.
 4. Makeup water softeners.
 5. Propylene glycol feed system for central plant chilled water systems.

1.4 DEFINITIONS
A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
B. TDS: Total dissolved solids.

1.5 PERFORMANCE REQUIREMENTS
A. Water quality for HVAC systems shall minimize corrosion, scale buildup, and biological growth for optimum efficiency of HVAC equipment without creating a hazard to operating personnel or the environment.

B. Base HVAC water treatment on quality of water available at Project site, HVAC system equipment material characteristics and functional performance characteristics, operating personnel capabilities, and requirements and guidelines of authorities having jurisdiction.

C. Closed hydronic systems, including heating water and chilled water, shall have the following water qualities:

1. pH: Maintain a value within 9.0 to 10.5.
2. "P" Alkalinity: Maintain a value within 100 to 500 ppm.
3. Boron: Maintain a value within 100 to 200 ppm.
4. Chemical Oxygen Demand: Maintain a maximum value of 100 ppm.
5. Soluble Copper: Maintain a maximum value of 0.20 ppm.
6. TDS: Maintain a maximum value of 10 ppm.
9. Microbiological Limits:
 a. Total Aerobic Plate Count: Maintain a maximum value of 1000 organisms/ml.
 b. Total Anaerobic Plate Count: Maintain a maximum value of 100 organisms/ml.
 c. Nitrate Reducers: Maintain a maximum value of 100 Insert number organisms/ml.
 d. Sulfate Reducers: Maintain a maximum value of 0 organisms/ml.
 e. Iron Bacteria: Maintain a maximum value of 0 organisms/ml.

1.6 SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for the following products:

1. Bypass feeders.
2. Water meters.
3. Chemical solution tanks.
4. Injection pumps.
5. Chemical test equipment.
6. Chemical material safety data sheets.
7. Water softeners.
10. Bag- or cartridge-type filters.
11. Centrifugal separators.

B. Shop Drawings: Pretreatment and chemical treatment equipment showing tanks, maintenance space required, and piping connections to HVAC systems. Include plans, elevations, sections, details, and attachments to other work.

C. Field quality-control test reports.

D. Operation and Maintenance Data: For sensors, injection pumps, water softeners, RO equipment, water filtration units, and controllers to include in emergency, operation, and maintenance manuals.

E. Other Informational Submittals:

1. Water-Treatment Program: Written sequence of operation on an annual basis for the application equipment required to achieve water quality defined in the "Performance Requirements" Article above.

1.7 QUALITY ASSURANCE

A. HVAC Water-Treatment Service Provider Qualifications: An experienced HVAC water-treatment service provider capable of analyzing water qualities, installing water-treatment equipment, and applying water treatment as specified in this Section.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.8 MAINTENANCE SERVICE

A. Scope of Maintenance Service: Provide chemicals and service program to maintain water conditions required above to inhibit corrosion, scale formation, and biological growth for cooling, chilled-water piping heating, hot-water piping and equipment. Services and chemicals shall be provided for a period of one year from date of Substantial Completion, and shall include the following:

1. Initial water analysis and HVAC water-treatment recommendations.
2. Startup assistance for Contractor to flush the systems, clean with detergents, and initially fill systems with required chemical treatment prior to operation.
3. Periodic field service and consultation.
5. Laboratory technical analysis.
6. Analyses and reports of all chemical items concerning safety and compliance with government regulations.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Garrett Callahan Company
2. Culligan International Company
3. Marlo Incorporated

2.2 MANUAL CHEMICAL-FEED EQUIPMENT

A. Bypass Feeders: Steel, with corrosion-resistant exterior coating, minimum 3-1/2-inch fill opening in the top, and NPS 3/4 bottom inlet and top side outlet. Quarter turn or threaded fill cap with gasket seal and diaphragm to lock the top on the feeder when exposed to system pressure in the vessel.

1. Capacity: 5 gal.

2.3 AUTOMATIC CHEMICAL-FEED EQUIPMENT
A. Water Meter:
1. AWWA C701, turbine-type, totalization meter.
2. Body: Bronze.
5. Registration: Gallons or cubic feet.
7. Control: Low-voltage signal capable of transmitting 1000 feet.

B. Chemical Solution Tanks:
1. Chemical-resistant reservoirs fabricated from high-density opaque polyethylene with minimum 110 percent containment vessel.
2. Molded cover with recess for mounting pump.
3. Capacity: 50 gal.

C. Chemical Solution Injection Pumps:
1. Self-priming, positive-displacement; rated for intended chemical with minimum 25 percent safety factor for design pressure and temperature.
2. Adjustable flow rate.
3. Metal and thermoplastic construction.
5. Fully enclosed, continuous-duty, single-phase motor. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."

D. Chemical Solution Tubing: Polyethylene tubing with compression fittings and joints except ASTM A 269, Type 304, stainless steel for steam boiler injection assemblies.

E. Injection Assembly:
1. Quill: Minimum NPS 1/2 with insertion length sufficient to discharge into at least 25 percent of pipe diameter.
2. Ball Valve: Two-piece, stainless steel as described in "Stainless-Steel Pipes and Fittings" Article below; and selected to fit quill.
3. Packing Gland: Mechanical seal on quill of sufficient length to allow quill removal during system operation.
4. Assembly Pressure/Temperature Rating: Minimum 600 psig at 200 deg F.

2.4 STAINLESS-STEEL PIPES AND FITTINGS

A. Stainless-Steel Tubing: Comply with ASTM A 269, Type 316.

B. Stainless-Steel Fittings: Complying with ASTM A 815/A 815M, Type 316, Grade WP-S.

C. Two-Piece, Full-Port, Stainless-Steel Ball Valves: ASTM A 351, Type 316 stainless-steel body; ASTM A 276, Type 316 stainless-steel stem and vented ball, carbon-filled TFE seats, threaded body design with adjustable stem packing, threaded ends, and 250-psig SWP and 600-psig CWP ratings.

D. Three-Piece, Full-Port, Stainless-Steel Ball Valves: ASTM A 351, Type 316 stainless-steel body; ASTM A 276, Type 316 stainless-steel stem and vented ball, threaded body design with adjustable stem packing, threaded ends, and 150-psig SWP and 600-psig CWP rating.
A. **Test Kit:** Manufacturer-recommended equipment and chemicals in a wall-mounting cabinet for testing pH, TDS, inhibitor, chloride, alkalinity, and hardness; sulfite and testable polymer tests for high-pressure boilers, and oxidizing biocide test for open cooling systems.

B. **Sample Cooler:**

1. **Tube:** Sample.
 a. Size: NPS 1/4 tubing.
 b. Material: ASTM A 666, Type 316 stainless steel.
 d. Temperature Rating: Minimum 850 deg F.

2. **Shell:** Cooling water.
 a. Material: ASTM A 666, Type 304 stainless steel.
 c. Temperature Rating: Minimum 450 deg F.

3. **Capacities and Characteristics:**
 a. **Tube:** Sample.
 1) Flow Rate: 0.25 gpm.
 2) Entering Temperature: 400 deg F.
 3) Leaving Temperature: 88 deg F.
 4) Pressure Loss: 6.5 psig.
 b. **Shell:** Cooling water.
 1) Flow Rate: 3 gpm.
 2) Entering Temperature: 70 deg F.
 3) Pressure Loss: 1.0 psig.

C. **Corrosion Test-Coupon Assembly:** Constructed of corrosive-resistant material, complete with piping, valves, and mild steel and copper coupons. Locate copper coupon downstream from mild steel coupon in the test-coupon assembly.

 1. Two-station rack for closed-loop systems.
 2. Four-station rack for open systems.

2.6 **CHEMICALS**

A. Chemicals shall be as recommended by water-treatment system manufacturer that are compatible with piping system components and connected equipment, and that can attain water quality specified in Part 1 “Performance Requirements” Article.

B. **Water Softener Chemicals:**

1. **Mineral:** High-capacity, sulfonated-polystyrene ion-exchange resin that is stable over entire pH range with good resistance to bead fracture from attrition or shock. Resin exchange capacity minimum 30,000 grains/cu. ft. of calcium carbonate of resin when regenerated with 15 lb of salt.

2. **Salt for Brine Tanks:** High-purity sodium chloride, free of dirt and foreign material. Rock and granulated forms are not acceptable.

PART 3 - EXECUTION
3.1 WATER ANALYSIS
A. Perform an analysis of supply water to determine quality of water available at Project site.

3.2 INSTALLATION
A. Install chemical application equipment on concrete bases, level and plumb. Maintain manufacturer's recommended clearances. Arrange units so controls and devices that require servicing are accessible. Anchor chemical tanks and floor-mounting accessories to substrate.

B. Install seismic restraints for equipment and floor-mounting accessories and anchor to building structure. Refer to Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment" for seismic restraints.

C. Install water testing equipment on wall near water chemical application equipment.

D. Install interconnecting control wiring for chemical treatment controls and sensors.

E. Mount sensors and injectors in piping circuits.

F. Bypass Feeders: Install in closed hydronic systems, including hot-water heating chilled water, and equipped with the following:
 1. Install bypass feeder in a bypass circuit around circulating pumps, unless otherwise indicated on Drawings.
 2. Install water meter in makeup water supply.
 3. Install test-coupon assembly in bypass circuit around circulating pumps, unless otherwise indicated on Drawings.
 4. Install a gate or full-port ball isolation valves on inlet, outlet, and drain below feeder inlet.
 5. Install a swing check on inlet after the isolation valve.

G. Install automatic chemical-feed equipment for steam boiler and steam condensate systems and include the following:
 1. Install makeup water softener.
 2. Install water meter in makeup water supply.
 3. Install inhibitor injection pumps and solution tanks with injection timer sensing contacts in water meter.
 a. Pumps shall operate for timed interval when contacts close at water meter in makeup water supply connection. Injection pump shall discharge into boiler feedwater tank or feedwater supply connection at boiler.
 4. Install test equipment and furnish test-kit to Owner.
 5. Install RO unit for makeup water.

3.3 WATER SOFTENER INSTALLATION
A. Install water softener equipment on concrete bases, level and plumb. Maintain manufacturer's recommended clearances. Arrange units so controls and devices that require servicing are accessible. Anchor mineral and brine tanks and floor-mounting accessories to substrate.

B. Install brine lines and fittings furnished by equipment manufacturer but not factory installed.

C. Prepare mineral-tank distribution system and underbed for minerals and place specified mineral into mineral tanks.
D. Install water-testing sets on wall adjacent to water softeners.

3.4 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

C. Make piping connections between HVAC water-treatment equipment and dissimilar-metal piping with dielectric fittings. Dielectric fittings are specified in Division 23 Section "Common Work Results for HVAC."

D. Install shutoff valves on HVAC water-treatment equipment inlet and outlet. Metal general-duty valves are specified in Division 23 Section "General-Duty Valves for HVAC Piping."

E. Refer to Division 22 Section "Domestic Water Piping Specialties" for backflow preventers required in makeup water connections to potable-water systems.

F. Confirm applicable electrical requirements in Division 26 Sections for connecting electrical equipment.

G. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

H. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

B. Tests and Inspections:
 1. Inspect field-assembled components and equipment installation, including piping and electrical connections.
 2. Inspect piping and equipment to determine that systems and equipment have been cleaned, flushed, and filled with water, and are fully operational before introducing chemicals for water-treatment system.
 3. Place HVAC water-treatment system into operation and calibrate controls during the preliminary phase of HVAC systems' startup procedures.
 4. Do not enclose, cover, or put piping into operation until it is tested and satisfactory test results are achieved.
 5. Test for leaks and defects. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 6. Leave uncovered and unconcealed new, altered, extended, and replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.
 7. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow test pressure to stand for four hours. Leaks and loss in test pressure constitute defects.
 8. Repair leaks and defects with new materials and retest piping until no leaks exist.

C. Remove and replace malfunctioning units and retest as specified above.

D. At six-week intervals following Substantial Completion, perform separate water analyses on hydronic systems to show that automatic chemical-feed systems are maintaining water quality within performance requirements specified in this Section. Submit written reports of water analysis advising Owner of changes necessary to adhere to Part 1 "Performance Requirements" Article.
E. Comply with ASTM D 3370 and with the following standards:

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC water-treatment systems and equipment. Refer to Division 01 Section "Demonstration and Training."

B. Training: Provide a "how-to-use" self-contained breathing apparatus video that details exact operating procedures of equipment.

END OF SECTION 232500
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Rectangular ducts and fittings.
 2. Round ducts and fittings.
 3. Double-wall rectangular ducts and fittings.
 4. Double-wall round ducts and fittings.
 5. Sheet metal materials.
 7. Hangers and supports.

B. Related Sections:
 1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 2. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

D. Reinforcement for ductwork larger than 36" in width shall be provided with double the required number of supports as outlined in SMACNA'S "HVAC Duct Construction Standards - Metal and Flexible."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings:
 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, and static-pressure classes.
4. Elevation of top of ducts.
5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment and vibration isolation.

C. Delegated-Design Submittal:

1. Sheet metal thicknesses.
2. Joint and seam construction and sealing.
3. Reinforcement details and spacing.
4. Materials, fabrication, assembly, and spacing of hangers and supports.
5. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.

B. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to

B. Welding Qualifications: Qualify procedures and personnel according to the following:

C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-up."

D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."
PART 2 - PRODUCTS

2.1 RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

E. Reinforcement for ductwork larger than 36" in width shall be provided with double the required number of supports as outlined in SMACNA'S "HVAC Duct Construction Standards - Metal and Flexible."

F.

2.2 ROUND DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following
 a. Lindab Inc.
 b. McGill AirFlow LLC.
 c. SEMCO Incorporated.
 d. Sheet Metal Connectors, Inc.
 e. Spiral Manufacturing Co., Inc.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger Than 90 inches in diameter with butt-welded longitudinal seams.
D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 DOUBLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. Application: Provide double wall ductwork for all ductwork located outside, exposed to finished spaces, exposed to harsh environments.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. McGill AirFlow LLC.
 2. Sheet Metal Connectors, Inc.

C. Rectangular Ducts: Fabricate ducts with indicated dimensions for the inner duct.

D. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

E. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

F. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

G. Interstitial Insulation: Flexible elastomeric duct liner complying with ASTM C 534, Type II for sheet materials, and with NFPA 90A or NFPA 90B.
 1. Maximum Thermal Conductivity: 0.25 Btu x in./h x sq. ft. x deg at 75 deg F (24 deg C) mean temperature.

H. Inner Duct: Minimum 0.028-inch (0.7-mm) solid sheet steel.

I. Formed-on Transverse Joints (Flanges): Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Traverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

J. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.4 DOUBLE-WALL ROUND DUCTS AND FITTINGS

A. Application: Provide double wall ductwork for all ductwork located outside, exposed to finished spaces, exposed to harsh environments.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Lindab Inc.
2. McGill AirFlow LLC.
3. SEMCO Incorporated.
4. Sheet Metal Connectors, Inc.

C. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension) of the inner duct.

D. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.

 1. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

 a. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

 2. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

 a. Fabricate round ducts larger than 90 inches (2286 mm) in diameter with butt-welded longitudinal seams.

 b. Fabricate flat-oval ducts larger than 72 inches (1830 mm) in width (major dimension) with butt-welded longitudinal seams.

 3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

E. Inner Duct: Minimum 0.028-inch (0.7-mm) solid sheet steel.

F. Interstitial Insulation: Flexible elastomeric duct liner complying with ASTM C 534, Type II for sheet materials, and with NFPA 90A or NFPA 90B.

 1. Maximum Thermal Conductivity: 0.25 Btu x in./h x sq. ft. x deg F t 75 deg F mean temperature.

2.5 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

 1. Galvanized Coating Designation: G60

 2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.

D. Aluminum Sheets: Comply with ASTM B 209 (ASTM B 209M) Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
E. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.6 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Water-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Solids Content: Minimum 65 percent.
 5. Mold and mildew resistant.
 6. VOC: Maximum 75 g/L (less water).
 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 8. Service: Indoor or outdoor.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

C. Flanged Joint Sealant: Comply with ASTM C 920.
 2. Type: S.
 3. Grade: NS.
 5. Use: O.
 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

E. Round Duct Joint O-Ring Seals:
 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 2. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.7 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
E. Steel Cables for Aluminum Ducts: Stainless steel complying with ASTM A 492

F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Reinforcement for ductwork larger than 36” in width shall be provided with double the required number of supports as outlined in SMACNA’S "HVAC Duct Construction Standards - Metal and Flexible."

D. Install round ducts in maximum practical lengths.

E. Install ducts with fewest possible joints.

F. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

G. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

H. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

I. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

J. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

K. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

L. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR COMMERCIAL KITCHEN HOOD EXHAUST DUCT

A. Install commercial kitchen hood exhaust ducts without dips and traps that may hold grease, and sloped a minimum of 2 percent to drain grease back to the hood.

B. Install fire-rated access panel assemblies at each change in direction and at maximum intervals of 12 feet in horizontal ducts, and at every floor for vertical ducts, or as indicated on Drawings. Locate access panel on top or sides of duct a minimum of 1-1/2 inches from bottom of duct.

C. Do not penetrate fire-rated assemblies except as allowed by applicable building codes and authorities having jurisdiction.

3.4 DUCT SEALING

A. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible":

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Outdoor, Supply-Air Ducts: Seal Class A.
3. Outdoor, Exhaust Ducts: Seal Class B.
4. Outdoor, Return-Air Ducts: Seal Class A.
5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
7. Unconditioned Space, Exhaust Ducts: Seal Class B.
8. Unconditioned Space, Return-Air Ducts: Seal Class B.
9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than2-Inch wg: Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class B.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 DUCT CLEANING

A. Clean new duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.

1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Division 23 Section "Air Duct Accessories" for access panels and doors.

2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.

3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:

1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.

2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:

1. Air outlets and inlets (registers, grilles, and diffusers).

2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.

3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:

1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.8 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

3.9 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

B. All exterior ductwork shall be double wall construction with internal insulation.

C. All ductwork serving pool rooms shall be Double wall Aluminum Ductwork with interstitial space insulation up to Fabric Duct system as shown on drawings. Duct system within pool area will be fabric duct similar to DuctSox. All supporting materials will be Stainless Steel.

D. Supply Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, and Heat Pumps
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12

2. Ducts Connected to Constant-Volume Air-Handling Units:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12

3. Ducts Connected to Equipment Not Listed Above:
a. Pressure Class: Positive 2-inch wg.
b. Minimum SMACNA Seal Class: B.
c. SMACNA Leakage Class for Rectangular: 6.
d. SMACNA Leakage Class for Round and Flat Oval: 6

E. Return Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Air-Handling Units
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

F. Exhaust Ducts:

1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 24.
 d. SMACNA Leakage Class for Round and Flat Oval: 24.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 24.

 a. Exposed to View: Type 304, stainless-steel sheet, No. 3 finish.
 c. Welded seams and joints.
 d. Pressure Class: Positive or negative 3-inch wg.
 e. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 f. SMACNA Leakage Class: 3.

G. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B
c. SMACNA Leakage Class for Rectangular: 12.
d. SMACNA Leakage Class for Round and Flat Oval: 12

2. Ducts Connected to Air-Handling Units
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

H. Intermediate Reinforcement:

 2. **Reinforcement for ductwork larger than 36" in width shall be provided with double the required number of supports as outlined in SMACNA’S HVAC Duct Construction Standards - Metal and Flexible.**

I. Elbow Configuration:

 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Velocity 1000 fpm or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.
 b. Velocity 1000 to 1500 fpm:
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 c. Velocity 1500 fpm or Higher:
 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
4) Radius-to-Diameter Ratio: 1.5.

b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
c. Round Elbows, 14 Inches and Larger in Diameter: Welded.

J. Branch Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Spin in.

2. Round: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 a. Velocity 1000 fpm or Lower: 90-degree tap.
 b. Velocity 1000 to 1500 fpm: Conical tap.
 c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 233113
SECTION 233300
AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Backdraft and pressure relief dampers.
3. Control dampers.
4. Fire dampers.
5. Smoke dampers.
6. Flange connectors.
7. Turning vanes.
8. Duct-mounted access doors.
10. Flexible ducts.
11. Duct accessory hardware.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.

1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:

 a. Special fittings.
 c. Control damper installations.
 d. Fire-damper and smoke-damper installations, including sleeves; and duct-mounted access doors.
 e. Wiring Diagrams: For power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 QUALITY ASSURANCE

B. Comply with AMCA 500-D testing for damper rating.
PART 2 - PRODUCTS

2.1 MATERIALS

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G60.
 2. Exposed-Surface Finish: Mill phosphatized.

C. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Air Balance Inc.; a division of Mestek, Inc.
 2. American Warming and Ventilating; a division of Mestek, Inc.
 3. Cesco Products; a division of Mestek, Inc.
 4. Duro Dyne Inc.
 5. Greenheck Fan Corporation.
 6. Lloyd Industries, Inc.
 7. Nailor Industries Inc.
 8. NCA Manufacturing, Inc.
 9. Pottorff; a division of PCI Industries, Inc.
 10. Ruskin Company.
 11. SEMCO Incorporated.

B. Description: Gravity balanced.

D. Maximum System Pressure: 1-inch wg.

E. Frame: .063-inch-thick extruded aluminum, with welded corners and mounting flange.

F. Blades: Multiple single-piece blades, center-pivoted, maximum 6-inch width, with sealed edges.

G. Blade Action: Parallel.

H. Blade Seals: Neoprene, mechanically locked.

I. Blade Axles:
 1. Material: Aluminum.
 2. Diameter: 0.20 inch

J. Tie Bars and Brackets: Galvanized steel.
K. Return Spring: Adjustable tension.

L. Bearings: Synthetic pivot bushings.

M. Accessories:

1. Adjustment device to permit setting for varying differential static pressure.
2. Counterweights and spring-assist kits for vertical airflow installations.
3. Electric actuators.
4. Chain pulls.
5. Screen Mounting: Front mounted in sleeve.
 a. Sleeve Thickness: 20-gage minimum.
 b. Sleeve Length: 6 inches minimum.
6. Screen Mounting: Rear mounted.
7. Screen Material: Aluminum.
8. Screen Type: Bird
9. 90-degree stops.

2.3 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Air Balance Inc.; a division of Mestek, Inc.
 b. American Warming and Ventilating; a division of Mestek, Inc.
 c. Flexmaster U.S.A., Inc.
 d. McGill AirFlow LLC.
 e. METALAIRE, Inc.
 f. Nailor Industries Inc.
 g. Pottorff; a division of PCI Industries, Inc.
 h. Ruskin Company.
 i. Trox USA Inc.
 j. Vent Products Company, Inc.

2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Frames:
 a. Hat-shaped, galvanized steel channels, 0.064-inch minimum thickness.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.

5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064 inch thick.

7. Bearings:
 a. Oil-impregnated bronze.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
8. Tie Bars and Brackets: Galvanized steel.

2.4 CONTROL DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Warming and Ventilating; a division of Mestek, Inc.
2. Arrow United Industries; a division of Mestek, Inc.
3. Cesco Products; a division of Mestek, Inc.
4. Duro Dyne Inc.
5. Flexmaster U.S.A., Inc.
7. Lloyd Industries, Inc.
8. M&I Air Systems Engineering; Division of M&I Heat Transfer Products Ltd.
9. McGill AirFlow LLC.
10. METALAIRe, Inc.
11. Metal Form Manufacturing, Inc.
12. Nailor Industries Inc.
13. NCA Manufacturing, Inc.
15. Vent Products Company, Inc.
16. Young Regulator Company.

B. Frames:

1. Angle shaped.
2. Galvanized steel channels, 0.064 inch thick.
3. Mitered and welded corners.

C. Blades:

1. Multiple blade with maximum blade width of 8 inches.
2. Parallel blade design.
4. 0.064 inch thick.

D. Blade Axles: 1/2-inch-diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.

1. Operating Temperature Range: From minus 40 to plus 200 deg F.

E. Bearings:

1. Oil-impregnated bronze
2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
3. Thrust bearings at each end of every blade.

2.5 FIRE DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Air Balance Inc.; a division of Mestek, Inc.
2. Arrow United Industries; a division of Mestek, Inc.
3. Cesco Products; a division of Mestek, Inc.
5. McGill AirFlow LLC.
6. METALAIRE, Inc.
7. Nailor Industries Inc.
8. NCA Manufacturing, Inc.
9. PHL, Inc.
10. Pottorff; a division of PCI Industries, Inc.
11. Prefco; Perfect Air Control, Inc.
12. Ruskin Company.

B. Type: **Static and dynamic**; rated and labeled according to UL 555 by an NRTL.
C. Closing rating in ducts up to 4-inch wg static pressure class and minimum **4000-fpm** velocity.
D. Fire Rating: 1-1/2 and 3 hours.
E. Frame: **Curtain type with blades outside airstream**; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.
F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
1. Minimum Thickness: 0.052 or 0.138 inch thick, as indicated, and of length to suit application.
2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
G. Mounting Orientation: Vertical or horizontal as indicated.
H. Blades: Roll-formed, interlocking, 0.034-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.
I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
J. Heat-Responsive Device: Replaceable, **165 deg F** rated, fusible links.

2.6 **FLANGE CONNECTORS**
A. Manufacturers: Subject to compliance with requirements, **provide products by one of the following**:
1. Ductmate Industries, Inc.
2. Nexus PDQ; Division of Shilco Holdings Inc.
B. Description: **Add-on or roll-formed**, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
C. Material: Galvanized steel.
D. Gage and Shape: Match connecting ductwork.

2.7 **TURNING VANES**
A. Manufacturers: Subject to compliance with requirements, **provide products by one of the following**:
1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. METALAIRE, Inc.
4. SEMCO Incorporated.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."

E. Vane Construction: Double wall.

F. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.8 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. American Warming and Ventilating; a division of Mestek, Inc.
 2. Cesco Products; a division of Mestek, Inc.
 3. Ductmate Industries, Inc.
 5. Greenheck Fan Corporation.
 6. McGill AirFlow LLC.
 7. Nailor Industries Inc.
 8. Pottorff; a division of PCI Industries, Inc.
 9. Ventfabrics, Inc.

 1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.

 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

 3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches: Four hinges and two compression latches with outside and inside handles.
C. Pressure Relief Access Door:

1. Door and Frame Material: Galvanized sheet steel.
2. Door: **Double wall with insulation fill** with metal thickness applicable for duct pressure class.
3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
4. Factory set at **5-inch wg**
5. Doors close when pressures are within set-point range.
6. Hinge: Continuous piano.
7. Latches: Cam.
8. Seal: Neoprene or foam rubber.

2.9 DUCT ACCESS PANEL ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Flame Gard, Inc.
3. 3M.

B. Labeled according to UL 1978 by an NRTL.

C. Panel and Frame: Minimum thickness **0.0428-inch stainless steel**.

D. Fasteners: Stainless steel. Panel fasteners shall not penetrate duct wall.

E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.

F. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.10 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. Ventfabrics, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip **5-3/4 inches** wide attached to 2 strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.

1. Minimum Weight: 26 oz./sq. yd..
2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
3. Service Temperature: Minus 40 to plus 200 deg F.

1. Minimum Weight: 24 oz./sq. yd..
2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
3. Service Temperature: Minus 50 to plus 250 deg F.

G. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.

1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.11 FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flexmaster U.S.A., Inc.
2. McGill AirFlow LLC.

B. Insulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.

1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 10 to plus 160 deg F.
4. Insulation R-value: Comply with ASHRAE/IESNA 90.1

2.12 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
C. Install **backdraft** and **control** dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 1. Install steel volume dampers in steel ducts.
 2. Install aluminum volume dampers in aluminum ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire and smoke dampers according to UL listing.

H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 1. On both sides of duct coils.
 2. Upstream and downstream from duct filters.
 3. At outdoor-air intakes and mixed-air plenums.
 4. At drain pans and seals.
 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors; and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 7. At each change in direction and at maximum 50-foot spacing.
 8. Upstream and downstream from turning vanes.
 9. Control devices requiring inspection.
 10. Elsewhere as indicated.

I. Install access doors with swing against duct static pressure.

J. Access Door Sizes:
 1. One-Hand or Inspection Access: 8 by 5 inches.
 2. Two-Hand Access: 12 by 6 inches.

K. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

L. Install flexible connectors to connect ducts to equipment.

M. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

N. Connect terminal units to supply ducts **directly or** with maximum **12-inch** lengths of flexible duct. Do not use flexible ducts to change directions.

O. Connect diffusers or light troffer boots to ducts **directly or** with maximum **60-inch** lengths of flexible duct clamped or strapped in place.

P. Connect flexible ducts to metal ducts with **draw bands**
Q. Install duct test holes where required for testing and balancing purposes.

R. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
4. Inspect turning vanes for proper and secure installation.

END OF SECTION 233300
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Centrifugal roof ventilators.
 2. Centrifugal wall ventilators.
 3. Ceiling-mounted ventilators.
 4. In-line centrifugal fans.
 5. Propeller fans.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.
 3. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 4. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL ROOF VENTILATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following
 1. Breidert Air Products.
 2. Broan-NuTone LLC.
3. Broan-NuTone LLC; NuTone Inc.
5. Greenheck Fan Corporation.
7. Loren Cook Company.

B. Housing: Removable, spun-aluminum, dome top and outlet baffle; square, one-piece, aluminum base with venturi inlet cone.
 1. Upblast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains and grease collector.
 2. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.

C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.

D. Belt Drives:
 1. Resiliently mounted to housing.
 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 5. Fan and motor isolated from exhaust airstream.

E. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
 3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
 4. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
 5. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.

F. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch-thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.
 2. Overall Height: 18 inches.
 3. Sound Curb: Curb with sound-absorbing insulation.
 5. Metal Liner: Galvanized steel.
 7. Mounting Pedestal: Galvanized steel with removable access panel.
 8. Vented Curb: Unlined with louvered vents in vertical sides.

2.2 CENTRIFUGAL WALL VENTILATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Breidert Air Products.
 2. Broan-NuTone LLC.
 3. Broan-NuTone LLC; NuTone Inc.
 5. Greenheck Fan Corporation.
 7. Loren Cook Company.

B. Housing: Heavy-gage, removable, spun-aluminum, dome top and outlet baffle; venturi inlet cone.
C. Fan Wheel: Aluminum hub and wheel with backward-inclined blades.

D. Belt Drives:
 1. Resiliently mounted to housing.
 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 5. Fan and motor isolated from exhaust airstream.

E. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing,
 factory wired through internal aluminum conduit.
 3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
 4. Wall Grille: Ring type for flush mounting.
 5. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in wall sleeve; factory set
to close when fan stops.
 6. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to
close when fan stops.

2.3 CEILING-MOUNTED VENTILATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Breidert Air Products.
 2. Broan-NuTone LLC.
 3. Broan-NuTone LLC; NuTone Inc.
 5. Greenheck Fan Corporation.
 7. Loren Cook Company.

B. Housing: Steel, lined with acoustical insulation.

C. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall
 be removable for service.

D. Grille: Painted aluminum, louvered grille with flange on intake and thumbscrew attachment to fan
 housing.

E. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-
in.

F. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 3. Time-Delay Switch: Assembly with single-pole rocker switch, timer, and cover plate.
 4. Motion Sensor: Motion detector with adjustable shutoff timer.
 5. Ceiling Radiation Damper: Fire-rated assembly with ceramic blanket, stainless-steel springs, and
 fusible link.
 6. Filter: Washable aluminum to fit between fan and grille.
 8. Manufacturer's standard roof jack or wall cap, and transition fittings.
2.4 **IN-LINE CENTRIFUGAL FANS**

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Breidert Air Products.
 2. Carnes Company.
 5. Loren Cook Company.

B. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.

C. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing; **with wheel, inlet cone, and motor on swing-out service door**.

D. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosure around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.

E. Fan Wheels: Aluminum, airfoil blades welded to aluminum hub.

F. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 2. Volume-Control Damper: Manually operated with quadrant lock, located in fan outlet.
 3. Companion Flanges: For inlet and outlet duct connections.
 4. Fan Guards: 1/2- by 1-inch mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
 5. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.

2.5 **MOTORS**

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."

 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

B. Enclosure Type: Totally enclosed, fan cooled.

2.6 **SOURCE QUALITY CONTROL**

A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.

B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. See Division 07 Section "Roof Accessories" for installation of roof curbs.

B. Ceiling Units: Suspend units from structure; use steel wire or metal straps.

C. Support suspended units from structure using threaded steel rods and spring hangers with vertical-limit stops having a static deflection of 1 inch. Vibration-control devices are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

D. Install units with clearances for service and maintenance.

E. Label units according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Air Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. Verify that shipping, blocking, and bracing are removed.
2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
3. Verify that cleaning and adjusting are complete.
4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
5. Adjust belt tension.
6. Adjust damper linkages for proper damper operation.
7. Verify lubrication for bearings and other moving parts.
8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
10. Shut unit down and reconnect automatic temperature-control operators.
11. Remove and replace malfunctioning units and retest as specified above.

C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Prepare test and inspection reports.

3.4 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

END OF SECTION 233423
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Shutoff, single-duct air terminal units.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For air terminal units. Include plans, elevations, sections, details, and attachments to other work.

C. Field quality-control reports.

D. Operation and maintenance data.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up."

PART 2 - PRODUCTS

2.1 SHUTOFF, SINGLE-DUCT AIR TERMINAL UNITS

A. Manufacturers: Subject to compliance with requirements.

1. Environmental Technologies, Inc.
2. Johnson Control, Incorporated
3. METALAIRE, Inc.
5. Titus.

B. Configuration: Volume-damper assembly inside unit casing with control components inside a protective metal shroud.

C. Casing: 0.034-inch (0.85-mm) steel single wall.
1. Casing Lining: Adhesive attached, 1-inch thick, coated, fibrous-glass duct liner complying with ASTM C 1071, and having a maximum flame-spread index of 25 and a maximum smoke-developed index of 50, for both insulation and adhesive, when tested according to ASTM E 84.
 a. Cover liner with nonporous foil.

2. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.

3. Air Outlet: S-slip and drive connections, size matching inlet size.

4. Access: Removable panels for access to parts requiring service, adjustment, or maintenance; with airtight gasket.

5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

D. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.

1. Maximum Damper Leakage: ARI 880 rated, 2 percent of nominal airflow at 6-inch inlet static pressure.

E. Attenuator Section: 0.034-inch steel sheet.

1. Lining: Adhesive attached, 1-inch thick, coated, fibrous-glass duct liner complying with ASTM C 1071, and having a maximum flame-spread index of 25 and a maximum smoke-developed index of 50, for both insulation and adhesive, when tested according to ASTM E 84.
 a. Cover liner with nonporous foil.

F. Hydronic Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch, and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 220 deg F. Include manual air vent and drain valve.

G. Factory-Mounted and Wired Controls: Electrical components mounted in control box with removable cover. Incorporate single-point electrical connection to power source.

1. Control Transformer: Factory mounted for control voltage on electric and electronic control units with terminal strip in control box for field wiring of thermostat and power source.

2. Wiring Terminations: Fan and controls to terminal strip. Terminal lugs to match quantities, sizes, and materials of branch-circuit conductors. Enclose terminal lugs in terminal box that is sized according to NFPA 70.

3. Disconnect Switch: Factory-mounted, fuse type.

H. Control Panel Enclosure: NEMA 250, Type 1, with access panel sealed from airflow and mounted on side of unit.

I. Electric Controls: 24-V damper actuator with wall-mounted electric thermostat and appropriate mounting hardware.

J. Communication with temperature-control system specified in Division 23 Section "Instrumentation and Control for HVAC."

K. Direct Digital Controls: Bidirectional damper operators and microprocessor-based controller and room sensor. Control devices shall be compatible with temperature controls specified in Division 23 Section "Instrumentation and Control for HVAC" and shall have the following features:

1. Damper Actuator: 24 V, powered closed, powered open.
2. Terminal Unit Controller: Pressure-independent, variable-air-volume controller with electronic airflow transducer with multipoint velocity sensor at air inlet, factory calibrated to minimum and maximum air volumes, and having the following features:

 a. Occupied and unoccupied operating mode.
 b. Remote reset of airflow or temperature set points.
 c. Adjusting and monitoring with portable terminal.
 d. Communication with temperature-control system specified in Division 23 Section "Instrumentation and Control for HVAC."

3. Room Sensor: Wall mounted, with temperature set-point adjustment and access for connection of portable operator terminal.

2.2 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Steel Cables: **Galvanized steel complying with ASTM A 603**

D. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

E. Air Terminal Unit Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

F. Trapeze and Riser Supports: Steel shapes and plates for units with steel casings; aluminum for units with aluminum casings.

2.3 SOURCE QUALITY CONTROL

A. Factory Tests: Test assembled air terminal units according to ARI 880.

 1. Label each air terminal unit with plan number, nominal airflow, maximum and minimum factory-set airflows, **coil type**, and ARI certification seal.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."

B. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.

C. Install wall-mounted thermostats.
3.2 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-acted fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Where practical, install concrete inserts before placing concrete.
 2. Install powder-acted concrete fasteners after concrete is placed and completely cured.
 3. Use powder-acted concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches (100 mm) thick.
 4. Do not use power-acted concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches (100 mm) thick.

C. Hangers Exposed to View: Threaded rod and angle or channel supports.

D. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.3 CONNECTIONS

A. Connect ducts to air terminal units according to Division 23 Section "Metal Ducts." Division 23 Section "Nonmetal Ducts." Provide 24" maximum flexible duct and 36" straight metal duct inlet connection 2" larger than air terminal inlet size.

B. Make connections to air terminal units with flexible connectors complying with requirements in Division 23 Section "Air Duct Accessories."

3.4 IDENTIFICATION

A. Label each air terminal unit with plan number, nominal airflow, and maximum and minimum factory-set airflows. Comply with requirements in Division 23 Section "Identification for HVAC Piping and Equipment" for equipment labels and warning signs and labels.

B. Provide ceiling label on ceiling access door or Tee bar directly below air terminal.

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:
 1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Air terminal unit will be considered defective if it does not pass tests and inspections.
D. Prepare test and inspection reports.

3.6 STARTUP SERVICE

A. Perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Verify that inlet duct connections are as recommended by air terminal unit manufacturer to achieve proper performance.
3. Verify that controls and control enclosure are accessible.
4. Verify that control connections are complete.
5. Verify that nameplate and identification tag are visible.
6. Verify that controls respond to inputs as specified.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air terminal units.

END OF SECTION 233600
SECTION 233713
DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Rectangular and square ceiling diffusers.
 2. Louver face diffusers.
 3. Linear bar diffusers.
 4. Linear slot diffusers.

B. Related Sections:
 1. Division 08 Section "Louvers and Vents" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
 2. Division 23 Section "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

B. Samples: For each exposed product and for each color and texture specified.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

A. Rectangular and Square Ceiling Diffusers:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anemostat Products; a Mestek company.
 b. Carnes.
 c. Krueger.
 d. METALAIRE, Inc.
 e. Nailor Industries Inc.
 f. Price Industries.
 g. Titus.
 h. Tuttle & Bailey.

 2. Devices shall be specifically designed for variable-air-volume flows.
 4. Finish: Baked enamel, white.
 5. Face Size: 24 by 24 inches
6. Face Style: **Four cone**.
7. Mounting: **T-bar**.
8. Pattern: **Fixed**.
9. Dampers: None
10. Accessories:
 a. Equalizing grid.
 b. Plaster ring.
 c. Safety chain.
 d. Wire guard.
 e. Sectorizing baffles.
 f. Operating rod extension.

B. Louver Face Diffuser

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anemostat Products; a Mestek company.
 b. Carnes.
 c. METALAIRE, Inc.
 d. Nailor Industries Inc.
 e. Price Industries.
 f. Titus.

2. Devices shall be specifically designed for variable-air-volume flows.
3. Material: **Aluminum**.
4. Finish: **Baked enamel, white**
5. Face Size: See drawings
6. Mounting: **T-bar**
7. Pattern: **Four-way** core style.
8. Dampers: None
9. Accessories:
 a. Square to round neck adaptor.
 b. Adjustable pattern vanes.
 c. Throw reducing vanes.
 d. Equalizing grid.
 e. Plaster ring.
 f. Safety chain.
 g. Wire guard.
 h. Sectorizing baffles.
 i. Operating rod extension.

2.2 REGISTERS AND GRILLES

A. Adjustable Bar Register:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anemostat Products; a Mestek company.
 b. Carnes.
 c. Krueger.
 d. METALAIRE, Inc.
 e. Nailor Industries Inc.
 f. Price Industries.
 g. Titus.

2. Material: **Aluminum**.
3. Finish: **Baked enamel, white**.
4. Face Blade Arrangement: **Horizontal** spaced 1/2 inch apart.
5. Core Construction: **Removable**.
6. Rear-Blade Arrangement: **Vertical** spaced 1/2 inch apart. See plans.
7. Frame: **1-1/4 inches** wide.
8. Mounting: **Countersunk screw**.
9. Damper Type: None.
10. Accessories:
 a. **Front**-blade gang operator.
 b. Filter.

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.2 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Pleated panel filters.
 2. Rigid cell box filters.
 4. Filter gages.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
B. Shop Drawings: For air filters. Include plans, elevations, sections, details, and attachments to other work.
 1. Show filter rack assembly, dimensions, materials, and methods of assembly of components.
 2. Include setting drawings, templates, and requirements for installing anchor bolts and anchorages.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 QUALITY ASSURANCE

A. ASHRAE Compliance:
 1. Comply with applicable requirements in ASHRAE 62.1, Section 4 - "Outdoor Air Quality"; Section 5 - "Systems and Equipment"; and Section 7 - "Construction and Startup."
 2. Comply with ASHRAE 52.1 for arrestance and ASHRAE 52.2 for MERV for methods of testing and rating air-filter units.
B. Comply with NFPA 90A and NFPA 90B.

PART 2 - PRODUCTS

2.1 PLEATED PANEL FILTERS

A. Description: Factory-fabricated, self-supported, extended-surface, pleated, panel-type, disposable air filters with holding frames.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. AAF International.
b. Camfil Farr.
c. Flanders-Precisionaire.

B. Filter Unit Class: UL 900, Class 1.

C. Media: Interlaced glass or synthetic fibers coated with nonflammable adhesive.
 1. Adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
 3. Media shall be coated with an antimicrobial agent.
 4. Separators shall be bonded to the media to maintain pleat configuration.
 5. Welded wire grid shall be on downstream side to maintain pleat.
 6. Media shall be bonded to frame to prevent air bypass.
 7. Support members on upstream and downstream sides to maintain pleat spacing.

D. Filter-Media Frame: Cardboard frame with perforated metal retainer sealed or bonded to the media.

E. Mounting Frames: Welded galvanized steel, with gaskets and fasteners; suitable for bolting together into built-up filter banks.

2.2 RIGID CELL BOX FILTERS

A. Description: Factory-fabricated, adhesive-coated, disposable, packaged air filters with media perpendicular to airflow, and with holding frames.

 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. AAF International.
 b. Camfil Farr.
 c. Filtration Group.
 d. Flanders-Precisionaire.

B. Filter Unit Class: UL 900, Class 1.

C. Media: Fibrous material constructed so individual pleats are maintained in tapered form under rated-airflow conditions by flexible internal supports.

 1. Adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
 3. Media shall be coated with an antimicrobial agent.
D. Filter-Media Frames: **Galvanized steel.**

E. Mounting Frames: Welded galvanized steel, with gaskets and fasteners; suitable for bolting together into built-up filter banks.

2.3 SIDE-SERVICE HOUSINGS

A. Description: Factory-assembled, side-service housings, constructed of **galvanized steel** with flanges to connect to duct or casing system.

1. Manufacturers: Subject to compliance with requirements, **provide products by one of the following:**
 - a. AAF International.
 - b. Camfil Farr.
 - c. Filtration Group.
 - d. Flanders-Precisionaire.

B. Prefilters: Integral tracks to accommodate 2-inch deep, disposable filters.

C. Access Doors: **Hinged, with continuous** gaskets on perimeter and positive-locking devices, and arranged so filter cartridges can be loaded from either access door.

D. Sealing: Incorporate positive-sealing gasket material on channels to seal top and bottom of filter cartridge frames and to prevent bypass of unfiltered air.

2.4 FILTER GAGES

A. Diaphragm-type gage with dial and pointer in metal case, vent valves, black figures on white background, and front recalibration adjustment.

1. Basis-of-Design Product: Subject to compliance with requirements, provide **product indicated on Drawings** or comparable product by one of the following:
 - a. Airguard.
 - b. Dwyer Instruments, Inc.

2. Diameter: **4-1/2 inches.**

3. Scale Range for Filter Media Having a Recommended Final Resistance of 0.5-Inch wg or Less: 0- to 0.5-inch wg.

4. Scale Range for Filter Media Having a Recommended Final Resistance of 0.5- to 1.0-Inch wg or Less: 0- to 1.0-inch wg.

B. Accessories: Static-pressure tips, tubing, gage connections, and mounting bracket.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Position each filter unit with clearance for normal service and maintenance. Anchor filter holding frames to substrate.

B. Install filters in position to prevent passage of unfiltered air.

C. Install filter gage for each filter bank.

D. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing with new, clean filters.

E. Install filter-gage, static-pressure taps upstream and downstream from filters. Install filter gages on filter banks with separate static-pressure taps upstream and downstream from filters. Mount filter gages on outside of filter housing or filter plenum in an accessible position. Adjust and level inclined gages.

F. Coordinate filter installations with duct and air-handling-unit installations.

3.2 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. Test for leakage of unfiltered air while system is operating.

C. Air filter will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.3 CLEANING

A. After completing system installation and testing, adjusting, and balancing of air-handling and air-distribution systems, clean filter housings and install new filter media.

END OF SECTION 234100
SECTION 237313
MODULAR INDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Indoor Variable-air-volume air-handling units.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design vibration isolation, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Casing panels shall be self-supporting and capable of withstanding 133 percent of internal static pressures indicated, without panel joints exceeding a deflection of L/200 where “L” is the unsupported span length within completed casings.

1.4 SUBMITTALS

A. Product Data: For each air-handling unit indicated.

1. Unit dimensions and weight.
2. Cabinet material, metal thickness, finishes, insulation, and accessories.
3. Fans:
 a. Certified fan-performance curves with system operating conditions indicated.
 b. Certified fan-sound power ratings.
 c. Fan construction and accessories.
 d. Motor ratings, electrical characteristics, and motor accessories.
4. Certified coil-performance ratings with system operating conditions indicated.
5. Dampers, including housings, linkages, and operators.
6. Filters with performance characteristics.

B. Delegated-Design Submittal: For vibration isolation indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
2. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.
C. Coordination Drawings: Floor plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Mechanical-room layout and relationships between components and adjacent structural and mechanical elements.
 2. Support location, type, and weight.

D. Source quality-control reports.

E. Operation and Maintenance Data: For air-handling units to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of air-handling units and components.

C. ARI Certification: Air-handling units and their components shall be factory tested according to ARI 430, "Central-Station Air-Handling Units," and shall be listed and labeled by ARI.

D. Comply with NFPA 70.

1.6 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate sizes and locations of structural-steel support members, if any, with actual equipment provided.

1.7 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Gaskets: One set(s) for each access door.
 2. Fan Belts: One set(s) for each air-handling unit fan.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Lennox
 2. Trane
 3. Carrier
 4. AAON, Inc
 5. York

2.2 GENERAL REQUIREMENTS
A. Panelized System
1. Unit shall be constructed in panels and components for onsite assembly and installation.
2. All components shall be assembled on site and tested to meet design criteria and pressures.
3. Factory trained personnel required on site for installation.

2.3 UNIT CASINGS
A. General Fabrication Requirements for Casings:
1. Panel system designed for assembly on site.
2. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
3. Casing Joints: Sheet metal screws or pop rivets.
4. Sealing: Seal all joints with water-resistant sealant.
5. Factory Finish for Steel and Galvanized-Steel Casings: Apply manufacturer's standard primer immediately after cleaning and pretreating.
6. Factory Finish for Steel and Galvanized-Steel Casings: Immediately after cleaning and pretreating, apply manufacturer's standard two-coat, baked-on enamel finish, consisting of prime coat and thermosetting topcoat.
7. Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.
8. Inner Casing Fabrication Requirements:
 a. Inside Casing: Galvanized steel, 0.034 inch.
 a. Exterior Casing Thickness: 0.052 inch thick

B. Casing Insulation and Adhesive:
1. Materials: ASTM C 1071, Type I.
2. Insulation meeting a value of R-13.
3. Location and Application: Encased between outside and inside casing.

C. Inspection and Access Panels and Access Doors:
1. Panel and Door Fabrication: Formed and reinforced, single- or double-wall and insulated panels of same materials and thicknesses as casing.
2. Inspection and Access Panels:
 a. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.
3. Access Doors:
 a. Hinges: A minimum of two ball-bearing hinges and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Fabricate windows in doors of double-glazed, wire-reinforced safety glass with an air space between panes and sealed with interior and exterior rubber seals.
 d. Size: At least 24 by 60 inches.
4. Locations and Applications:
 a. Fan Section: Doors.
 b. Access Section: Doors.
 c. Coil Section: Inspection and access panel.
 d. Damper Section: Doors.
e. Filter Section: Doors large enough to allow periodic removal and installation of filters.

5. Service Light: 100-W vaporproof fixture in each section accessed with door, with switched junction box located outside adjacent to door.

D. Condensate Drain Pans:

1. Fabricated with slopes in at least 2 planes to collect condensate from cooling coils (including coil piping connections, coil headers and return bends, and a minimum of 6 inches downstream from cooling-coil face) and from humidifiers.
2. Formed sections.
3. Double-wall, **stainless-steel sheet (IAQ)** with space between walls filled with foam insulation and moisture-tight seal.
4. A minimum of 2 inches deep, and complying with requirements in ASHRAE 62.1.
5. Drain Connections: Both ends of pan with NPS 1 threaded nipple.
6. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

E. Air-Handling-Unit Mounting Frame: Formed galvanized-steel channel or structural channel supports, designed for low deflection, welded with integral lifting lugs.

2.4 FAN, DRIVE, AND MOTOR SECTION

A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum-rated fan speed and motor horsepower.

1. Shafts: Designed for continuous operation at maximum-rated fan speed and motor horsepower, and with field-adjustable alignment.
 a. Turned, ground, and polished hot-rolled steel with keyway. Ship with a protective coating of lubricating oil.
 b. Designed to operate at no more than 70 percent of first critical speed at top of fan's speed range.
 c. Unit shall include direct drive, unhoused, backward curved, plenum supply fans.

B. Plug Fans Housings: Steel cabinet; fabricated without fan scroll and volute housing.

C. Airfoil, Centrifugal Fan Wheels: Smooth-curved inlet flange, backplate, and hollow die-formed airfoil-shaped blades continuously welded at tip flange and backplate; cast-iron or cast-steel hub riveted to backplate and fastened to shaft with set screws.

D. Fan Shaft Bearings:

1. Prelubricated and Sealed, Ball Bearings: Self-aligning, pillow-block type with a rated life of 120,000 hours according to ABMA 9.

E. Belt Drives: Factory mounted, with adjustable alignment and belt tensioning, and with 1.5 service factor based on fan motor.

1. Pulleys: Cast iron or cast steel with split, tapered bushing; dynamically balanced at factory.
2. Motor Pulleys: Adjustable pitch for use with 5-hp motors and smaller; fixed pitch for use with motors larger than 5 hp. Select pulley size so pitch adjustment is at the middle of adjustment range at fan design conditions.
3. Belts: Oil resistant, nonsparking, and nonstatic; in matched sets for multiple-belt drives.
4. Belt Guards: Comply with requirements specified by OSHA and fabricate according to SMACNA's "HVAC Duct Construction Standards"; 0.1046-inch- thick, 3/4-inch diamond-mesh wire screen, welded to steel angle frame; prime coated.
F. Internal Vibration Isolation: Fans shall be factory mounted with manufacturer's standard vibration isolation mounting devices having a minimum static deflection of 1 inch.

G. Motor: Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 1. Enclosure Type: Totally enclosed, fan cooled.
 2. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 3. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
 4. Mount unit-mounted disconnect switches on exterior of unit.
 5. Inverter duty for service with variable frequency drives.

H. Variable Frequency Controllers:
 1. Description: NEMA ICS 2, IGBT, PWM, VFC; listed and labeled as a complete unit and arranged to provide variable speed of an NEMA MG 1, Design B, 3-phase induction motor by adjusting output voltage and frequency.
 2. Output Rating: 3-phase; 6 to 60 Hz, with voltage proportional to frequency throughout voltage range.
 3. Unit Operating Requirements:
 a. Input ac voltage tolerance of 380 to 500 V, plus or minus 10 percent.
 b. Input frequency tolerance of 50/60 Hz, plus or minus 6 percent.
 c. Minimum Efficiency: 96 percent at 60 Hz, full load.
 d. Minimum Displacement Primary-Side Power Factor: 96 percent.
 e. Overload Capability: 1.1 times the base load current for 60 seconds; 2.0 times the base load current for 3 seconds.
 f. Starting Torque: 100 percent of rated torque or as indicated.
 g. Speed Regulation: Plus or minus 1 percent.
 4. Isolated control interface to allow controller to follow control signal over an 11:1 speed range.
 5. Internal Adjustability Capabilities:
 a. Minimum Speed: 5 to 25 percent of maximum rpm.
 b. Maximum Speed: 80 to 100 percent of maximum rpm.
 c. Acceleration: 2 to a minimum of 22 seconds.
 d. Deceleration: 2 to a minimum of 22 seconds.
 e. Current Limit: 50 to a minimum of 110 percent of maximum rating.
 6. Self-Protection and Reliability Features:
 a. Input transient protection by means of surge suppressors.
 b. Undervoltage and overvoltage trips; inverter overtemperature, overload, and overcurrent trips.
 c. Adjustable motor overload relays capable of NEMA ICS 2, Class 10 performance.
 d. Notch filter to prevent operation of the controller-motor-load combination at a natural frequency of the combination.
 e. Instantaneous line-to-line and line-to-ground overcurrent trips.
 f. Loss-of-phase protection.
 g. Reverse-phase protection.
 h. Short-circuit protection.
 i. Motor overtemperature fault.
 7. Automatic Reset/Restart: Attempts three restarts after controller fault or on return of power after an interruption and before shutting down for manual reset or fault correction. Bidirectional autospeed search shall be capable of starting into rotating loads spinning in either direction and returning motor to set speed in proper direction, without damage to controller, motor, or load.
8. Power- Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped.
9. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.
11. Door-mounted LED status lights shall indicate the following conditions:
 a. Power on.
 b. Run.
 c. Overvoltage.
 d. Line fault.
 e. Overcurrent.
 f. External fault.
13. Meters or digital readout devices and selector switch, mounted flush in controller door and connected to indicate the following controller parameters:
 a. Output frequency (Hertz).
 b. Motor speed (rpm).
 c. Motor status (running, stop, fault).
 d. Motor current (ampere).
 e. Motor torque (percent).
 f. Fault or alarming status (code).
 g. Proportional-integral-derivative (PID) feedback signal (percent).
 h. DC-link voltage (volts direct current).
 i. Set-point frequency (Hertz).
 j. Motor output voltage (volts).
14. Control Signal Interface:
 a. Electric Input Signal Interface: A minimum of 2 analog inputs (0 to 10 V or 0/4-20 mA) and 6 programmable digital inputs.
 b. Remote signal inputs capable of accepting any of the following speed-setting input signals from the control system:
 1) 0 to 10-V dc.
 2) 0-20 or 4-20 mA.
 3) Potentiometer using up/down digital inputs.
 4) Fixed frequencies using digital inputs.
 5) RS485.
 6) Keypad display for local hand operation.
 c. Output signal interface with a minimum of 1 analog output signal (0/4-20 mA), which can be programmed to any of the following:
 1) Output frequency (Hertz).
 2) Output current (load).
 3) DC-link voltage (volts direct current).
 4) Motor torque (percent).
 5) Motor speed (rpm).
 6) Set-point frequency (Hertz).
 d. Remote indication interface with a minimum of 2 dry circuit relay outputs (120-V ac, 1 A) for remote indication of the following:
 1) Motor running.
 2) Set-point speed reached.
3) Fault and warning indication (overtemperature or overcurrent).
4) High- or low-speed limits reached.

15. Communications: RS485 interface allows VFC to be used with an external system within a multidrop LAN configuration. Interface shall allow all parameter settings of VFC to be programmed via BMS control. Provide capability for VFC to retain these settings within the nonvolatile memory.

16. Integral Disconnecting Means: NEMA AB 1, instantaneous-trip circuit breaker with lockable handle.

17. Accessories:
 a. Devices shall be factory installed in controller enclosure unless otherwise indicated.
 b. Factory mounted and installed transformer to power 24 volt devices (such as fire/smoke damper operators) associated with each respective air handling unit. Refer to plans for quantity of these devices and coordination of appropriate transformer size. All combination fire/smoke dampers (and interlocked fans, EXCLUDING isolation exhaust fans) shall be shut down when air handler is de-energized.
 d. Standard Displays:
 1) Output frequency (Hertz).
 2) Set-point frequency (Hertz).
 3) Motor current (amperes).
 4) DC-link voltage (volts direct current).
 5) Motor torque (percent).
 6) Motor speed (rpm).
 7) Motor output voltage (volts).

2.5 COIL SECTION

A. General Requirements for Coil Section:
 1. Comply with ARI 410.
 2. Fabricate coil section to allow removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
 3. Coils shall not act as structural component of unit.
 4. Coils shall be minimum 8 row, 120 fins/foot and .0075-inch fn thickness with minimum 5/8" OD copper tubes mechanically bonded to aluminum fins with cast iron or schedule 40 steel headers.

2.6 AIR FILTRATION SECTION

A. General Requirements for Air Filtration Section:
 1. Comply with NFPA 90A.
 2. Provide minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 3. Provide filter holding frames arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.

B. Extended-Surface, Disposable Panel Filters:
 1. Factory-fabricated, dry, extended-surface type.
 2. Thickness: 2 inches.
 4. Initial Resistance: .5".
 5. Recommended Final Resistance: 1".
 8. Media: Fibrous material formed into deep-V-shaped pleats with antimicrobial agent and held by self-supporting wire grid.
10. Mounting Frames: Welded, galvanized steel, with gaskets and fasteners, suitable for bolting together into built-up filter banks.

C. Filter Gage:
1. 3-1/2-inch- diameter, diaphragm-actuated dial in metal case.
2. Vent valves.
3. Black figures on white background.
4. Front recalibration adjustment.
5. 2 percent of full-scale accuracy.
6. Range: 0- to 2.0-inch wg.
7. Accessories: Static-pressure tips with integral compression fittings, 1/4-inch plastic tubing, and 2- or 3-way vent valves.

2.7 DAMPERS

A. General Requirements for Dampers: Leakage rate, according to AMCA 500, "Laboratory Methods for Testing Dampers for Rating," shall not exceed 2 percent of air quantity at 2000-fpm face velocity through damper and 4-inch wg pressure differential.

B. Electronic Damper Operators:
1. Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
2. Electronic damper position indicator shall have visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.
3. Operator Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC."
 b. Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 c. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
4. Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.
5. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running and breakaway torque of 150 in. x lbf.
6. Size dampers for running torque calculated as follows:
 b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
 c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft. of damper.
 d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. of damper.
 e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
 f. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.
8. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
11. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.
12. Proportional Signal: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
13. Temperature Rating: Minus 22 to plus 122 deg F.

C. Outdoor- and Return-Air Dampers: Low-leakage, double-skin, airfoil-blade, aluminum dampers with compressible jamb seals and extruded-vinyl blade edge seals in parallel-blade arrangement with cadmium-plated steel operating rods rotating in sintered bronze or nylon bearings mounted in a single aluminum frame, and with operating rods connected with a common linkage. Leakage rate shall not exceed 5 cfm/sq. ft. at 1-inch wg and 9 cfm/sq. ft. at 4-inch wg.

D. Combination Filter and Mixing Section:
 1. Cabinet support members shall hold 2-inch-thick, pleated, flat, permanent or throwaway filters.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine casing insulation materials and filter media before air-handling unit installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for hydronic, and condensate drainage piping systems and electrical services to verify actual locations of connections before installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Equipment Mounting: Install air-handling units on concrete bases without vibration isolation devices. Secure units to anchor bolts installed in concrete bases. Comply with requirements for concrete bases specified in Division 03 Section "Cast-in-Place Concrete." Comply with requirements for vibration isolation devices specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
 1. Minimum Deflection: 1/2 inch.
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 3. Install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 5. Install anchor bolts to elevations required for proper attachment to supported equipment.

B. Arrange installation of units to provide access space around air-handling units for service and maintenance.

C. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing, with new, clean filters.

D. Install filter-gage, static-pressure taps upstream and downstream of filters. Mount filter gages on outside of filter housing or filter plenum in accessible position. Provide filter gages on filter banks, installed with separate static-pressure taps upstream and downstream of filters.
3.3 CONNECTIONS

A. Comply with requirements for piping specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to air-handling unit to allow service and maintenance.

C. Connect condensate drain pans using NPS 1-1/4, ASTM B 88, Type M copper tubing. Extend to nearest equipment or floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.

D. Chilled-Water Piping: Comply with applicable requirements in Division 23 Section "Hydronic Piping." Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.

E. Refrigerant Piping: Comply with applicable requirements in Division 23 Section "Refrigerant Piping." Install shutoff valve and union or flange at each supply and return connection.

F. Connect duct to air-handling units with flexible connections. Comply with requirements in Division 23 Section "Air Duct Accessories."

3.4 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Verify that shipping, blocking, and bracing are removed.
3. Verify that unit is secure on mountings and supporting devices and that connections to piping, ducts, and electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers, and switches.
4. Verify proper motor rotation direction, free fan wheel rotation, and smooth bearing operations. Reconnect fan drive system, align belts, and install belt guards.
5. Verify that bearings, pulleys, belts, and other moving parts are lubricated with factory-recommended lubricants.
6. Verify that outdoor- and return-air mixing dampers open and close, and maintain minimum outdoor-air setting.
7. Comb coil fins for parallel orientation.
8. Install new, clean filters.
9. Verify that manual and automatic volume control and fire and smoke dampers in connected duct systems are in fully open position.

B. Starting procedures for air-handling units include the following:

1. Energize motor; verify proper operation of motor, drive system, and fan wheel. Adjust fan to indicated rpm. Replace fan and motor pulleys as required to achieve design conditions.
2. Measure and record motor electrical values for voltage and amperage.
3. Manually operate dampers from fully closed to fully open position and record fan performance.

3.5 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.

3.6 CLEANING
A. After startup service, clean air-handling units internally on completion of installation, according to manufacturer's written instructions. Clean fan interiors to remove foreign material and construction dirt and dust. Vacuum clean fan wheels, cabinets, and coils entering air face.

B. After completing system installation and testing, adjusting, and balancing air-handling unit and air-distribution systems, clean filter housings and install new, clean filters.

END OF SECTION 237313
SECTION 238126
SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.3 INFORMATIONAL SUBMITTALS
A. Warranty: Sample of special warranty.

1.4 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.

1.5 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. ASHRAE Compliance:
 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
 2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 - "Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - "Procedures," and Section 7 - "Construction and System Start-up."
C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

1.6 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
 1. Warranty Period:
a. For Compressor: Five year(s) from date of Substantial Completion.
b. For Parts: Five year(s) from date of Substantial Completion.
c. For Labor: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Lennox International Inc.
3. Mitsubishi Electric & Electronics USA, Inc.; HVAC Advanced Products Division.
4. Trane; a business of American Standard companies.
5. YORK; a Johnson Controls company.
6. Daikin / McQuay
7. LG Air Conditioning Technologies.

2.2 INDOOR UNITS (5 TONS OR LESS)

A. Concealed Evaporator-Fan Components:

1. Chassis: Galvanized steel with flanged edges, removable panels for servicing, and insulation on back of panel.
2. Insulation: Faced, glass-fiber duct liner.
4. Water Coil: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch; leak tested to 300 psig underwater; with a two-position control valve.
6. Fan: Forward-curved, double-width wheel of galvanized steel; directly connected to motor.
7. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 c. Wiring Terminations: Connect motor to chassis wiring with plug connection.
8. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
10. Condensate Drain Pans:
 a. Fabricated with two percent slope to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends), and to direct water toward drain connection.
 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1
 2) Depth: A minimum of 2 inches deep.
 b. Double-wall, galvanized steel sheet with space between walls filled with foam insulation and moisture-tight seal.
c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on both ends of pan.
 1) Minimum Connection Size: NPS 1

d. Pan-Top Surface Coating: Asphaltic waterproofing compound.

e. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

B. Wall-Mounted, Evaporator-Fan Components:

1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.

2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermal-expansion valve. Comply with ARI 210/240.

5. Fan Motors:

 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."

 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.

 c. Enclosure Type: Totally enclosed, fan cooled.

 d. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.

 e. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

 f. Mount unit-mounted disconnect switches on exterior of unit.

6. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

7. Condensate Drain Pans:

 a. Fabricated with two percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.

 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1

 2) Depth: A minimum of 1 inch deep.

 c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.

 1) Minimum Connection Size: NPS 1.

 d. Pan-Top Surface Coating: Asphaltic waterproofing compound.

8. Air Filtration Section:

 a. General Requirements for Air Filtration Section:

 1) Comply with NFPA 90A.

 2) Minimum Arrestance: According to ASHRAE 52.1 and MERV according to ASHRAE 52.2.
3) Filter-Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.

b. Disposable Panel Filters:

1) Factory-fabricated, viscous-coated, flat-panel type.
2) Thickness: 1 inch
3) Arrestance according to ASHRAE 52.1: 80.
4) Merv according to ASHRAE 52.2: 8.
5) Media: Interlaced glass fibers sprayed with nonflammable adhesive
6) Frame: Galvanized steel, with metal grid on outlet side, steel rod grid on inlet side, and hinged; with pull and retaining handles.

2.3 OUTDOOR UNITS (5 TONS OR LESS)

A. Air-Cooled, Compressor-Condenser Components:

1. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 a. Compressor Type: Scroll.
 b. Two-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.
 c. Refrigerant Charge: R-410A.
 d. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 210/240.
4. Fan: Aluminum-propeller type, directly connected to motor.
5. Motor: Permanently lubricated, with integral thermal-overload protection.
6. Low Ambient Kit: Permits operation down to 45 deg F.

2.4 ACCESSORIES

A. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:
 1. Compressor time delay.
 2. 24-hour time control of system stop and start.
 3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
 4. Fan-speed selection including auto setting.

B. Automatic-reset timer to prevent rapid cycling of compressor.

C. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.

D. Additional Monitoring:
 1. Monitor constant and variable motor loads.
3. Monitor economizer cycle.
4. Monitor cooling load.
5. Monitor air distribution static pressure and ventilation air volumes.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install units level and plumb.
B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
C. Install ground-mounted, compressor-condenser components on 4-inch-thick, reinforced concrete base that is 4 inches larger, on each side, than unit. Concrete, reinforcement, and formwork are specified in Division 03 Section "Cast-in-Place Concrete." Coordinate anchor installation with concrete base.
D. Install ground-mounted, compressor-condenser components on polyethylene mounting base.
E. Install roof-mounted, compressor-condenser components on equipment supports specified in Division 07 Section "Roof Accessories." Anchor units to supports with removable, cadmium-plated fasteners.
F. Install seismic restraints.
G. Install compressor-condenser components on restrained, spring isolators with a minimum static deflection of 1 inch. See Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
H. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

A. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.
B. Duct Connections: Duct installation requirements are specified in Division 23 Section "Metal Ducts" Drawings indicate the general arrangement of ducts. Connect supply and return ducts to split-system air-conditioning units with flexible duct connectors. Flexible duct connectors are specified in Division 23 Section "Air Duct Accessories."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
B. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
C. Remove and replace malfunctioning units and retest as specified above.

D. Prepare test and inspection reports.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 238126
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes fan-coil units and accessories.

1.3 DEFINITIONS

A. BAS: Building automation system.

1.4 SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

C. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:

1. Ceiling suspension components.
2. Structural members to which fan-coil units will be attached.
3. Method of attaching hangers to building structure.
4. Size and location of initial access modules for acoustical tile.
5. Items penetrating finished ceiling, including the following:

 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.

6. Perimeter moldings for exposed or partially exposed cabinets.

D. Samples for Initial Selection: For units with factory-applied color finishes.

E. Samples for Verification: For each type of fan-coil unit indicated.
F. Manufacturer Seismic Qualification Certification: Submit certification that fan-coil units, accessories, and components will withstand seismic forces defined in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment." Include the following:

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

G. Operation and Maintenance Data: For fan-coil units to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:

1. Maintenance schedules and repair part lists for motors, coils, integral controls, and filters.

H. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.6 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of condensing units that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Compressor failure.
 b. Condenser coil leak.

2. Warranty Period: Five years from date of Substantial Completion.

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fan-Coil-Unit Filters: Furnish \(\mathbf{2} \) spare filters for each filter installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

B. In the Fan-Coil-Unit Schedule where titles below are column or row headings that introduce lists, the following requirements apply to product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.

2.2 FAN-COIL UNITS

A. Available Manufacturers:

2. Lennox International Inc.
3. Mitsubishi Electric & Electronics USA, Inc.; HVAC Advanced Products Division.
4. Trane; a business of American Standard companies.
5. YORK; a Johnson Controls company.
6. Daikon / McQuay

B. Description: Factory-packaged and -tested units rated according to ARI 440, ASHRAE 33, and UL 1995.

C. Coil Section Insulation: 1/2-inch thick, coated glass fiber complying with ASTM C 1071 and attached with adhesive complying with ASTM C 916.

1. Fire-Hazard Classification: Insulation and adhesive shall have a combined maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E 84.

D. Main and Auxiliary Drain Pans: Insulated galvanized steel with plastic liner formed to slope from all directions to the drain connection as required by ASHRAE 62. Drain pans shall be removable.

E. Chassis: Galvanized steel where exposed to moisture. Floor-mounting units shall have leveling screws.

F. Cabinet: Steel with baked-enamel finish in manufacturer's standard paint color as selected by Architect.

1. Vertical Unit Front Panels: Removable, steel, with steel discharge grille and channel-formed edges, cam fasteners, and insulation on back of panel.
2. Steel recessing flanges for recessing fan-coil units into ceiling or wall.

G. Outdoor-Air Damper: Galvanized-steel blades with edge and end seals and nylon bearings; with electronic, actuators.

H. Filters: Minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.

1. Pleated Cotton-Polyester Media: 90 percent arrestance and 7 MERV.

I. Hydronic Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch, rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 220 deg F. Include manual air vent and drain valve.

J. Fan and Motor Board: Removable.

1. Fan: Forward curved, double width, centrifugal; directly connected to motor. Thermoplastic or painted-steel wheels, and aluminum, painted-steel, or galvanized-steel fan scrolls.
2. Motor: Permanently lubricated multispeed; resiliently mounted on motor board. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."

3. Wiring Termination: Connect motor to chassis wiring with plug connection.

K. Factory, Hydronic Piping Package: ASTM B 88, Type L copper tube with wrought-copper fittings and brazed joints. Label piping to indicate service, inlet, and outlet.

1. Three-way, modulating control valve for chilled-water coil.
2. Hose Kits: Minimum 400-psig working pressure, and operating temperatures from 33 to 211 deg F. Tag hose kits to equipment designations.
 a. Length: 36 inches.
 b. Minimum Diameter: Equal to fan-coil-unit connection size.

3. Two-Piece Ball Valves: Bronze body with full-port, chrome-plated bronze ball; PTFE or TFE seats; and 600-psig minimum CWP rating and blowout-proof stem.

4. Calibrated-Orifice Balancing Valves: Bronze body, ball type; 125-psig working pressure, 250-deg F maximum operating temperature; with calibrated orifice or venturi, connections for portable differential pressure meter with integral seals, threaded ends, and equipped with a memory stop to retain set position.

5. Automatic Flow-Control Valve: Brass or ferrous-metal body; 300-psig working pressure at 250 deg F, with removable, corrosion-resistant, tamperproof, self-cleaning piston spring; factory set to maintain constant indicated flow with plus or minus 10 percent over differential pressure range of 2 to 80 psig.

6. Y-Pattern Hydronic Strainers: Cast-iron body (ASTM A 126, Class B); 125-psig working pressure; with threaded connections, bolted cover, perforated stainless-steel basket, and bottom drain connection. Include minimum NPS 1/2 hose-end, full-port, ball-type blowdown valve in drain connection.

L. Basic Unit Controls:

1. Control voltage transformer.

2. Unit-mounted thermostat with the following features:
 b. Fan on-auto switch.
 c. Fan-speed switch.
 d. Automatic changeover.
 e. Adjustable deadband.
 f. Concealed set point.
 g. Concealed indication.
 h. Degree F indication.

3. Unit-mounted temperature sensor.
 a. Input data includes room temperature, and humidity set points and occupied and unoccupied periods.
 b. Output data includes room temperature and humidity, supply-air temperature, entering-water temperature, operating mode, and status.

M. DDC Terminal Controller:

1. Scheduled Operation: Occupied and unoccupied periods on seven-day clock with a minimum of four programmable periods per day.

2. Unoccupied Period Override Operation: Two hours.

3. Unit Supply-Air Fan Operation:
 a. Occupied Periods: Fan runs continuously.
 b. Unoccupied Periods: Fan cycles to maintain room setback temperature.
4. Hydronic-Cooling-Coil Operation:
 a. Occupied Periods: Modulate control valve to maintain room temperature.
 b. Unoccupied Periods: Close control valve.

5. Controller shall have volatile-memory backup.

N. Electrical Connection: Factory wire motors and controls for a single electrical connection.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine areas to receive fan-coil units for compliance with requirements for installation tolerances and other conditions affecting performance.
 B. Examine roughing-in for piping and electrical connections to verify actual locations before fan-coil-unit installation.
 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Install fan-coil units level and plumb.
 B. Install fan-coil units to comply with NFPA 90A.
 C. Install new filters in each fan-coil unit within two weeks after Substantial Completion.

3.3 CONNECTIONS
 A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties. Specific connection requirements are as follows:
 1. Install piping adjacent to machine to allow service and maintenance.
 2. Connect piping to fan-coil-unit factory hydronic piping package. Install piping package if shipped loose.
 B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
 C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

END OF SECTION 238219
SECTION 262923
VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes solid-state, PWM, VFCs for speed control of three-phase, squirrel-cage induction motors.

B. Related Sections include the following:
 1. Division 26 Section "Electrical Power Monitoring and Control" for monitoring and control of motor circuits.
 2. Division 26 Section "Transient-Voltage Suppression for Low-Voltage Electrical Power Circuits" for low-voltage power, control, and communication surge suppressors.

1.3 DEFINITIONS

A. BMS: Building management system.

B. IGBT: Integrated gate bipolar transistor.

C. LAN: Local area network.

D. PID: Control action, proportional plus integral plus derivative.

E. PWM: Pulse-width modulated.

F. VFC: Variable frequency controller.

1.4 SUBMITTALS

A. Product Data: For each type of VFC. Include dimensions, mounting arrangements, location for conduit entries, shipping and operating weights, and manufacturer's technical data on features, performance, electrical ratings, characteristics, and finishes.

B. Shop Drawings: For each VFC.
 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 a. Each installed unit's type and details.
 b. Nameplate legends.
 c. Short-circuit current rating of integrated unit.
d. Listed and labeled for series rating of overcurrent protective devices in combination controllers by an NRTL acceptable to authorities having jurisdiction.
e. Features, characteristics, ratings, and factory settings of each motor-control center unit.

2. Wiring Diagrams: Power, signal, and control wiring for VFCs. Provide schematic wiring diagram for each type of VFC.

C. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around VFCs where pipe and ducts are prohibited. Show VFC layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.

D. Manufacturer Seismic Qualification Certification: Submit certification that VFCs, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

E. Qualification Data: For manufacturer.

F. Field quality-control test reports.

G. Operation and Maintenance Data: For VFCs, all installed devices, and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:

1. Routine maintenance requirements for VFCs and all installed components.
2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.

H. Load-Current and Overload-Relay Heater List: Compile after motors have been installed and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.

I. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that dip switch settings for motor running overload protection suit actual motor to be protected.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 100 miles (160 km) of Project site, a service center capable of providing training, parts, and emergency maintenance and repairs.

B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

C. Source Limitations: Obtain VFCs of a single type through one source from a single manufacturer.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with NFPA 70.

F. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFCs, minimum clearances between VFCs, and adjacent surfaces and other items. Comply with indicated maximum dimensions and clearances.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver VFCs in shipping splits of lengths that can be moved past obstructions in delivery path as indicated.

B. Store VFCs indoors in clean, dry space with uniform temperature to prevent condensation. Protect VFCs from exposure to dirt, fumes, water, corrosive substances, and physical damage.

C. If stored in areas subject to weather, cover VFCs to protect them from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside controllers; install electric heating of sufficient wattage to prevent condensation.

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation, capable of driving full load without derating, under the following conditions, unless otherwise indicated:
 1. Ambient Temperature: 0 to 40 deg C.
 2. Humidity: Less than 90 percent (noncondensing).
 3. Altitude: Not exceeding 3300 feet (1005 m).

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFCs, including clearances between VFCs, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

1.8 COORDINATION

A. Coordinate layout and installation of VFCs with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03 Section "Cast-in-Place Concrete."

C. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

D. Coordinate features of VFCs, installed units, and accessory devices with pilot devices and control circuits to which they connect.
Coordinate features, accessories, and functions of each VFC and each installed unit with ratings and characteristics of supply circuit, motor, required control sequence, and duty cycle of motor and load.

1.9 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Spare Fuses: Furnish one spare for every five installed, but no fewer than one set of three of each type and rating.
2. Indicating Lights: Two of each type installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Baldor Electric Company (Graham).

2.2 VARIABLE FREQUENCY CONTROLLERS

A. Description: NEMA ICS 2, IGBT, PWM, VFC; listed and labeled as a complete unit and arranged to provide variable speed of an NEMA MG 1, Design B, 3-phase induction motor by adjusting output voltage and frequency.

1. Provide unit suitable for operation of premium-efficiency motor as defined by NEMA MG 1.

B. Design and Rating: Match load type such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.

C. Output Rating: 3-phase; 6 to 60 Hz, with voltage proportional to frequency throughout voltage range.

D. Unit Operating Requirements:

1. Input ac voltage tolerance of 208 V, plus or minus 5 380 to 500 V, plus or minus 10 525 to 575 V, plus or minus 10 percent.
2. Input frequency tolerance of 50/60 Hz, plus or minus 6 percent.
3. Minimum Efficiency: 96 percent at 60 Hz, full load.
5. Overload Capability: 1.1 times the base load current for 60 seconds; 2.0 times the base load current for 3 seconds.
6. Starting Torque: 100 percent of rated torque or as indicated.
7. Speed Regulation: Plus or minus 1 percent.

E. Isolated control interface to allow controller to follow control signal over an 11:1 speed range.

1. Electrical Signal: 4 to 20 mA at 24 V.
2. Pneumatic Signal: 3 to 15 psig (20 to 104 kPa).
F. Internal Adjustability Capabilities:

1. Minimum Speed: 5 to 25 percent of maximum rpm.
2. Maximum Speed: 80 to 100 percent of maximum rpm.
3. Acceleration: 2 to a minimum of 22 seconds.
4. Deceleration: 2 to a minimum of 22 seconds.
5. Current Limit: 50 to a minimum of 110 percent of maximum rating.

G. Self-Protection and Reliability Features:

1. Input transient protection by means of surge suppressors.
2. Under- and overvoltage trips; inverter overtemperature, overload, and overcurrent trips.
5. Instantaneous line-to-line and line-to-ground overcurrent trips.
7. Reverse-phase protection.
8. Short-circuit protection.

H. Multiple-Motor Capability: Controller suitable for service to multiple motors and having a separate overload relay and protection for each controlled motor. Overload relay shall shut off controller and motors served by it when overload relay is tripped.

I. Automatic Reset/Restart: Attempts three restarts after controller fault or on return of power after an interruption and before shutting down for manual reset or fault correction. Bidirectional autospeed search shall be capable of starting into rotating loads spinning in either direction and returning motor to set speed in proper direction, without damage to controller, motor, or load.

J. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped.

K. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.

L. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.

M. Status Lights: Door-mounted LED indicators shall indicate the following conditions:

1. Power on.
2. Run.
3. Overvoltage.
4. Line fault.
5. Overcurrent.

O. Indicating Devices: Meters or digital readout devices and selector switch, mounted flush in controller door and connected to indicate the following controller parameters:

1. Output frequency (Hz).
5. Motor torque (percent).
6. Fault or alarming status (code).
7. PID feedback signal (percent).
8. DC-link voltage (VDC).
9. Set-point frequency (Hz).
10. Motor output voltage (V).

P. Control Signal Interface:

1. Electric Input Signal Interface: A minimum of 2 analog inputs (0 to 10 V or 0/4-20 mA) and 6 programmable digital inputs.
2. Pneumatic Input Signal Interface: 3 to 15 psig (20 to 104 kPa).
3. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the BMS or other control systems:
 a. 0 to 10-V dc.
 b. 0-20 or 4-20 mA.
 c. Potentiometer using up/down digital inputs.
 d. Fixed frequencies using digital inputs.
 e. RS485.
 f. Keypad display for local hand operation.

4. Output Signal Interface:
 a. A minimum of 1 analog output signal (0/4-20 mA), which can be programmed to any of the following:
 1) Output frequency (Hz).
 2) Output current (load).
 3) DC-link voltage (VDC).
 4) Motor torque (percent).
 5) Motor speed (rpm).
 6) Set-point frequency (Hz).

5. Remote Indication Interface: A minimum of 2 dry circuit relay outputs (120-V ac, 1 A) for remote indication of the following:
 a. Motor running.
 b. Set-point speed reached.
 c. Fault and warning indication (overtemperature or overcurrent).
 d. PID high- or low-speed limits reached.

Q. Communications: Provide an RS485 interface allowing VFC to be used with an external system within a multidrop LAN configuration. Interface shall allow all parameter settings of VFC to be programmed via BMS control. Provide capability for VFC to retain these settings within the nonvolatile memory.

R. Manual Bypass: Magnetic contactor arranged to safely transfer motor between controller output and bypass controller circuit when motor is at zero speed. Controller-off-bypass selector switch sets mode, and indicator lights give indication of mode selected. Unit shall be capable of stable operation (starting, stopping, and running), with motor completely disconnected from controller (no load).

S. Bypass Controller: NEMA ICS 2, full-voltage, nonreversing enclosed controller with across-the-line starting capability in manual-bypass mode. Provide motor overload protection under both modes of operation with control logic that allows common start-stop capability in either mode.

T. Integral Disconnecting Means: NEMA AB 1, instantaneous-trip circuit breaker with lockable handle.

U. Isolating Switch: Non-load-break switch arranged to isolate VFC and permit safe troubleshooting and testing, both energized and de-energized, while motor is operating in bypass mode.

V. Remote Indicating Circuit Terminals: Mode selection, controller status, and controller fault.
2.3 ACCESSORIES

A. Devices shall be factory installed in controller enclosure, unless otherwise indicated.

C. Stop and Lockout Push-Button Station: Momentary-break, push-button station with a factory-applied hasp arranged so padlock can be used to lock push button in depressed position with control circuit open.

D. Control Relays: Auxiliary and adjustable time-delay relays.

E. Standard Displays:
 1. Output frequency (Hz).
 2. Set-point frequency (Hz).
 4. DC-link voltage (VDC).
 5. Motor torque (percent).
 7. Motor output voltage (V).

F. Historical Logging Information and Displays:
 1. Real-time clock with current time and date.
 2. Running log of total power versus time.
 3. Total run time.
 4. Fault log, maintaining last four faults with time and date stamp for each.

G. Current-Sensing, Phase-Failure Relays for Bypass Controller: Solid-state sensing circuit with isolated output contacts for hard-wired connection; arranged to operate on phase failure, phase reversal, current unbalance of from 30 to 40 percent, or loss of supply voltage; with adjustable response delay.

2.4 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested VFCs before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, surfaces, and substrates to receive VFCs for compliance with requirements, installation tolerances, and other conditions affecting performance.

B. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Select features of each VFC to coordinate with ratings and characteristics of supply circuit and motor; required control sequence; and duty cycle of motor, controller, and load.

B. Select horsepower rating of controllers to suit motor controlled.
3.3 INSTALLATION

A. Anchor each VFC assembly to steel-channel sills arranged and sized according to manufacturer's written instructions. Attach by bolting. Level and grout sills flush with mounting surface.

B. Install VFCs on concrete bases.

C. Comply with mounting and anchoring requirements specified in Division 26 Section "Hangers and Supports for Electrical Systems."

D. Controller Fuses: Install fuses in each fusible switch. Comply with requirements in Division 26 Section "Fuses."

3.4 CONCRETE BASES

A. Coordinate size and location of concrete bases. Verify structural requirements with structural engineer.

B. Concrete base is specified in Division 26 Section "Common Work Results for Electrical," and concrete materials and installation requirements are specified in Division 03.

3.5 IDENTIFICATION

A. Identify VFCs, components, and control wiring according to Division 26 Section "Identification for Electrical Systems."

B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

3.6 CONTROL WIRING INSTALLATION

A. Install wiring between VFCs and remote devices according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

B. Bundle, train, and support wiring in enclosures.

C. Connect hand-off-automatic switch and other automatic-control devices where applicable.

 1. Connect selector switches to bypass only manual- and automatic-control devices that have no safety functions when switch is in hand position.
 2. Connect selector switches with control circuit in both hand and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.7 CONNECTIONS

A. Conduit installation requirements are specified in other Division 26 Sections. Drawings indicate general arrangement of conduit, fittings, and specialties.

B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
3.8 FIELD QUALITY CONTROL

A. Prepare for acceptance tests as follows:
 1. Test insulation resistance for each enclosed controller element, bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to perform the following:
 1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
 2. Assist in field testing of equipment including pretesting and adjusting of solid-state controllers.

C. Testing Agency: Owner will engage a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.

D. Testing Agency: Engage a qualified testing and inspecting agency to perform the following field tests and inspections and prepare test reports:

E. Perform the following field tests and inspections and prepare test reports:
 1. Perform each electrical test and visual and mechanical inspection, except optional tests, stated in NETA ATS. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3.9 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip ranges.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain variable frequency controllers. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 262923
ELECTRICAL TABLE OF CONTENTS

DIVISION 26 - ELECTRICAL

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>260000</td>
<td>Basic Electrical Requirements</td>
<td>260000-1</td>
</tr>
<tr>
<td>260500</td>
<td>Basic Electrical Materials and Methods</td>
<td>260500-1</td>
</tr>
<tr>
<td>260512</td>
<td>Electrical Testing and Load Balancing</td>
<td>260512-1</td>
</tr>
<tr>
<td>260512.A</td>
<td>Emergency Generator Test Form</td>
<td>260512.A-1</td>
</tr>
<tr>
<td>260513</td>
<td>Cable and Terminations (Medium Voltage)</td>
<td>260513-1</td>
</tr>
<tr>
<td>260518</td>
<td>Electrical Connections to Equipment</td>
<td>260518-1</td>
</tr>
<tr>
<td>260519</td>
<td>Cable, Wire and Connectors, 600 Volt</td>
<td>260519-1</td>
</tr>
<tr>
<td>260526</td>
<td>Grounding</td>
<td>260526-1</td>
</tr>
<tr>
<td>260529</td>
<td>Securing and Supporting Methods</td>
<td>260529-1</td>
</tr>
<tr>
<td>260533</td>
<td>Raceways, Conduits and Boxes</td>
<td>260533-1</td>
</tr>
<tr>
<td>260553</td>
<td>Electrical Identification</td>
<td>260553-1</td>
</tr>
<tr>
<td>260573</td>
<td>System Coordination and Analysis</td>
<td>260573-1</td>
</tr>
<tr>
<td>260936</td>
<td>Modular Dimming Controls</td>
<td>260936-1</td>
</tr>
<tr>
<td>260943</td>
<td>Network Lighting Controls</td>
<td>260943-1</td>
</tr>
<tr>
<td>261213</td>
<td>Pad Mounted Transformers (Liquid Filled)</td>
<td>261213-1</td>
</tr>
<tr>
<td>262413</td>
<td>Switchboards</td>
<td>262413-1</td>
</tr>
<tr>
<td>262416</td>
<td>Panelboards</td>
<td>262416-1</td>
</tr>
<tr>
<td>262726</td>
<td>Wiring Devices</td>
<td>262726-1</td>
</tr>
<tr>
<td>262813</td>
<td>Fuses, 600 Volt</td>
<td>262813-1</td>
</tr>
<tr>
<td>262816</td>
<td>Enclosed Switches and Circuit Breakers</td>
<td>262816-1</td>
</tr>
<tr>
<td>262923</td>
<td>Installation of Variable Frequency Drives</td>
<td>262923-1</td>
</tr>
<tr>
<td>263213</td>
<td>Engine-Generator System</td>
<td>263213-1</td>
</tr>
<tr>
<td>263623</td>
<td>Automatic Transfer Switches</td>
<td>263623-1</td>
</tr>
<tr>
<td>264100</td>
<td>Lightning Protection Systems</td>
<td>264100-1</td>
</tr>
<tr>
<td>265100</td>
<td>Interior Lighting</td>
<td>265100-1</td>
</tr>
</tbody>
</table>

DIVISION 33 - UTILITIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>337119</td>
<td>Underground Ductbanks</td>
<td>337119-1</td>
</tr>
</tbody>
</table>

07-13-2020

Yaggi Engineering, Inc.
Texas Registration #F-9622
SECTION 260000

BASIC ELECTRICAL REQUIREMENTS

PART 1 - GENERAL

1.1 WORK INCLUDED

A. General Requirements specifically applicable to Division 26.

B. The Contractor shall be responsible for:
 1. The work included consists of furnishing all materials, supplies, equipment and tools, and performing all labor and services necessary for installation of a completely functional power, lighting, and signaling systems. Complete systems in accordance with the intent of Contract Documents.
 2. Coordinating the details of facility equipment and construction for all Specification Divisions, which affect the work covered under this Division.
 3. Furnishing and installing all incidental items not actually shown or specified, but which are required by good practice to provide complete functional systems.
 4. Temporary power service and lighting for construction. Coordinating all shutdown dates and schedules with Owner's Representative and obtain all work-permits required by Owner.

C. Intent of Drawings:
 1. The Drawings are necessarily diagrammatic by their nature, and are not intended to show every connection in detail or every device or raceway in its exact location, unless specifically dimensioned. The Contractor shall carefully investigate structural and finish conditions and shall coordinate the work in order to avoid interference between the various phases of work. The Contractor shall be responsible for the proper routing of raceway, subject to prior review by the Owner and Engineer. Work shall be organized and laid out so that it will be concealed in furred chases and suspended ceilings, etc., in finished portions of the building, unless specifically noted to be exposed. All work shall be installed parallel or perpendicular to the lines of the building unless otherwise noted.
 2. The intent of the Drawings is to establish the type of systems and functions, but not to set forth each item essential to the functioning of the system. The drawings and specifications are cooperative, and work or materials called for in one and not mentioned in the other shall be provided. Review pertinent drawings and adjust the work to conditions shown. In case of doubt as to work intended, or where discrepancies occur between drawings, specifications, and actual conditions, immediately notify the Architect/Engineer and the Owner's representative, and propose a resolution.

1.2 RELATED WORK

A. This Section shall be used in conjunction with the following other specifications and related Contract Documents to establish the total general requirements for the project electrical systems and equipment.
 1. Division 01 Sections included in the project specifications.
 2. The contract.

1.3 DESIGN CRITERIA

A. Equipment and devices to be installed outdoors or in enclosures where the temperatures are not controlled shall be capable of continuous operation under such conditions per manufacturer's requirements.

B. Compliance by the Contractor with the provisions of this Specification does not relieve him of the responsibilities of furnishing equipment and materials of proper design, mechanically and electrically suited to meet operating guarantees at the specified service conditions.

C. Electrical components shall be UL listed and labeled.
1.4 REFERENCE CODES AND STANDARDS, REGULATORY REQUIREMENTS

A. Standards of the following organizations as well as those listed in Division 01, may be referenced in the specification. Unless noted otherwise, references are to standards or codes current at the time of bidding. Work, materials and equipment must comply with the latest rules and regulations of the following:
1. International Building Code
2. Texas Accessibility Standards (State mandated)
3. Americans with Disability Act (ADA)
4. Association of Edison Illuminating Companies (AEIC)
5. American National Standards Institute (ANSI)
6. Institute of Electrical and Electronics Engineers (IEEE)
7. Insulated Cable Engineers Association (ICEA)
8. National Electrical Code (NEC)
9. National Electrical Manufacturers Association (NEMA)
11. National Fire Protection Association (NFPA)
 a. NFPA 70
12. Underwriters’ Laboratories (UL)
13. FM Standards
15. International Existing Building Code
17. Occupational Safety and Health Act (OSHA)
19. University of North Texas Design and Construction Guidelines
20. Applicable state and federal codes, ordinances and regulations

B. Discrepancies. The drawings and specifications are intended to comply with listed codes, ordinances, regulations and standards. Where discrepancies occur, immediately notify the Owner’s representative in writing and ask for an interpretation. Should installed materials or workmanship fail to comply, the Contractor is responsible for correcting the improper installation. Additionally, where sizes, capacities, or other such features are required in excess of minimum code or standards requirements, provide those specified or shown.

C. Contractor shall obtain permits and arrange inspections required by codes applicable to this Section and shall submit written evidence to the Owner and Engineer that the required permits, inspections and code requirements have been secured.

1.5 SUBMITTALS

A. Submit the following in addition to and in accordance with the requirements of Division 01 for submittal requirement.
1. Include inspection and permit certificates and certificates of final inspection and acceptance from the authority having jurisdiction.
2. Manufacturer’s standardized schematic diagrams and catalog cuts shall not be acceptable unless applicable portions of it are clearly indicated and non-applicable portions clearly deleted or crossed out.
3. All schematic, connection and/or interconnection diagrams shall be in accordance with the latest edition of NEMA.
4. Provide submittals as required by individual specification Section.

B. Provide the following with each submittal:
1. Catalog cuts with manufacturer’s name clearly indicated. Applicable portions shall be circled and non-applicable portions shall be crossed out.
2. Line-by-line specification review by equipment manufacturer and contractor with any exceptions explicitly defined.
C. **Equipment Layout Drawing:** 1/4-inch scale minimum drawings indicating electrical equipment locations. Dimensions for housekeeping pads should be indicated on these drawings. Indicate routing of conduit 2 inches and over on these drawings.

D. **Within the specified time window after award of contract, submit list of equipment and materials to be furnished.**
 1. Itemize equipment and material by specification Section number; include manufacturer and identifying model or catalog numbers.
 2. Replace rejected items with an acceptable item within 2 weeks after notification of rejection.
 3. If a satisfactory replacement is not submitted within a two-week period, owner will notify contractor as to equipment manufacturer or type and make or material to be furnished. Provide designated items at no additional cost to owner.

E. **As-Built Record Drawings:** The Contractor shall maintain a master set of As-Built Record Drawings that show changes and any other deviations from the drawings. The markups must be made as the changes are done. At the conclusion of the job, these As-Built Record Drawings shall be transferred to AutoCad electronic files, in a format acceptable to the Owner, and shall be complete and delivered to the Owner’s Representative prior to final acceptance.

1.6 **SAFETY**

A. The Contractor shall follow the safety procedures in addition to, and in accordance with, the requirements of Project Safety Manual (PSM).
 1. The Contractors shall be responsible for training all personnel under their employ in areas concerning safe work habits and construction safety. The Contractor shall continually inform personnel on hazards particular to this project and update the information as the project progresses.
 2. The Contractor shall secure all electrical rooms, to limit access, prior to energizing any switchgear and shall control access during the project after energization. The Contractor shall post and maintain warning and caution signage in areas where work is ongoing near energized equipment. The Contractor shall cover all energized live parts when work is not being done in the equipment. This includes lunch and breaks.
 3. The Contractor shall strictly enforce OSHA lock out/tag out procedures. Initial infractions shall result in a warning; a second infraction shall result in the removal of the workman and his foreman from the site. Continued infractions shall result in removal of the Contractor from the site.

1.7 **SHORING AND EQUIPMENT SUPPORTS**

A. The Contractor shall provide all permanent and temporary shoring, anchoring, and bracing required to make all parts absolutely stable and rigid; even when such shoring, anchoring, and bracing are not explicitly called for.

B. The Contractor shall adequately support all freestanding panels, switchgear, switchboard, enclosures, and other equipment. This shall include bolting to the floor or solid structural steel to prevent tipping. Install free-standing electrical equipment on 4” thick concrete housekeeping pads. Under no condition shall equipment be fastened to non-rigid building steel (i.e., removable platform steel gratings, handrails, etc.).

C. The Contractor shall provide racks and supports, independently mounted at structure, to support electrical equipment and systems supplied and installed under this contract. At no time shall the Contractor mount or suspend equipment from other disciplines’ supports.

1.8 **TEMPORARY POWER REQUIREMENTS**

A. Provide power distribution system sufficient to accommodate construction operations requiring power, use of power tools, electrical heating, lighting, and start-up/testing of permanent electric-powered equipment prior to its permanent connection to electrical system. Provide proper overload protection. Ground fault circuit interrupters (GFCI) are to be used on all 120-volt, single-phase, 15 and 20 amp receptacle outlets where portable tools and equipment are used. Ground fault circuit interrupters shall be tested weekly by the Contractor.
B. Temporary power feeders shall originate from a distribution panel. The conductors shall be multi-conductor cord or cable per NEC for hard and extra-hard service multi-conductor cord.

C. Branch circuits shall originate in an approved receptacle or panelboard. The conductors shall be multi-conductor cord or cable per NEC for hard and extra-hard service multi-conductor cord. Each branch circuit shall have a separate equipment grounding conductor.

D. All receptacles shall be of the grounding type and electrically connected to the grounding conductor.

E. Provide temporary lighting by factory-assembled lighting strings or by manually-assembled units. All lamps for general lighting shall be protected from accidental contact or breakage. Protection shall be provided by installing the lights a minimum of 7 feet from the work surface or by lamp holders with guards. Branch circuits supplying temporary lighting shall not supply any other load. Provide sufficient temporary lighting to ensure proper workmanship by combined use of day lighting, general lighting, and portable plug-in task lighting. Comply with OSHA required foot-candle levels and submit plan for approval by the owner.

F. For temporary wiring, suitable fencing, barriers, or other effective means shall be provided to prevent access of anyone other than authorized and qualified personnel.

G. Temporary power cords shall be kept off the ground or floor. The Contractor shall provide temporary supports as required to keep temporary cords off the ground or floor.

1.9 SUBSTITUTION OF MATERIALS AND EQUIPMENT

A. Refer to Uniform General Conditions and Supplementary General Conditions for substitution of materials and equipment.

B. The intent of the Drawings and/or Specifications is neither to limit products to any particular manufacturer nor to discriminate against an "APPROVED EQUAL" product as produced by another manufacturer. Some proprietary products are mentioned to set a definite standard for acceptance and to serve as a reference in comparison with other products. When a manufacturer's name appears in these Specifications, it is not to be construed that the manufacturer is unconditionally acceptable as a provider of equipment for this project. The successful manufacturer or supplier shall meet all of the provisions of the appropriate specification(s).

C. The specified products have been used in preparing the Drawings and Specifications and thus establish minimum qualities with which substitutes must at least equal to be considered acceptable. The burden of proof of equality rests with the Contractor. The decision of the designer is final.

D. When requested by the Architect/Engineer, the Contractor shall provide a sample of the proposed substitute item. In some cases, samples of both the specified item and the proposed item shall be provided for comparison purposes.

E. Timeliness: The burden of timeliness in the complete cycle of submittal data, shop Drawings, and sample processing is on the Contractor. The Contractor shall allow a minimum of six (6) weeks time frame for review of each submission by the office of the design discipline involved after receipt of such submissions by that design discipline. The Contractor is responsible for allowing sufficient time in the construction schedule to cover the aforementioned cycles of data processing, including time for all resubmittal cycles on unacceptable materials, equipment, etc. covered by the data submitted. Construction delays and/or lack of timeliness in the above regard are the responsibility of the Contractor and will not be considered in any request for scheduled construction time extensions and/or additional costs to the Owner.

F. All equipment installed on this project shall have local representation; local factory authorized service, and a local stock of repair parts.

G. Acceptance of materials and equipment will be based on manufacturer's published data and will be tentative subject to the submission of complete shop Drawings indicating compliance with the contract documents and that adequate and acceptable clearances for entry, servicing, and maintenance will exist. Acceptance of materials and equipment under this provision shall not be construed as authorizing any
deviations from the Specifications, unless the attention of the Architect/Engineer has been directed in writing to the specific deviations. Data submitted shall not contain unrelated information unless all pertinent information is properly identified.

H. Certification: The Contractor shall carefully examine all data forwarded for approval and shall sign a certificate to the effect that the data has been carefully checked and found to be correct with respect to dimensions and available space and that the equipment complies with all requirements of the Specifications.

I. Physical Size of Equipment: Space is critical; therefore, equipment of larger sizes than shown, even though of specified manufacturer, will not be acceptable unless it can be demonstrated that ample space exists for proper installation, operation, and maintenance.

J. Should a substitution be accepted, and should the substitute material prove defective, or otherwise unsatisfactory for the service intended within the guarantee period, this material or equipment shall be replaced with the material or equipment specified at no additional cost to the Owner.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Materials and Equipment: Labeled and/or listed as acceptable to the authority having jurisdiction as suitable for the use intended. Materials shall be of a standard industrial quality if no specifications or specific model numbers are given.

B. Where two or more units of the same class of material are required, provide products of a single manufacturer. Component parts of materials or equipment need not be products of the same manufacturer.

C. All materials shall be new and unused.

PART 3 - EXECUTION

3.1 WORKMANSHIP

A. Install work in compliance with NEC latest edition.

B. Install material and equipment in accordance with manufacturers' instructions. Provide calibrated torque wrenches and screwdrivers and tighten all terminals, lugs, and bus joints using it.

C. Comply with startup procedures as defined by Construction Manager and Owner.

D. Arrange electrical work in a neat, well-organized manner. Do not block future connection points of electrical service. Install all electrical work parallel or perpendicular to building lines unless noted otherwise, properly supported with purpose-designed apparatus, in a neat manner.

E. Apply, install, connect, erect, use, clean, adjust, and condition materials and equipment as recommended by the manufacturers in their published literature.

F. Make opening through masonry and concrete by core drilling in acceptable locations. Restore openings to original condition to match remaining surrounding materials.

3.2 SERVICE CONTINUITY

A. Maintain continuity of electric service to entire facility. Phase construction work to accommodate Owner’s occupancy requirements.

B. Arrange temporary outages for cutover work with the Owner. Keep the outages to a minimum number and minimum length of time.
C. All service outages shall be requested in writing a minimum of four weeks prior to the date. Owner reserves the right to postpone shutdowns up to 24 hours prior to the shutdown at no additional cost. Outage requests shall include a schedule of the work to be performed, identification of areas impacted, and the time requirements.

D. The Contractor shall obtain all appropriate Owner permits for working in equipment.

3.3 HAZARDOUS LOCATIONS

A. Equipment, wiring, devices, and other components located within hazardous areas to be of appropriate type per NFPA requirements.

B. Ground exposed non-current carrying parts of entire electrical system in hazardous areas, in accordance with NEC and as instructed by Owner.

3.4 SLEEVES AND SEALS

A. Provide sealing and/or fire stopping where electrical system passes through walls, ceilings, and floors. Seals shall be watertight and/or fire rated as applicable.

B. Where coring foundation walls, vault wall, etc.; provide sufficient space between penetrations to maintain the structural integrity of the wall. Provide rubber sleeve equal to Link-Seal near the interior surface of the wall. The same space shall have waterproofing installed on the exterior side of the rubber seal.

3.5 CONSTRUCTION REVIEW

A. The Engineer or Owner's representative will review and observe installation work to ensure compliance by the Contractor with requirements of the Contract Documents.

B. Review, observation, assistance, and actions by the Engineer or Owner’s representative shall not be construed as undertaking supervisory control of the work or of methods and means employed by the Contractor. The review and observation activities shall not relieve the Contractor from the responsibilities of these Contract Documents.

C. The fact that the Engineer or Owner’s representative do not make early discovery of faulty or omitted work shall not bar the Engineer or Owner’s representative from subsequently rejecting this work and insisting that the Contractor make the necessary corrections.

D. Regardless of when discovery and rejection are made, and regardless of when the Contractor is ordered to correct such work, the Contractor shall have no claim against the Engineer or Owner’s representative for an increase in the Contract price, or for any payment on account of increased cost, damage, or loss.

3.6 WARRANTY

A. Provide warranties in accordance with the requirements of Uniform General and Supplementary Conditions (UGC).

END OF SECTION 260000
SECTION 260500

BASIC ELECTRICAL MATERIALS AND METHODS

PART 1 - GENERAL

1.1 WORK INCLUDED

A. Hinged cover enclosures and cabinets
B. Contactors
C. Control relays
D. Push buttons, and selector switches
E. Terminal blocks and accessories
F. Penetration sealing systems (fire stops)
G. Electrical/control portion of HVAC work covered by Division 23 pertaining basic electrical materials and methods shall follow the requirement set forth by this specification.

1.2 APPLICABLE CODES AND STANDARDS

A. NFPA 70, National Electrical Code (latest edition)
C. Applicable publications of NEMA, ANSI, IEEE, and ICEA
D. Underwriters Laboratories, Inc. Standards (UL)
E. Federal, city, state, and local codes and regulations having jurisdiction
F. OSHA requirements
G. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum)
H. NEMA WD 1 – General-Purpose Wiring Devices
I. UL 98 - Enclosed Switches

1.3 INTENT

A. This Section is not, and shall not be interpreted to be, a complete listing of all materials or equipment that is Contractor furnished and erected. It is intended to clarify and further define the Contractor scope of work, procurement, and responsibilities for those incidental materials that are not specified by other specifications, but important to a complete and operational system.

B. The Contractor shall furnish all equipment and materials, whether or not specified in other Sections of specification and on drawings, for installation and connection required to place equipment into satisfactory operating service. The Contractor shall review the Drawings and specifications for clarification of his responsibility in the handling and installation of equipment and material. Where applicable, and not in contradiction with the Drawings and specifications, the Contractor shall install and connect the equipment in accordance with the manufacturer's recommendations and instructions.
C. All materials and equipment shall be of types and manufacturer specified wherever practical. Should materials or equipment so specified be unattainable, the Contractor shall submit the description and manufacturer's literature, reason for substitution request, and shall secure the approval of the Engineer before substitution of other material or equipment is purchased. This Section establishes performance requirements and the quality of equipment acceptable for use and shall in no way be construed to limit procurement from other manufacturer.

1.4 SUBMITTALS

A. Provide submittals in addition and in accordance with Section 260000, Basic Electrical Requirements, and Division 01 for submittal requirement.

B. Submit manufacturer's literature and specification data sheets for each type of basic material, which is applicable to the project.

1.5 DELIVERY, STORAGE AND HANDLING

A. Provide factory-wrapped waterproof flexible barrier material for covering materials, where applicable, to protect against physical damage in transit. Damaged materials shall be removed from project site.

B. In their factory-furnished coverings, store materials in a clean, dry indoor space, which provides protection against the weather.

PART 2 - PRODUCTS

2.1 ENCLOSURES AND CABINETS

A. Enclosures and cabinets for all Contractor furnished electrical equipment and devices shall be suitable for the location and environmental conditions and shall be of the NEMA type as shown in Table 1. Exceptions shall be as specifically designated on the Drawings.

<table>
<thead>
<tr>
<th>Location</th>
<th>Environment</th>
<th>Enclosure Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor Utility</td>
<td>Dry, subject to dust, falling dirt and dripping non-corrosive liquids</td>
<td>NEMA 12</td>
</tr>
<tr>
<td>Indoor</td>
<td>Clean, Dry</td>
<td>NEMA 1</td>
</tr>
<tr>
<td>Outdoor</td>
<td>Subject to windblown dust and rain, splashing water, and hose-directed water</td>
<td>NEMA 4</td>
</tr>
<tr>
<td>Indoor</td>
<td>Wet, subject to hose-directed water</td>
<td>NEMA 4</td>
</tr>
<tr>
<td>Outdoor</td>
<td>Subject to falling rain, sleet, and external ice formation</td>
<td>NEMA 3R</td>
</tr>
<tr>
<td>Indoor or Outdoor</td>
<td>Subject to corrosion, windblown dust and rain, splashing water and hose-directed water</td>
<td>NEMA 4X</td>
</tr>
</tbody>
</table>

B. Enclosures shall have the following properties:

 a. Type 1: Steel.
 b. Type 4: Steel with gasket door, rain tight.
 c. Type 4X: Stainless steel.
 d. Type 12: Steel with gasketed door, dust-tight.

C. Finish: Exterior, manufacturer's standard gray enamel finish; interior, white enamel finish.

D. Covers: Continuous hinge, held closed by flush latch operable by hasp and staple for padlock. Where required for NEMA ratings, gaskets shall be neoprene rubber.
E. Interior Panel for Mounting Terminal Blocks or Electrical Components: 14-gauge steel, white enamel finish.

F. Provide protective pocket inside front cover with schematic diagram, connection diagram, and layout drawing of control wiring and components within enclosure.

G. Forced Ventilation: Where indicated, provide 115V single-phase fan motor, filtered with air plenum, finger guard, and stainless steel grille. Washable aluminum filter, accessible for cleaning from outside the enclosure; 20,000-hour continuous operation without lubrication or service. Provide matching exhaust grille assembly. Mount fan in lower side corner, exhaust grille in opposite upper side corner.

2.2 CONTACTORS

A. Acceptable Manufacturers
 1. General Electric Company
 2. Square D Company

B. Contactors: NEMA ICS 2; electrically held or mechanically held as indicated on Drawings. Two-wire control for electrically held contactors and three-wire control for mechanically held contactors.

C. Enclosure: NEMA 1 unless indicated otherwise on Drawings.

D. Coil operating voltage; 110 volts, 60 Hz or as per drawings.

E. Size: NEMA ICS 2; size as shown or as required.

F. Contacts: Ampacity as indicated on Drawings; 600 Volts, 60 Hz. (minimum 30A).

G. Provide solderless pressure wire terminals on bus terminals suitable for mounting in panelboard as indicated on Drawings.

2.3 CONTROL RELAYS

A. Acceptable Manufacturers
 1. Square D
 2. General Electric Type CR120A

B. Provide magnetic control relays, NEMA Class A: A300 (300 volts, 10 amps continuous, 7,200 VA make, 720 VA break), industrial control type with field-convertible contacts, and meeting the requirements of NEMA ICS 2.

C. Where time delay relays are specified or required, unless otherwise noted, provide magnetic control relays with a solid-state timer attachment adjustable from 0.2 to 60 seconds (minimum) or with range as indicated. Provide with field convertible from ON delay to OFF delay and vice versa.

D. Where latching (mechanically held) relays or motor thermal detector relays are specified or required, provide magnetic control relays with mechanical latch attachment with unlatching coil and coil clearing contacts.

2.4 PUSH BUTTONS, AND SELECTOR SWITCHES

A. Acceptable Manufacturers
 1. Square D
 2. General Electric
 3. Other manufacturers equal in design and function will be considered upon A/E approval following substitution procedure in 260000 and Division 01 for substitution requirement.
B. For non-hazardous, indoor, dry locations, including control panels, and individual stations, provide heavy duty, NEMA 13, oil tight type pushbuttons, indicating lights, selector switches, and stations for these devices.

C. For non-hazardous, outdoor, or normally wet locations, or where otherwise indicated, provide heavy duty corrosion resistant, NEMA 4, watertight type pushbuttons, indicating lights, or selector switches mounted in NEMA 4 watertight enclosures. Provide special gasketing required to make complete station watertight.

D. For hazardous locations, provide control station listed by UL for Class I, Divisions 01 and 02, Groups C and D; Class II, Division 01 and 02, Groups E, F, and G. Specific type shall be in accordance with area classification.

E. Provide devices meeting the requirements of NEMA ICS 2, and having individual, extra large nameplates indicating their specific function. Provide push-button stations with laminated plastic nameplates indicating the drive they control. Provide contacts with NEMA designation rating A600. Install provisions for locking pushbuttons and selector switches in the OFF position wherever lockout provisions are indicated. Nameplates shall be as specified in Section 260553.

F. Utilize selector switches having standard operating levers. All indicating lights shall be LED type, push-to-test type. Provide ON or START pushbuttons colored black. Provide OFF or STOP pushbuttons colored red.

2.5 TERMINAL BLOCKS AND ACCESSORIES

A. Signal And Control Terminals
 1. Acceptable Manufacturers
 a. Phoenix Contact
 b. Buchanan
 c. Weidmüller
 d. Entrelec
 e. Other manufacturers equal in design and function will be considered upon A/E approval following substitution procedure in 230000 and Division 01 for substitution requirement.

 2. Signal and Control Terminals: Modular construction type, DIN 46 277/3 channel mounted; screw clamp compression connectors, rated 300 volts. Minimum terminal width of 0.24-inch, capable of holding two No. 12 or two No. 14 AWG conductors in each connector. Terminal identification numbers shall be thermoset characters (black) on a white background. Provide 25 percent spare terminals.

B. Power Terminals
 1. Acceptable Manufacturers
 a. Buchanan
 b. Ilsco
 c. Square D Company
 d. Burndy
 e. Other manufacturers equal in design and function will be considered upon A/E approval following substitution procedure in 260000 and Division 01 for substitution requirement.

 2. Power Terminals: Unit construction type, closed-back type, with tubular pressure screw connectors, rated 600 volts, size as required. Provide 25 percent spare terminals.

2.6 PENETRATION SEALING SYSTEMS (FIRE STOPS)

A. Provide penetration sealing where conduit, etc. pass through rated walls, ceilings, and floors.

2.7 UL LISTING

A. All equipment and materials shall be new and conform to the requirements of this Section. All equipment and materials shall be UL listed, and shall bear their label whenever standards have been established and level service is regularly furnished. All equipment and materials shall be of the best grade of their respective kind for the purpose.
PART 3 - EXECUTION

3.1 FABRICATION - CONTROL ENCLOSURES AND CABINETS

A. Shop assembles enclosures and cabinets housing terminal blocks or electrical components in accordance with NEMA ICS 6.

3.2 INSTALLATION - ENCLOSURES AND CABINETS

A. Install cabinets and enclosures plumb; anchor securely to wall and structural supports at each corner, minimum. Direct attachment to dry wall is not permitted.

B. Provide accessory feet for freestanding equipment enclosures.

C. Install trim plumb.

3.3 ERECTION OF EQUIPMENT

A. Manufacturer's Installation Instructions: Where furnished or called for by the manufacturer equipment manufacturer's installation instructions shall be considered a part of this specification and fully complied with. Where the Contractor damages the finishing coat of paint in existing or completed areas, he shall refinish with matching paint.

B. Mounting Heights: Individual safety switches and buttons and devices shall normally be installed at the following mounting heights, when not specified on the Drawings.
 1. Safety Switches: 6 feet 0 inches (to top).
 2. Pushbuttons: 4 feet 0 inches (to center).
 3. Control Panels: 6 feet 0 inches (to top).

C. Mounting: Equipment and control devices shall be supported independent of conduit connections. Panels or cabinets shall be mounted on metal frame supports independently of equipment. Control devices and metal enclosures shall be bolted or welded to steel channel or steel plate. All electrical equipment and devices not covered by the above, such as miscellaneous switches, thermostats, duct switches, temperature switches, floats, photoelectrical devices, and similar electrical devices shall be located and set as suitable for the application. Where control panels are provided as part of the equipment racks mounted on the floor, they shall be provided to support conduits and flexible connections to control panels.

3.4 COORDINATION

A. Exact location of all electrical equipment, devices and fixtures shall be determined in field by contractor and verified by Engineer's field representative prior to installation.

END OF SECTION 260500
SECTION 260512

ELECTRICAL TESTING AND LOAD BALANCING

PART 1 - GENERAL

1.1 WORK INCLUDED

A. Perform test, balance, final adjustment, etc., and record data for electrical work as described herein.

1.2 SUBMITTALS

A. Submit data record forms for approval before conducting any tests or making final adjustments, torquing, balancing, etc.

PART 2 - PRODUCTS

Not used.

PART 3 - EXECUTION

3.1 TESTING

A. 600V Conductors:
 1. Megger test feeder conductors at 600 volts dc. Record value for each feeder conductor. Conductors which test below 50 megohms shall be replaced. Retest new conductors and record data.
 2. Perform continuity test on all feeder and branch circuit conductors.
 3. Torque all feeder and branch circuit connections and terminations to manufacturer's recommended values.

B. Grounding:
 1. Measure and record ground resistance from system neutral connection at service entrance to ground reference point using suitable ground testing equipment. Resistance shall not exceed 2 ohms.
 2. Test continuity and bonding of cable trays, wireways, etc.
 3. Record data for each test.

C. Metering and Control Wiring:
 1. Test for proper connection before energization of equipment. System shall be completely tested to verify proper operation and multipliers.
 2. Include metering and generator system remote annunciation/control.

D. Switchboards and Panelboards:
 1. Test insulation resistance for each panelboard and switchboard bus, component, connecting supply, feeder, and control circuit.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard and panelboard.
 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
E. Engine-Generator System (including automatic transfer switches):
 1. Acceptance Test: The extent of testing will be at the discretion of the Architect/Engineer. Certified test logs shall be taken at the manufacturer's plant consisting of rated load at 0.8 P.F. and transient test at 0.8 P.F. loading. The Contractor shall also demonstrate functional capability at the installation site. Fuel start-up and checkout shall be done by the manufacturer's representative. The manufacturer shall certify that the engine-generator set will meet the rated capability at the specified altitude and ambient temperature as installed.
 2. Operational and functional demonstration at rated capability shall be performed before acceptance. Contractor shall furnish suitable loading device, capable of dissipating rated KW for four (4) hours.
 3. Load bank test the generator 30 minutes at 50% load, 30 minutes at 75% load and 3 hours at full load.
 4. Lubricants, coolants, etc., for testing shall be furnished by Contractor. Fuel shall be furnished by Contractor. Fuel tank shall be left full after testing.
 5. Use test form provided at the end of this section.
 6. ATS/Generator System functional tests.

F. Other Cable, Switchgear, Transformers, etc.
 1. Refer to individual specification section for additional testing requirements.

3.2 DEVICE TRIP SETTINGS
 A. Equipment manufacturer field service personnel shall adjust and set all devices in accordance with approved results of "System Coordination and Analysis".

3.3 BUS TORQUING
 A. All bolted bus connections shall be made using a torque wrench.
 B. Bus and lug connections in panelboards and switchboards shall be in accordance with manufacturer's specifications.

3.4 LOAD/VOLTAGE DATA
 A. Record amperage of each phase and neutral in each panelboard and switchboard.
 B. Record voltage line-to-neutral and line-to-line of all phases in each panelboard and switchboard. Record each reading.
 C. Lighting only panelboards shall be arranged so that under full load all phases carry the same load as near as possible.

3.5 PHASE ROTATION
 A. Connect phases of Switchboards A, B, C, to Bus No. 1, 2, 3 from left to right or top to bottom.
 B. Connect phases of Panelboards, Disconnects, Controllers A, B, C to Bus 1, 2, 3 from left to right.
 C. Verify existing phase rotation and make final connection to motor loads to provide proper rotations.

3.6 MECHANICAL ADJUSTMENT
 A. Adjust all operating mechanisms of electrical equipment for free mechanical movement.
3.7 EMERGENCY GENERATOR TEST FORM

Attached.

END OF SECTION 260512
INSTRUCTIONS FOR GENERATOR TEST

Test shall be 30 minutes at 1/2 load, 30 minutes at 3/4 load, and three (3) hours at full load.

Regardless of time, test shall not be terminated as long as temperatures are still rising.

One complete set of the following data shall be recorded on the first line of the test form before start-up. The time of start-up shall be entered on this same line.

At 10 minute intervals throughout the test, the following shall be read and recorded:

- Time
- Voltage
- Amperage
- Coolant Temperature
- Oil Temperature
- Oil Pressure
- Exhaust Temperature

All specified features of the unit shall be demonstrated to function properly.
EMERGENCY GENERATOR TEST FORM

Building:

Engine:
- Manuf.:
- Fuel:
- Naturally Aspirated:
- Supercharged:
- 4 Cycle:
- 2 Cycle:
- BHP:
- RPM:

Generator:
- Manuf.:
- Voltage:
- Phase:
- KW:
- Continuous:
- Standby:

<table>
<thead>
<tr>
<th>Time</th>
<th>Amps</th>
<th>Volts</th>
<th>Hertz</th>
<th>Cooling Water Temp.</th>
<th>Oil Temp.</th>
<th>Oil Pressure</th>
<th>Exhaust Temp.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Load</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 Load</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4 Load</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date:
Amb. Temp, Deg F
Weather:
Altitude:

Date and Location:
- 13 July 2020
- UNT Terrill Hall MEP Upgrade
- Denton, Texas
- TLC Project No. 518073

Reference:
Generator Test Form

260512.A-2
EMERGENCY GENERATOR TEST FORM (cont'd)

<table>
<thead>
<tr>
<th>Time</th>
<th>Amps</th>
<th>Volts</th>
<th>Hertz</th>
<th>Cooling Water Temp.</th>
<th>Oil Temp.</th>
<th>Oil Pressure</th>
<th>Exhaust Temp.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EMERGENCY GENERATOR TEST FORM

CONCLUSION:

ACCEPTABLE ________________ NOT ACCEPTABLE ________________

REMARKS:

SIGNATURE:

Manuf. Representative ___
Other Witnesses ___
SECTION 260513

CABLE AND TERMINATIONS (MEDIUM VOLTAGE)

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK

A. The extent of medium voltage cable work is indicated by drawings and by the requirements of this Section.

1.2 REFERENCES

A. AEIC CS6-96 – Specifications for Ethylene Propylene Rubber Insulated Shielded Power Cables Rated 69 kV
B. ASTM B8-04 - Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
C. ICEA S-93-639/NEMA WC74 – Shielded Power Cables Rated 5 – 46 kV
D. ICEA S-97-682 – Utility Shield Power Cables Rated 5 - 46 kV
E. IEEE 48 – Standard Test Procedures and Requirements for Alternating-Current Cable Termination 2.5 kV through 765 kV
F. UL 1072 – Medium-Voltage Power Cables

1.3 QUALITY ASSURANCE

A. Manufacturer shall be a firm specializing in manufacturing medium voltage cable and accessories with minimum ten years documented experience.
B. Installer shall be a firm with at least five years of successful installation experience on projects with electrical work similar to that required for this project.
C. NEC Compliance: Comply with the National Electrical Code (NFPA 70) as applicable to construction and installation of electrical cable, and terminations required for this project.
D. Product Delivery, Storage Handling:
 1. Provide factory wrapped waterproof flexible barrier materials for covering cable on wooden reels. Cable ends shall be properly sealed to prevent water propagation.
 2. Store cable in factory finished covering and in clean, dry place which provides protection against weather.

1.4 SUBMITTALS

A. Provide submittals in accordance with and in addition to Section 26 00 00, Basic Electrical Requirements, and Division 01 for submittal requirement.
B. Submit evidence documenting manufacturer’s ten-year experience in medium voltage cable and accessories manufacturing. Submit manufacturer’s data on electrical cable and terminations.
C. Submit a list of previous work evidencing at least five years experience in medium voltage cable installation of similar type.
D. Submit name and experience record of each person to be engaged in medium voltage cable work. Only those persons accepted by the Owner will be permitted to engage in medium voltage cable work.

E. Submit three copies of cable manufacturers' certified test report prior to installation of cable.

F. Submit original and two copies of certified field test report.

G. Submit cable pulling tension and sidewall pressure calculations for each run prior to ordering cable.

PART 2 - PRODUCTS

2.1 CABLE (MEDIUM VOLTAGE)

A. Acceptable Manufacturer:
 1. Okonite

B. Provide cable and terminations of manufacturer's standard materials as indicated by published product information designed and constructed as recommended by the manufacturer and as required by the application.

C. Power cable shall be Okonite Okoguard 15 KV, single conductor copper, ethylene propylene rubber insulated, 133% insulation level with copper tape shielding and overall PVC jacket. Cable shall conform to ICEA S-93-639, ICEA S-97-682, AEIC CS6-96, UL 1072, and shall be UL listed as Type MV-105. Conductor sizes shall be as shown on the drawings.

D. Cable reel shall bear a tag containing name of manufacturer, UL label, cable type and year and month of manufacture. Cable shall be imprinted with name of manufacturer, UL label, cable type and year and month of manufacture.

E. Cable to be furnished in continuous length and shall be free of kinks and defects at time of delivery to jobsite.

F. Provide #2 AWG XHHW stranded copper ground conductor minimum in each conduit with phase conductors.

G. Medium voltage terminations shall be as follows:
 1. Elbow Terminators:
 a. 200 ampere, loadbreak, equal to Elastimold Type 165LR series with shield terminator with appropriate shield adapt kit. Regardless of model indicated herein, terminator shall be compatible with S&C PME switchgear.
 b. 600 ampere, non-loadbreak, equal to Elastimold Type 655LR with shield terminator with appropriate shield adapt kit. Regardless of model indicated herein, terminator shall be compatible with S&C PME switchgear.
 2. Indoor terminators shall be equal to Elastimold Type 35MSCI with shield terminator.
 3. Outdoor terminators shall be equal to Elastimold 35MTG with shield terminator.
 4. Coordinate terminations and type with Pad Mounted Transformer manufacturer.

H. Electrical tapes shall be:
 1. Fire Retardant Electric Arc Proofing:
 a. Irvington #7700 as manufactured by Minnesota Mining & Manufacturing Co., or approved equal
 2. Glass Cloth: 3M Scotch 69
 3. Self-fusing Silicone Rubber: 3M Scotch 70
 4. Vinyl Plastic: 3M Scotch 88
PART 3 - EXECUTION

3.1 INSPECTION

A. Examine areas and conditions under which medium voltage cable terminations are to be installed and notify the Architect/Engineer in writing of conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install medium voltage cable and terminations as indicated in accordance with the manufacturer's written instructions, the applicable requirements of ANSI, IEEE Standards, NEC and the National Electrical Contractors Association's "Standard of Installation", and in accordance with recognized industry practices to ensure that products serve the intended functions.

B. Conduit shall be swabbed to ensure debris free. Rubber duct swabs shall be sized to conduit used.

C. All cable installations where the calculated pulling tension exceeds 67% of the manufacturer's recommended maximum tension shall be installed using tension measuring equipment. The Owner's representative must be present to observe these installations. These cable runs shall be clearly identified on cable pulling submittal.

D. Lubricant used on pulls shall be appropriate type or as specified by cable manufacturer. All conduits shall be pre-lubricated with lubricant placed in each conduit ahead of a rubber duct swab and pulled in just before each cable pull.

E. Cable shall be sealed on the end to prevent any moisture from entering the insulation during installation.

F. Ground cable shield at each termination.

G. Medium Voltage Cable Identification:
 1. Identify cables as to phase and circuit at each accessible location. Identification to be accomplished by means of brass tags permanently affixed to cable embossed in letters no less than 1/2" high.
 2. Arrange tags such that they can be read without moving cables.

H. Fireproof and arc flash protect exposed medium voltage cable at transformers and switchgear as follows:
 1. Fire and arc proofing shall be accomplished through the application of tape and binding.
 2. Apply one half-lapped spiral wind wrap of fire retardant electric arc proofing tape over exposed areas of cable extended one inch into ducts. Tape shall be suitable for the conductor size as recommended by the manufacturer.
 3. Arc proofing tape shall be firmly held in place by a reverse spiral wound fiberglass tape equal to 3M Scotch #27.

I. Where cable terminates in a stress cone, wrap exposed insulation with half-lapped layer of self-fusing silicone tape applied without stretch. Secure ends of silicone tape with vinyl plastic tape to prevent ravel.

J. Damaged cable jacket and/or insulation will be cause for rejection of cable. Do not install cable if jacket is damaged in any way. No kinks are permitted and the bends are to be no less than 12 times cable diameter, or greater as recommended by the manufacturer. Pull cables directly into the duct from the coil or reel on which they are received. Cable shall not be pulled off and laid on the ground prior to installation. Make pulls in one direction.

K. Splices are not permitted.

L. Provide cable lengths with liberal allowances for slack for terminating. If pulling grips are used, sufficient excess cable shall be allowed so that damage due to the pulling grips can be removed prior to terminating. Use rubber tape to seal cable ends. Cable shall not be pulled with the ends open. Where cable requires more than one pull, the Contractor shall lay down new 6-mil PVC plastic sheathing on the ground in the lay
down area. The cable shall not be dragged across this surface, but will be permitted to be laid on the surface between pulls. Cable ends shall be moisture proofed at all times until terminations are installed.

M. Provide pull-in guides, cable feeders or draw-in protectors to prevent damage to the cable at the duct mouths. Pull cable by grips on the conductors with proper taping of the insulation to prevent pushback. Short lengths may be pulled with cable grips around the entire group; however, care should be taken to ensure equal distribution of tension and any damaged ends must be cut off and discarded before terminating the cable.

N. Stop pulling instantly if undue tension occurs. Lubricant shall be used to facilitate pulling and shall be compatible with the type of cable used.

O. Identify individual phases of each power circuit at points near each end of the cables. Before connections are made at cable terminals, check by ringing out or talking over each conductor by means of a portable hand telephone set. Identify circuits before terminal connections are made by one of the methods specified above.

3.3 PRIMARY CABLE TESTING

A. The cable manufacturer shall perform non-destructive factory tests on all cable in accordance with ICEA standards and shall furnish three copies of certified test report.

 1. Testing procedures are provided in Section of ANSI/NETA ATS 2009
 2. For the dielectric withstand test, utilize very low frequency (VLF) dielectric withstand voltage. Do not use direct current (DC) dielectric withstand voltage greater than 20,000 volts for previously used cable. Also, limit the time of application of this voltage.

C. Each circuit shall be rung-out or talked-out with proper signaling devices and with all equipment disconnected at each end to indicate that it is a continuous circuit where the operating requirements are that it shall be continuous.

D. Insulation resistance of each cable shall be measured with a 500 volt megohm meter. Cable will be rejected if resistance is less than 25 megohms.

E. Adequate means shall be taken to ensure safety during the tests and all safety instructions of the test operator shall be carried out.

F. If a cable fails, the fault shall be located, and all cables in that conduit between the nearest pulling points on each side of the failure shall be withdrawn. If, in the opinion of the Owner, the other cables in the same conduit have not been damaged, they may be reinstated, but the cable which failed shall be replaced by new cable. After the replacement of the faulted cable, and any other damaged cables, all cables of the circuit in that conduit shall be retested.

G. During the period of warranty any failure in primary cable, terminations or splices shall require immediate correction. In the event of a failure creating interruption in electrical service, furnish and install all labor and materials for temporary services to get the electrical system back in service. Work shall begin immediately upon notification of a failure, regardless of time.

H. All testing shall be witnessed by the Owner’s representative.

END OF SECTION 260513
SECTION 260518

ELECTRICAL CONNECTIONS TO EQUIPMENT

PART 1 - GENERAL

1.1 WORK INCLUDED

A. The extent of electrical connections to equipment is indicated on the drawings and in schedules, in other Divisions of the specifications, and by the requirements of this section, and is hereby defined to include (but not necessarily limited to) connections for providing electrical power to equipment.

B. The types of electrical connections specified in this section include, but are not necessarily limited to, the following:
 1. To motors
 2. To electric heaters
 3. To motor starters
 4. From motor starters to motors
 5. To HVAC control and other control devices
 6. To elevators and associated equipment
 7. Miscellaneous equipment

1.2 SUBMITTALS

A. Submit manufacturer's product data on materials to be used on project.

PART 2 - PRODUCTS

2.1 MATERIALS AND COMPONENTS

A. For each electrical connection indicated, provide a complete assembly of materials, including but not necessarily limited to the following:
 1. Pressure connectors
 2. Terminals (lugs)
 3. Electrical insulating tape
 4. Heat shrinkable tubing
 5. Cable ties
 6. Solderless wire nuts
 7. Conductors

B. Furnish materials and components in compliance with equipment manufacturer's recommendations for the intended application.

PART 3 - EXECUTION

3.1 INSTALLATION OF ELECTRICAL CONNECTIONS

A. Install electrical connections as indicated, in accordance with recognized industry practices to ensure that products serve the intended functions.

B. Connect electrical power supply conductors to equipment conductors in accordance with other sections of the specifications and in accordance with equipment manufacturer's written instructions and wiring diagrams. Wherever possible, match conductors of the electrical connection for proper interface between the electrical supply and the installed equipment.
1. Cover splices with electrical insulation equivalent to, or of a higher rating, than insulation on the conductors being spliced.
2. Prepare cables and wires, by cutting and stripping covering armor, jacket, and insulation properly to ensure a uniform and neat appearance where cables and wires are terminated.
3. Trim cables and wires to be as short as practicable and arrange routing to facilitate inspection, testing and maintenance.

C. Provide conduit for connections in accordance with other sections of the specifications.

D. Coordinate installation of electrical connections to the equipment with equipment installation work and as follows:
 1. Make electrical connections to equipment furnished under other sections of the Contract Documents.
 2. Furnish wiring, conduit, outlet boxes, disconnect switches, etc., as required for same throughout the project.
 3. Check the General Construction, Fire Protection, Plumbing, Heating and Air Conditioning plans and specifications and determine the amount of required wiring for final connections.
 4. Verify locations, horsepower, voltages, etc., of all such equipment as the work progresses.
 5. Advise the Architect/Engineer immediately, for clarification, if an apparent conflict arises in control wiring, power wiring, etc.

E. Due to manufacturer's changes or substitutions, equipment furnished under the mechanical and other sections of the specifications may require different rough-in and power requirements than indicated on the plans. Secure detailed drawings from the Contractor furnishing the equipment, to determine actual rough-in locations, and conduit and conductor requirements to assure a proper and workmanlike installation.

F. Install motor controls, safety switches, etc. for all equipment on unistrut with two coats of paint to match surrounding area.

3.2 FINAL CONNECTIONS FROM MOTOR STARTERS TO MOTORS

A. Furnish and install conduit, wiring, disconnects, etc., as required to install final connections from motor starters to motors. Verify number and size of conductors, and disconnecting means requirements. Partwinding, and wye-delta starting, as well as multi-speed motors may require multiple or six pole disconnects which shall be furnished and installed under this section of the Contract Documents.

3.3 FINAL CONNECTIONS FOR EQUIPMENT FURNISHED BY OWNER OR UNDER OTHER SECTIONS OF THE CONTRACT DOCUMENTS

A. HVAC AND MECHANICAL EQUIPMENT: It is the Contractor's responsibility to obtain the submittal data for HVAC and mechanical equipment, check the data, and provide required electrical, including conduit and conductors, circuit breakers, fuses, disconnects, etc., to accommodate changes or variations in the drawings and/or specifications.

B. ELEVATOR ELECTRICAL REQUIREMENTS:
 1. Provide all labor and materials for all required Circuits and Grounding as required by Code. Upgrade or replace existing as necessary to comply with items listed below.
 2. Provide a main power disconnect for each elevator.
 3. Provide remote tripping and Fire Safety Interface
 4. Meet, as a minimum, the requirements of NEC 620-51, and 620-62
 5. Do not use or provide the same power source to power to a heat detector(s) used for shunt tripping. The heat detectors must activate the shunt trip through a separate power source. This dedicated power source is required to be monitored by the supervisory fire alarm system.
 6. Provide a fused, lockable, elevator cab light disconnect in the elevator equipment room for each elevator
 7. Meet the requirements of NEC 620-22 (a) Car Lighting Source
 8. Each cab light disconnect shall meet the requirements of NEC 620-51 (a), and 620-53
9. Connections between the fire alarm devices and the elevator equipment shall not exceed 36 inches. Armored flex is not acceptable for these connections. Wiring for these connections shall be enclosed within minimum 3/4” EMT.

C. OTHER EQUIPMENT AND SYSTEMS: It is the Contractor's responsibility to obtain the submittal data for other equipment and systems, check the data, and provide required electrical, including conduit and conductors, circuit breakers, fuses, disconnects, etc., to accommodate changes or variations in the drawings and/or specifications.

3.4 CONNECTIONS TO EXISTING EQUIPMENT TO REMAIN

A. It is the Contractor's responsibility to survey the existing building loads and equipment to ensure all existing loads are served from new panels, switchboards, etc. All existing loads are not shown on the drawings.

B. Verify all loads served from existing panels being removed. Existing panel schedules shown on drawings do not necessarily depict correct circuiting or all existing circuits.

C. Serve existing loads from new panels even if not specifically indicated on drawings at no additional cost.

D. Verify breaker sizes serving existing loads and adjust breaker size as required to properly protect load and conductors, and to comply with NEC.

END OF SECTION 260518
SECTION 260519

CABLE, WIRE AND CONNECTORS, 600 VOLT

PART 1 - GENERAL

1.1 WORK INCLUDED

A. Building wire.
 1. Power distribution circuitry.
 2. Control system circuitry.
 3. Lighting circuitry.
 4. Appliance and equipment circuitry.
 5. Motor-branch circuitry.
 6. Outdoors lighting and power.
 7. Other systems circuitry as designated.

B. Cable.

C. Wiring connections and terminations.

D. Electrical/control portion of HVAC work covered by Division 23 pertaining 600 volt cable, wire and connectors shall follow the requirement set forth by this specification.

1.2 REFERENCES

A. NEMA WC 3 - Rubber-Insulated Wire and Cable for the Transmission and Distribution of Electrical Energy.
B. NEMA WC 5 - Thermoplastic-Insulated Wire and Cable for the Transmission and Distribution of Electrical Energy.
C. ANSI/UL 83 – Thermoplastic-Insulated Wire and Cables
D. NFPA 70 – National Electrical Code, latest edition
F. Where application of National Electrical Code, trade association standards or publications appears to be in conflict with the requirements of this Section, the Architect/Engineer shall be asked for an interpretation.

1.3 SUBMITTALS

A. Provide submittals in accordance with and in addition to Section 260000, Basic Electrical Requirements, and Division 01 for submittal requirement.

B. Submit manufacturer’s literature and specification data sheets for each item of cable, wire and connectors.

C. Qualification of cable and wire manufacturer: Company specializing in manufacturing products specified in this Section with minimum ten years experience.

1.4 DELIVERY, STORAGE AND HANDLING

A. Provide factory-wrapped waterproof flexible barrier material for covering wire and cable wood reels, where applicable; and weather resistant fiberboard containers for factory packaging of cable, wire and connectors, to protect against physical damage in transit. Damaged cable, wire or connectors shall be removed from project site.
B. Store cable, wire and connectors in a clean, dry indoor space in their factory-furnished coverings, which provides protection against the weather.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Generally, cable, wire and connectors shall be of manufacturer's standard materials, as indicated by published product information.

B. Provide factory-fabricated wire of the size, rating, material and type as indicated for each service. Where not indicated, provide proper selection as required to comply with installation requirements and with NEC standards. The minimum size wire to be used for power or lighting circuits shall be #12 copper with insulation as noted below. Minimum size for control shall be #14 copper.

C. If more than three phase conductors are installed in a single raceway, the conductors shall be derated in accordance with the National Electrical Code. Increase wire size so that resulting ampacity, after derating factor is applied, is equal to or greater than ampacity of conductor specified.

D. The conductors of wires and cables shall be of copper (tinned where specified), and have conductivity in accordance with the standardization rules of the IEEE. The conductor and each strand shall be round and free of kinks and defects.

E. Grounding conductors, where insulated, shall be colored solid green or identified with green color as required by the NEC. Conductors intended as a neutral shall be colored solid white, or identified as required by the NEC. All motor or equipment power wiring shall be colored according to Section 260553, Electrical Identification.

F. Use compression lugs for all wiring termination's, except on breakers or terminal strips in panel boards.

2.2 BUILDING WIRE

A. Thermoplastic-insulated Building Wire: NEMA WC 5.

C. Feeders and Branch Circuits Larger than 10 AWG: 98% conductivity copper, soft-drawn, stranded conductor, 600 volt insulation, THHN/THWN. Use XHHW conductors where installed in conduit underground.

D. Feeders and Branch Circuits 10 AWG and Smaller: 98% conductivity copper, soft-drawn, solid conductor, 600-volt insulation, THHN/THWN. Use XHHW conductors where installed in conduit underground.

2.3 REMOTE CONTROL AND SIGNAL CABLE

A. 600 Volt Insulation Control Cable for Class 1 Remote Control and Signal Circuits, Type TC:
 1. Individual Conductors: 14 AWG, stranded copper, XHHW insulation. Rated 90 degrees C dry, 75 degrees C wet, color-coded per ICEA Method 1 plus one green equipment grounding conductor.
 2. Assembly: Bundle wrapped with cable tape and covered with an overall PVC jacket. Cable shall pass IEEE-1202 vertical tray ribbon-burner flame test (210,000 BTU) VW-1.

B. Instrumentation Cable
 1. 300 Volt Instrumentation Cable, Multiple Pairs, Overall Shield, Type PLTC:
 a. Individual Conductors: 18 AWG, stranded, tinned copper, flame retardant polyethylene or PVC insulated, rated 105 degrees C, black and white numerically printed and coded pairs.
 b. Assembly: Individual twisted pairs having a 100 percent coverage aluminum-polyester shield and 20 AWG stranded tinned copper drain wire. Conductor bundle shall be shielded with 100 percent coverage overall aluminum-polyester shield complete with 20 AWG drain wire. All group shields completely isolated from each other. Bundle wrapped with cable
tape and covered with an overall flame retardant PVC jacket. Cable shall pass IEEE-383 vertical tray flame test (70,000 BTU) UL1581.

C. Plenum Cable for Class 3 Remote Control and Signal Circuits: 98% conductivity copper conductor, 300 volt insulation, rated 60 degree C, UL listed for use in air handling ducts, hollow spaces used as ducts, and plenums.

2.4 WIRING CONNECTIONS AND TERMINATIONS

A. Provide factory-fabricated, metal connectors of the size, rating, material, type and class as indicated for each service. Where not indicated, provide proper selection as required to comply with installation requirements and with NEC standards. Select from only following types, classes, kinds and styles.

1. Type:
 a. Solderless pressure connectors.
 b. Crimp.
 c. Threaded.
 d. Insulated spring wire connectors with plastic caps for 10 AWG and smaller.

2. Class:
 a. Insulated.

3. Material:
 a. Copper (for CU to CU connection).

 Parallel and tee connectors equal to ILSCO and GTA and GTT with ILSCO insulating cover. Parallel and tee connections shall be used only where specifically detailed. (Split bolt type connectors are not permitted.)

PART 3 - EXECUTION

3.1 INSPECTION

A. Installer must examine the areas and conditions under which cable, wire and connectors are to be installed and notify the Contractor in writing of conditions detrimental to the proper and timely completion of the work. Inspect wire and cable for physical damage. Do not proceed with the work until unsatisfactory conditions have been corrected.

3.2 GENERAL WIRING METHODS

A. Install electrical cable, wire and connectors as indicated, in accordance with the manufacturer's written instructions, the applicable requirements of NEC and the National Electrical Contractors Association's "Standard of Installation", and as required to ensure that products serve the intended functions.

B. Coordinate cable and wire installation work with electrical raceway and equipment installation work, as necessary for proper interface. Do not install the conductors until raceway system is complete and properly cleaned.

C. Conductors shall be selected on the basis of their purpose and UL listing. Generally, use Types THWN and THHN in building interiors and other dry locations. Outdoors and underground in raceways, use Type XHHW.

D. No conductor smaller than No. 12 wire shall be used for lighting purposes. In the case of "home runs" over 50’ in length, no conductor smaller than a No. 10 wire shall be used. Conductor sizes shown on drawings are minimum and shall be increased as necessary to comply with voltage drop restrictions specified herein. The sizing of all wire except remote control wire shall be accomplished in the case of both feeder and branch circuits by conforming to the following provisions.

1. 120/208 Volt Branch Circuits: The voltage drop in the case of 120/208 volt circuits shall not exceed 2.0% at maximum load and 70.0% power factor.

E. Separate neutral conductors shall be provided for each phase of the same size for 120V single-phase circuits. Do not share neutrals between circuits.
F. Remote control wires shall be no smaller than No. 14 conductors. Control wires shall be run in separate conduits. Departures from the sizes so determined shall be made only in those cases in which the National Electrical Code requires the use of larger conductors. The sizes as determined from these tables shall be regarded as the acceptable minimum under all other circumstances. In no case, however, shall there be a voltage drop greater than that specified in any feeder or branch circuit. The Contractor may, if he deems it necessary or advisable, use larger sized conductors than those shown. Under no circumstances, however, shall the Contractor use any conductors sized in a manner which does not conform to the above mentioned tables without having first secured the written approval of the Owner’s duly authorized representative.

G. Exposed wire and cable is not permitted. All wire and cable shall be installed in conduit.

H. Splice branch circuits only in accessible junction or outlet boxes. Control cable shall never be spliced except the final connection to field devices. Where terminations of cables that are installed under this Section are to be made by others, provide pigtail of adequate length for neat, trained and bundles connections, minimum 5 feet at each location, unless noted otherwise on drawings.

I. Wiring within an Enclosure: Contractor shall bundle ac and dc wiring separately within an enclosure. The Contractor shall utilize panel wireways when they are provided. Where wireways are not provided the Contractor shall neatly tag, bundle wires and secure to sub-panel at a minimum of every three inches with T&B Type TC535S heavy duty mounting bases.

J. Do not bend any conductor either permanently or temporarily during installation to radii less than four times the outer diameter of 600-volt insulated conductors.

3.3 WIRING INSTALLATION IN RACEWAYS

A. Wire and cable shall be pulled into clean dry conduit. Do not exceed manufacturer’s recommended values for maximum pulling tension and sidewall pressure.

B. Pull conductors together where more than one is being installed in a raceway.

C. Use UL listed pulling compound or lubricant, when necessary; compound must not deteriorate conductor and insulation.

D. Do not use a pulling means, including fish tape, cable or rope, which can damage the raceway.

E. Install wire in raceway after interior of building has been physically protected from the weather and all mechanical work likely to injure conductors has been completed.

F. Place an equal number of conductors for each phase of a circuit in same raceway.

G. Provide separate conduit or raceway for line and load conductors of motor starters, safety disconnect switches, and similar devices. Those devices shall not share the same raceway.

H. All conduits shall contain a green equipment grounding conductor. Provide isolated ground conductor to all isolated ground receptacles. Provide isolated ground conductor in 120/208 volt feeders as noted on drawings. Conduit, wireways, or boxes shall not be used as the equipment grounding conductor.

I. Provide separate conduit system for emergency power circuits. These circuits shall not share raceways with normal power or lighting circuits.

J. Conductors carrying more than 150 volts to ground shall not be installed in conduits with conductors carrying less than 150 volts to ground.

3.4 CABLE INSTALLATION

A. Provide protection for exposed cables where subject to damage during construction. Do not install cable before the completion of raceway system.
B. Cable shall be in conduit. Cables, conduits and raceways shall not be laid on ceiling tiles or strapped to ceiling wire.

C. Use suitable cable fittings and connectors.

D. It shall be the Contractor's responsibility to accurately measure all cable runs before the cable is cut. The Contractor shall furnish all tools and equipment, have sufficient properly trained personnel and shall exercise necessary care to ensure that the cable is not damaged during installation. Cable found to be damaged before installation shall not be installed. Cable damage during installation shall be removed and replaced. Repairs to cables can only be done with written permission from the Owner's Representative and only under special circumstances.

E. PVC jacketed cable shall not be installed or worked in any way at temperatures below 32 degrees F, unless cable has been previously stored in a heated area 48 hours prior to being pulled and transported to a heated pulling area.

F. Each cable entering an enclosure shall have its conductors bundled together and identified with the cable number. All groups of conductors within an enclosure shall be shaped and formed to provide a neat appearance to facilitate future additions or rework. All control conductors shall be numbered and shall be labeled at each termination with this number, using markers designed for the application.

G. Do not route power and control cables through communications rooms.

H. Fire alarm cables shall be installed in a separate conduit system.

I. Instrument Cable: Instrument cable shall be installed in conduit. They shall not be spliced at any point. The shields and drain wires of shielded signal cables shall be grounded only at one point.

3.5 WIRING CONNECTIONS AND TERMINATIONS

A. Install splices, taps and terminations, which have equivalent-or-better mechanical strength and insulation as the conductor. Make splices, taps and terminations to carry full ampacity of conductors without perceptible temperature rise.

B. Keep conductor splices and taps accessible and to a minimum, and in junction boxes only. Control circuit conductors shall terminate at terminal blocks only. Do not splice below grade or in outdoor pull boxes.

C. Use splice, tap and termination connectors, which are compatible with the conductor material.

D. Thoroughly clean wires before installing lugs and connectors.

E. Terminate spare conductors with electrical tape and label as spare. Do not energize.

F. Power and Lighting Circuits: Use solderless pressure connectors with insulating covers for copper wire splices and taps, 8 AWG and larger. For 10 AWG and smaller, use insulated spring wire connectors with plastic caps on lighting and receptacle circuits.

G. Connections for all wire sizes in motor terminal boxes where the motor leads are furnished with crimped-on lugs shall be made by installing ring type compression terminals on the motor branch circuit ends and then bolting the proper pairs of lugs together. First one layer of No. 33 scotch tape reversed (sticky side out), then a layer of rubber tape, then two layers of No. 33 half-lapped.

H. Identify conductors per Section 260553 - Electrical Identification.

3.6 FIELD QUALITY CONTROL

A. Torque test conductor connections and terminations to manufacturer's recommended values.
B. Perform continuity test on all power and equipment branch circuit conductors. Verify proper phasing connections.

C. Conductors in vertical conduits or raceways shall be supported in the manner set forth in the appropriate section of the latest revision of the National Electrical Code.

D. Lighting fixtures shall not be used for raceways for circuits other than parallel wiring of fixtures.

E. Conductors may be run in parallel as shown on drawings, provided all paralleled conductors are the same size, length, and type of insulation. They shall be so arranged and terminated as to insure equal division of the total current between all conductors involved.

3.7 TESTING AND ACCEPTANCE

A. Before final acceptance, the Contractor shall make voltage, insulation, and load tests, necessary to demonstrate to the Owner's representative the satisfactory installation and proper performance of all circuits.

B. Test feeder conductors clear of faults. Insulation-resistance test shall be conducted per NETA – Acceptance Testing Specifications for Electrical Power Distribution Equipment and Systems. Test results below 50 megohms shall be cause for rejection of the wiring installation. Replace and retest all such rejected conductor.

C. At the completion of this project, the Contractor shall provide for the Owner three (3) complete and finally corrected sets of working drawings. These sets of working drawings shall be new, unused and in good condition, and shall include the nature, destination, path, size and type of wire and all other characteristics for complete identification of each and every conduit and circuit.

END OF SECTION 260519
SECTION 260526

GROUNDING

PART 1 - GENERAL

1.1 WORK INCLUDED

A. Power system grounding.
B. Communication system grounding.
C. Electrical equipment and raceway grounding and bonding.

1.2 REFERENCES

A. NFPA 70 – National Electrical Code, latest edition
B. ANSI/UL 467 – Electrical Grounding and Bonding Equipment
C. ANSI/IEEE STD 142 – Recommended Practice for Grounding of Industrial and Commercial Power Systems
D. IEEE 81 – Guide for Measuring Earth Receptivity, Ground Impedance and earth Surface Potential of a ground System
E. IEEE 1100 – Recommended Practice for Powering and Grounding Sensitive Electronic Equipment
F. ANSI/TIA/EIA 607 – Commercial Building Grounding and Bonding Requirements for Telecommunications

1.3 SYSTEM DESCRIPTION

A. Ground the electrical service system neutral at service entrance equipment to grounding electrodes. Electrical systems that are grounded shall be connected to earth in a manner that will limit the voltage imposed by lightning, line surges, or unintentional contact with higher-voltage lines and that will stabilize the voltage to earth during normal operations. Concrete encased electrodes shall be connected as the most effective grounding electrodes. Provide a completely grounded and bonded system in accordance with Article 250 of the NEC.
B. Ground generator system neutral to grounding electrode system.
C. Provide communications system grounding conductor to MDF and each IDF as indicated on drawings.
D. Bond together system neutrals, service equipment enclosures, exposed non-current carrying metal parts of electrical equipment, metal raceway systems, boxes, cable sheath, ground bus in electrical rooms and IT rooms, metal frame of the building, ground rods, encased electrodes, grounding conductor in raceways and cables, receptacle ground connectors, lightning protection counterpoise, and metal underground water pipe.
E. Bonding jumpers shall be installed around non-metal fittings or insulating joints to ensure electrical continuity. Bonding shall be provided where necessary to ensure electrical continuity and the capacity to conduct safely any fault current likely to be imposed.
F. Supplementary Grounding Electrode: Use driven ground rods and encased electrodes on exterior of Building.
1.4 SUBMITTALS

A. Provide submittals in accordance with and in addition to Section 260000, Basic Electrical Requirements, and Division 01 for submittal requirement.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Grounding system components shall be as required to comply with the design and construction of the system indicated. Components shall be as indicated in manufacturer's submittal data.

B. Ground conductors shall be stranded tinned, annealed copper cable of the sizes indicated on drawings. Bond grounding conductors at both ends of metallic conduit.

C. Grounding clips shall be Steel City Type G, or equal.

D. Ground Rods shall be copper-encased steel, 3/4" diameter, minimum length 10 feet.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install ground system as indicated, in accordance with the applicable requirements of the National Electrical Code and the National Electrical Contractors Association's "Standard of Installation".

B. Install grounding conductors continuous, without splice or connection, between equipment and grounding electrodes. Install test wells as required per drawings.

C. In feeder and branch circuits, provide a separate, insulated equipment grounding conductor. Terminate each end on a grounding lug, bus, or bushing.

D. Connect grounding electrode conductors to metal water pipe where metal pipe is available and accessible using suitable ground clamp. Make connections to flanged piping at street side of flange. Provide bonding jumper around water meter.

E. Install fusion welded ground connectors where they are concealed or inaccessible.

F. Ground each outlet by the use of an approved grounding clip attached to the junction box in such a position to be readily inspected on removal of the cover plate; or by the use of an approved grounding yoke type receptacle.

G. No strap grounding clamps shall be used; connections requiring bolting shall be made up with monel metal bolts, washers and nuts. Connections shall be made only after surfaces have been cleaned, or ground to expose virgin metal.

H. Install external ground wire on liquid tight flexible metal conduit with grounding bushings.

I. Conductor connections shall be made by means of solderless connectors such as serrated bolted clamps or split bolt and nut type connectors.

J. Connect grounding conductors to ground rods at the upper end of the rod with the end of the rod and the connection points below finished grade. Below grade connection shall be exothermic-welded type connectors as manufactured by Cadweld, Thermoweld.

K. Provide grounding and bonding at metering equipment and pad-mounted transformer in accordance.
L. 120 volt single phase circuits shall have a dedicated separate neutral. Do not share neutrals. Replace existing circuits that share a neutral so that all existing and new circuits do not share a neutral. Provide additional conduits as required.

M. Ufer Ground (Concrete-Encased Grounding Electrode): Fabricate according to NFPA 70; use a minimum of 20 feet of bare copper conductor not smaller than No. 3/0 AWG. If concrete foundation is less than 20 feet long, coil excess conductor within base of foundation. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building's grounding grid or to grounding electrode external to concrete.

N. Separately derived systems such as UPS, etc. shall be grounded and bonded per NEC.

3.2 FIELD QUALITY CONTROL

A. Inspect grounding and bonding system conductors and connections for tightness and proper installation.

B. Measure ground resistance from system neutral connection at service entrance to convenient ground reference point using suitable ground testing equipment. Resistance shall not exceed 2 ohms. Provide additional ground rod as required until resistance reading is 2 ohms or less.

END OF SECTION 260526
SECTION 260529
SECURING AND SUPPORTING METHODS

PART 1 - GENERAL

1.1 WORK INCLUDED
A. Raceway and equipment supports.
B. Fastening hardware.
C. Coordinate location of concrete equipment pads.

1.2 QUALITY ASSURANCE
A. Support systems shall be adequate for weight of equipment and conduit, including wiring, which they carry. Support systems shall be sized adequately to support an additional 25% for future loads.

1.3 COORDINATION
A. Coordinate with other trades where conduit supports are in the same location as piping, ductwork, and work of other trades and where supports are furnished and installed under other Divisions. Supporting from the work or supports of other Contractors shall not be allowed except by express, written permission of the Owner.

1.4 SUBMITTALS
A. Provide submittals in accordance with and in addition to Section 260000, Basic Electrical Requirements, and Division 01.

PART 2 - PRODUCTS

2.1 MATERIAL
A. Support Channel:
 1. All non-corrosive locations: Hot-dip galvanized steel.
B. Hardware:
 1. All non-corrosive locations: Hot-dip galvanized steel.
C. Threaded Rod: Used for rack support from structure above; 1/4-inch minimum diameter.

2.2 CONDUIT ANCHORING
A. Conduit shall be securely anchored with split ring hangers, conduit straps, or other devices specifically designed for the purpose. Wire ties and spring clips are specifically not permitted. Do not support conduits from ceiling support wires.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Fasten hanger rods, conduit clamps, and outlet and junction boxes to building structure using precast insert system, expansion anchors, or beam clamps. Do not use spring steel clips and clamps. Provide necessary calculations to select proper support materials for electrical equipment, raceway supports.
B. Install hangers, anchors, sleeves and seals as indicated, in accordance with manufacturer’s written instructions and with recognized industry practices to insure supporting devices comply with requirements. Comply with requirements of NEC for installation of supporting devices. Install supports with spacing in compliance with NEC requirements.

C. Use toggle bolts or hollow wall fasteners in hollow masonry, plaster, or gypsum board partitions and walls; expansion anchors in solid masonry walls; or concrete surfaces; sheet metal screws in sheet metal studs; and wood screws in wood construction.

D. Do not fasten supports to piping, ductwork, mechanical equipment, or conduit.

E. Do not use powder actuated anchors without written permission from the Engineer.

F. Do not drill structural steel members without written permission from the Structural Engineer.

G. Fabricate supports from structural steel or steel channel, rigidly welded or bolted to present a neat appearance. Use hexagon head bolts with spring lock washers under all nuts.

H. Bridge studs top and bottom with channels to support recessed mounted cabinets and panelboards in stud walls.

I. Install surface mounted cabinets and panelboards with a minimum of four anchors. Provide strut channel supports to stand cabinet 1-5/8 inches off wall. Utilize "Post Bases" where support channel is attached to structural floor.

J. Provide extra care in supporting PVC conduit to protect it from potential damage.

K. Use fiberglass for nonmetallic raceway systems supports in areas subject to corrosives.

L. All supports in contact with floor using stanchion type support shall be solidly bolted to the permanent structural floor.

M. Conduit supports shall have at a minimum, the bottom support member constructed of double strut. This horizontal member shall be double-nutted, and the supporting all-thread rod shall be trimmed to one inch below lowest nut.

N. Coordinate with other electrical work, including raceway and wiring work, as necessary to interface installation of supporting devices with other work.

O. Install freestanding electrical equipment minimum on 4-inch concrete pads unless noted otherwise. Pad shall be a minimum four inches larger than equipment. No crevices shall be left around the pads. Equipment includes but not limited to the following:
 1. Floor mounted switchgear
 2. Automatic transfer switches if floor mount type

P. Generator and pad mounted transformers shall be as detailed and noted on drawings.

Q. Do not anchor supports to columns. Where panelboards, cables, or conduits are routed on the face of a column provide "column hugging" channel supports.

3.2 TOUCH-UP

A. Touch-up all scratches on securing and supporting system, and paint the ends of channel after cutting with an approved zinc chromate or 90 percent zinc paint.

END OF SECTION 260529
PART 1 - GENERAL

1.1 WORK INCLUDED

A. Raceways:
 1. Wireways.

B. Conduit:
 1. Rigid metal conduit and fittings (RGS).
 2. Intermediate metal conduit and fittings (IMC).
 3. Electrical metallic tubing and fittings (EMT).
 4. Flexible metal conduit and fittings.
 5. Liquid-tight flexible metal conduit and fittings.
 6. Non-metallic conduit and fittings (underground use only).

C. Boxes:
 1. Wall and ceiling outlet boxes.
 2. Pull and junction boxes.

D. Electrical/control portion of HVAC work covered by Division 23 pertaining raceway, conduit and boxes shall follow the requirement set forth by this specification.

1.2 REFERENCES

A. NFPA 70 – National Electrical Code, latest edition
B. ANSI C80.1 - Rigid Steel Conduit, Zinc-Coated
C. ANSI C80.3 - Electrical Metallic Tubing, Zinc-Coated
D. ANSI/NEMA FB 1 - Fittings and Supports for Conduit and Cable Assemblies
E. EMA TC 3 - PVC Fittings for Use with Rigid PVC Conduit and Tubing
F. ANSI/NEMA OS 1 - Sheet-Steel Outlet Boxes, Device Boxes, Covers and Box Supports
G. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum)
H. ANSI/UL 1 – Flexible Metal Conduit
I. ANSI/UL 360 – Liquid-tight Flexible Steel Conduit
J. ANSI/UL 467 – Electrical Grounding and Bonding Equipment
K. ANSI/UL 651 – Schedule 40 and 80 Rigid PVC Conduit (underground use only)
L. ANSI/UL 797 – Electrical Metal Tubing
M. ANSI/UL 870 – Wireways, Auxiliary Gutters and Fittings
N. UL 6 – Rigid Metal Conduit
O. ANSI/UL 5C – Surface Raceways and Fittings for Use with Data, Signal, and Control Circuits
1.3 SUBMITTALS

A. Provide submittals in accordance with and in addition to Section 260000, Basic Electrical Requirements, and Division 01 for submittal requirements.

B. Shop drawings consisting of a complete list of equipment and materials, which will be used for the project, including manufacturer's descriptive and technical literature, catalog cuts and installation instructions.

C. Sealing/fire stopping materials and details.

D. Submit detailed shop drawing for Owner and Engineer approval showing all conduits 2” and larger. All conduits, regardless of size shall be concealed in finished areas of the building.

E. Submit cable pulling tension and sidewall pressure calculations for all service and feeder conduits.

1.4 STORAGE AND HANDLING

A. Handle materials carefully to avoid damage, breaking, denting and scoring. Damaged equipment or materials shall not be installed.

B. Store materials in a clean dry space and protected from the weather.

PART 2 - PRODUCTS

2.1 WIREWAYS

A. Wireways shall be of steel construction general purpose for indoor spaces and rain tight for outdoor applications with knockouts.

B. Submit proposed site and location for approval. Use wireways only where acceptable to Owner and Engineer.

C. Cover shall be hinged or screw applied as indicated on Drawings. Rain tight wireways shall be provided with full gasketing.

D. Fittings shall be so constructed to continue the "lay-in" feature through the entire installation.

E. Provide all sheet metal parts with a rust inhibiting phosphatizing primer coating and finished in gray enamel. All hardware shall be cadmium plated to prevent corrosion.

2.2 CONDUIT AND FITTINGS

A. Conduit and fittings for all electrical systems on this project shall include the following:
 1. Service entrance
 2. Electrical power and lighting feeders
 3. Electrical power and lighting circuits
 4. Control systems (other than HVAC)
 5. Division 28 systems
 6. Other electrical systems
B. For each electrical wireway system indicated, provide a complete assembly of conduit, tubing or duct with fittings including, but not necessarily limited to, connectors, nipples, couplings, locknuts, bushings, expansion fittings, other components and accessories as needed to form a complete system of the same type indicated.

C. Conduit fittings shall be designed and approved for the specific use intended. Conduit fittings, including flexible, shall have insulated throats or bushings. Rigid conduits shall have insulated bushings, unless grounding bushings are required by N.E.C. Article 250. Grounding bushings shall have insulated throats.

D. Rigid and intermediate metal conduit shall be hot-dipped galvanized. Fittings shall be threaded type. Expansion fittings shall be OZ Type DX.

E. Electrical metallic tubing shall be galvanized. Fittings shall be all steel compression water tight type. Expansion fittings shall be OZ Type TX.

F. Flexible metal conduit and fittings shall be zinc-coated steel.

G. Malleable metal fittings are not acceptable.

H. Liquid-tight flexible conduit and fittings shall consist of single strip, continuous, flexible interlocked, double-wrapped steel, galvanized inside and outside, forming smooth internal wiring channel with liquid-tight covering of flexible polyvinyl chloride (PVC). It shall be furnished with a sealing O-ring where entering an enclosure subject to moisture. Where O-Rings are used, ground type bushings shall be used in the box or enclosure.

I. Nonmetallic conduit and fittings shall be suitable for temperature rating of conductor but not less than 90°C. Nonmetallic conduit and fittings shall be molded of high impact PVC compound having noncombustible, nonmagnetic, non-corrosive and chemical resistant properties and shall be of the same manufacturer. Solvent cement shall be of the same manufacturer as the conduit and shall be of the brush-on type. Spray solvents are prohibited. PVC coated metallic fittings shall not be permitted for PVC conduit connections.

J. ENT is not acceptable.

K. Provide strain relief fittings as manufactured by OZ for cables in vertical raceways.

L. Crimp or set-screw type fittings are not acceptable.

M. Minimum conduit size shall be 3/4 inch for branch circuits.

N. Minimum conduit size shall be 1 inch for feeders.

O. 1/2 inch flexible metal conduit may only be used for light fixture whips for lay-in fixtures. Minimum length 3'-0", maximum length 6'-0".

2.3 WALL AND CEILING OUTLET BOXES

A. Galvanized steel interior outlet wiring boxes of the type, shape and size, including depth of box, to suit each respective location and installation; constructed with stamped knockouts in back and sides, and with threaded holes with screws for securing box covers or wiring devices.

1. Outlet box accessories as required for each installation, including mounting brackets, wallboard hangers, extension rings, fixture studs, cable clamps and metal straps for supporting outlet boxes, compatible with outlet boxes, compatible with outlet boxes being used and meeting requirements of individual situations.

2. Provide multi-gang outlets of single box design. Sectional boxes are not acceptable. Provide outlet boxes of sufficient volume to accommodate the number of conductors entering the box in accordance with the requirements of NEC, and not less than 1 ½ inch deep unless shallower boxes are required by structural conditions and are approved by the A/E.
B. Outlets exposed to rain shall be equipped with cast metal in-use cover.

C. Provide 4-inch octagonal ceiling outlet boxes.

D. Surface mounted outlet boxes in interior locations shall be threaded cast type.

2.4 PULL AND JUNCTION BOXES

A. Boxes shall be galvanized sheet metal conforming to ANSI/NEMA OS 1 with screw-on cover and welded seams, stainless steel nuts, bolts, screws and washers.

B. Boxes larger than 24 inches in any dimension shall be panelboard code gauze galvanized steel with hinged cover.

C. Boxes shall be sized in accordance with NEC.

PART 3 - EXECUTION

3.1 INSTALLATION - CONDUIT

A. Install products as indicated, in accordance with the applicable requirements of NEC, NEMA and the National Electrical Contractors Association's "Standard of Installation."

B. Cut conduit square using a saw or pipe cutter. De-burr cut ends. Joints in steel conduit must be painted with T&B Kopr shield and drawn up tight. Threads for rigid metal conduit and IMC shall be deep and clean. Running threads shall not be used. Wipe plastic conduit clean and dry before joining. Apply full, even coat of cement with brush to entire area that will be inserted into fitting. Let joint cure for 20 minutes minimum. Spray type of cement is not acceptable. Install raceway and conduit system from point of origin in outlets shown, complete with support assemblies including all necessary hangers, beam clamps, hanger rods, turnbuckles, bracing, rolls, clips angles, through bolts, brackets, saddles, nuts, bolts, washers, offsets, pull boxes, junction boxes and fittings to ensure a complete functional raceway system. Where vertical drops of conduit are made to equipment in open space, the vertical conduit shall be rigidly supported from racks supported on the floor.

C. Raceway and conduit system shall be installed parallel and perpendicular to building lines unless indicated otherwise on the drawings.

D. Install rigid wall hot-dipped galvanized steel conduit or hot-dipped galvanized intermediate metal conduit for service entrance, feeders, wall or floor penetrations, mechanical rooms, electrical rooms, exposed interior locations, exposed outdoor locations, damp locations or any location as per design drawing. The following exceptions permitted:

1. EMT
 a. In sizes up to and including 4 inch, may be used inside dry locations where concealed above accessible ceilings or in dry wall partitions. EMT may not be used outside, in vault, in concrete, underground, in under floor spaces, in masonry walls, in locations likely to be damp, or where exposed. EMT may be exposed in mechanical and electrical rooms where above 5'-0" AFF, but cannot be used for service entrance.

2. PVC (underground use only)
 a. Install PVC schedule 40 conduit where direct buried in earth.
 b. Install PVC schedule 40 conduit where concrete encased in ductbank.
 c. Underground 90s shall be long radius fiberglass.
 d. Stub-ups shall be schedule 40 PVC.

3. Liquid-tight
 a. Install liquid-tight flexible metal conduit for connections to rotating, vibrating, moving or movable equipment, including mechanical equipment. Install external ground wire on flexible conduit with grounding bushings. Maximum length shall be 6 feet minimum of 2 feet.
4. Flexible Metal Conduit
 a. Install standard flexible metal conduit (not liquid-tight), which shall be only used for lighting fixture whips with internal ground wire. Maximum length shall be 6 feet minimum of 3 feet; and minimum size shall be ½ inch for lay-in light fixture whips.

E. Install conduits parallel and supported on Unistrut, or equal, trapezes and anchored with split ring hangers, conduit straps or other devices specifically designed for the purpose. No raceways or boxes shall be supported using wire. Arrange conduit to maintain headroom and present a neat appearance. Conduit routes shall follow the contour of the surface it is routed on. Route exposed conduit and tray above accessible ceilings parallel and perpendicular to walls and adjacent piping. Maintain 12-inch clearance between conduit and heat sources, such as flues and heating appliances. Wire ties or “wrap lock” are not permitted to support or secure conduit system. Fasten conduit with the following material:
 1. Wood screws on wood
 2. Toggle bolts on hollow masonry
 3. Bolts and expansion anchors in concrete or brick
 4. Machine screws, threaded rods and clamps on steel
 5. Conduit clips on steel joists.
 6. 4 inch x 4 inch penta-treated pine installed in pitch pans on roof, spaced at intervals not to exceed 5 feet. Do not install on roof without written permission from Owner. Conduits to rooftop equipment shall be installed in ceiling space and penetrate roof within equipment curb.

F. Install conduits outside of building lines at a minimum depth of 30 inches below finished grade. Refer to ductbank details for additional depth requirements. Provide additional depth as required to maintain required separation from other utilities and to avoid obstructions. Maintain twelve inches earth or two inches concrete separation between electrical conduits and other services or utilities underground.

G. Allow minimum 6” clearance from heat sources.

H. Conduits running to rooftop and exterior wall mounted equipment shall be routed inside building and stubbed out at equipment.

I. Install underground conduits with sealing glands equal to OZ Type FSK exterior to the conduit and OZ type CSB, or equal internally at the point where conduits enter the building to prevent water seepage into the building.

J. Fittings shall be approved for grounding purposes or shall be jumped with copper grounding conductors of appropriate ampacity. Leave termination of such jumpers exposed.

K. Install expansion fittings in metal and PVC conduit as follows:
 1. Conduit Crossing Building Expansion Joints:
 a. EMT all sizes
 b. IMC all sizes
 c. RMC all sizes
 2. Conduits entering environmental rooms and other locations subject to thermal expansion and as required by NEC.
 3. Unless expansion fitting has an integral bonding braid, as in Crouse-Hinds Type XC, a green insulated grounding conductor shall be pulled in the conduit. Both ends of the green grounding conductors shall be accessible for inspection.

L. Install conduit concealed in walls, partitions and above ceilings. Install conduit exposed in ceiling area (at structure) of electrical rooms and mechanical rooms.

M. Avoid moisture traps where possible; where unavoidable, provide junction box with drain fitting at conduit low point.

N. Use suitable conduit caps to protect installed conduit against entrance of dirt and moisture if cable or wire are not installed immediate after conduit run. Tape covering conduit ends is not acceptable.

O. Provide 200 lb. nylon cord full length in empty conduit.
P. Where conduit penetrates fire-rated walls and floors, provide pipe sleeve two sizes larger than conduit; pack void around conduit with oakum and fill ends of sleeve with fire-resistive compound or provide mechanical fire-stop fittings with UL listed fire-rating or seal opening around conduit with UL listed foamed silicone elastomer compound equal to fire-rating of floor or wall.

Q. Install no more than the equivalent of three 90-degree bends between boxes. Where four 90 degree bends are required, prior approval by the Engineer is required. Use conduit bodies to make sharp changes in direction, as around beams. Conduit bodies shall be readily accessible and sized for the cables installed. Running or rolling offsets are not approved. Use factory long radius elbows for bends in conduit larger than 2-inch size. All parallel bends shall be concentric.

R. Pull string shall be provided full length in conduit designated for future use.

S. Rigid steel conduit shall be taped where in contact with concrete. At the points where conduit penetrates concrete that is in contact with soil, the conduit shall be Schedule 80 PVC bedded in sand.

3.2 INSTALLATION - WIREWAYS

A. Bolt wireways to steel channels fastened to the wall or in self-supporting structure. Install level.

B. Gasket each joint in oil-tight wireway.

C. Mount rain tight wireway for exterior installation in horizontal position only.

3.3 INSTALLATION - BOXES

A. Provide electrical boxes as shown on Drawings, and as required for splices, taps, wire pulling, equipment connections, and code compliance.

B. Provide outlet box accessories as required for each installation, including mounting brackets, wallboard hangers, extension rings, fixture studs, cable clamps and metal straps for supporting outlet boxes, compatible with outlet boxes being used and meeting requirements of individual situations.

C. Electrical box locations shown on Contract Drawings are approximate unless dimensioned. Verify location of outlets prior to rough-in.

D. Allow minimum 6” clearance from heat sources.

E. Locate and install boxes to allow access, minimum 12 inches above ceiling except where space dimensions do not allow.

F. Do not install boxes back-to-back in walls. Provide minimum 6-inch separation. Provide minimum 24-inch separation in acoustic-rated walls. If boxes are connected together, install flexible connection between the two and pack openings with fiberglass.

G. Secure boxes rigidly to the substrate upon which they are being mounted, or solidly imbed boxes in concrete or masonry. Do not support junction boxes from the raceway systems. Boxes shall not be permitted to move laterally. Boxes shall be secured between two studs. Box may be supported to one stud only if installed using Erico Caddy H23/H4/HS3 Series box support with leg to prevent box from moving in stud wall.

H. Provide knockout plugs for unused openings.

I. Use multiple-gang boxes where more than one device is mounted together. Do not use sectional boxes. Provide barriers to separate wiring of different voltage systems.

J. Install boxes in walls without damaging wall insulation.
K. Outlet boxes in plaster partitions shall be "shallow-type" set flush in wall so there is at least 5/8 inch plaster covering back of box.

L. Outlet boxes for switch shall not be used as junction boxes.

M. Coordinate mounting heights and locations of outlets mounted above counters, benches and backsplashes.

N. In inaccessible ceiling areas, position outlets and junction boxes within 6 inches of recessed luminaire, to be accessible through luminaire ceiling opening.

O. Outlet boxes supporting fixtures shall be securely anchored in place in an approved manner. Support outlet boxes and fixtures in acoustic ceiling areas from building structures, not from acoustic ceilings. Lighting fixture outlets shall be coordinated with mechanical and architectural equipment and elements to eliminate conflicts and provide a workable neat installation.

3.4 WALL AND FLOOR PENETRATIONS

A. Core drilling shall be approved by Owner prior to execution. X-ray for each required floor penetration. Avoid anchor bolt on structural column by installing “column hugging” type of unistrut support for electrical installation. PVC shall not be used for wall and floor penetration.

B. Route conduit through roof openings for piping and ductwork where possible; otherwise, route through roof jack with pitch pocket. Coordinate roof penetrations with the roofing contractor.

END OF SECTION 260533
PART 1 - GENERAL

1.1 WORK INCLUDED

A. Nameplates and tape labels

B. Wire and cable markers

C. Conduit color coding and labeling

1.2 REFERENCES

A. NFPA 70 – National Electrical Code (latest edition)

1.3 SUBMITTALS

A. Provide submittals in accordance with and in addition to Section 260000, Basic Electrical Requirements, and Division 01 for submittal requirement.

1. Furnish nameplate identification schedules listing equipment type and nameplate data with letter sizes and nameplate material.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Equipment Nameplates:

1. For normal power electrical equipment, provide engraved three-layer laminated plastic nameplates, engraved white letters on a black background.

2. For emergency equipment provide engraved three-layer laminated plastic nameplates with engraved white letters on a red background.

3. For fire alarm system provide engraved three-layer laminated plastic nameplates with white letters on a yellow background.

B. Underground Warning Tape

1. Manufactured polyethylene material and unaffected by acids and alkalines.

2. 3.5 mils thick and 6 inches wide.

3. Tensile strength of 1,750 psi lengthwise.

4. Printing on tape shall include an identification note BURIED ELECTRIC LINE, and a caution note CAUTION. Repeat identification and caution notes over full length of tape. Provide with black letters on a red background.

C. Conductor Color Tape and Heat Shrink:

1. Colored vinyl electrical tape shall be applied perpendicular to the long dimension of the cable or conductor.

2. In applications utilizing tray cable, heat shrinkable tubing shall be used to obtain the proper color coding for the length of the conductor in the cabinet or enclosure. Variations to the cable color coding due to standard types of wire or cables are not acceptable.

D. Warning labels: Provide warning labels with black lettering on red background with a minimum of 1/2" lettering.

E. Receptacle, lighting control, and switch cover plates shall be custom engraved with panel and circuit breaker number. Stick-on tape label is not acceptable.
F. J-Box cover plate labels (existing and new j-boxes): Black stenciled letters 1/4” high. Adhesive back tapes may be used if a clear tape is applied over the label for protection. Each j-box cover shall be labeled with voltage and each circuit number contained in j-box.
 1. White letters on black background for normal power.
 2. White letters on red background for emergency/standby power.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Degrease and clean surfaces to receive nameplates or tape labels.

B. Install nameplates parallel to equipment lines.

C. Secure plastic nameplates to equipment fronts using screws or rivets. Use of adhesives shall be per Owner’s approval. Secure nameplate to outside face of flush mounted panelboard doors in finished locations.

3.2 WIRE IDENTIFICATION

A. Provide wire markers on each conductor in panelboard gutters, pull boxes, outlet and junction boxes, and at load connection. Identify with branch circuit or feeder number for power and lighting circuits. Label control wire with number as indicated on schematic and interconnection diagrams or equipment manufacturer's shop drawings for control wiring.

B. Conductors for power circuits to be identified per the following schedule. Verify existing color code and notify Engineer if different than below.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Black</td>
</tr>
<tr>
<td>B</td>
<td>Red</td>
</tr>
<tr>
<td>C</td>
<td>Blue</td>
</tr>
<tr>
<td>Neutral</td>
<td>White</td>
</tr>
<tr>
<td>Grounding</td>
<td>Green</td>
</tr>
<tr>
<td>IG</td>
<td>Green w/Yellow</td>
</tr>
</tbody>
</table>

3.3 NAMEPLATE ENGRAVING SCHEDULE

A. Provide nameplates of minimum letter height as scheduled below. Nameplates shall be same as equipment names indicated on the Drawings.

B. Individual Circuit Breakers in Switchboards, Distribution Panelboards, Disconnect Switches, Motor Starters, and Contactors: 1/4-inch; identify source to device and the load it serves, including location.

C. Automatic Transfer Switches: 3/8-inch; white letters and red background; identify equipment designation 1/4-inch; identify voltage rating, normal source, standby source and load served including location.

D. Panelboards: 3/8-inch; identify equipment designation. 1/4-inch; identify source, voltage and bus rating.
3.4 ENCLOSURE COLOR CODING

A. The following systems shall have each junction and pull box cover completely painted per the following:

<table>
<thead>
<tr>
<th>System</th>
<th>Color of Box Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCMS</td>
<td>Green</td>
</tr>
<tr>
<td>Emergency Power</td>
<td>Red</td>
</tr>
<tr>
<td>Security**</td>
<td>White</td>
</tr>
<tr>
<td>Fire Alarm</td>
<td>Yellow</td>
</tr>
</tbody>
</table>

**Security shall include, but not be limited to, the following systems:
- Card Access
- Duress Alarms
- Perimeter Door Alarms
- CCTV

3.5 SWITCHGEAR LABEL

A. Switchgear shall be labeled to include arc-flash labels, personal protective equipment (PPE) and other information as required by NEC 110.16 and as described in the standards and guidelines referenced in FPN Nos. 1 and 2.

END OF SECTION 260553
PART 1 - GENERAL

1.1 WORK INCLUDED

A. Provide a complete analysis of the operation of the electrical power system under overcurrent and short circuit conditions (L-G, L-L and 3Ø bolted fault).

B. Generator/ATS timing and delay functions.

C. Provide complete arc-flash study and equipment labeling.

1.2 SUBMITTALS

A. Analysis shall be performed by one of the following:
 1. Square D Systems Coordination Group
 2. Coordinated Power Systems - Hales Corner, Wisconsin
 3. General Electric

B. Submit a preliminary analysis of the system for approval prior to a release for fabrication of electrical equipment.

C. Submit final analysis of the system prior to the installation or energization of equipment.

1.3 REFERENCED STANDARDS

A. The analysis of overcurrent operation shall be based on IEEE "Overcurrent Protective Device Coordination by Computer".

B. The analysis of short circuit current operation shall be based on IEEE "Procedure for Determining Maximum Short Circuit Value in Electrical Distribution Systems".

PART 2 - PRODUCTS

Not Used

PART 3 - EXECUTION

3.1 SCOPE OF ANALYSIS

A. The analysis shall be comprehensive from existing PME switchgear, to oil-filled pad mounted transformer through the distribution system to the last overcurrent device serving equipment or outlets.

B. The contribution of all motors one horsepower and larger shall be included.

C. Include generator, automatic transfer switches and controls.

D. Where operation from one or more sources is possible, all operating configurations shall be analyzed.
3.2 BASIS OF COMPUTATION

A. Computation shall be based on infinite bus method. For arc-flash ratings, use actual available fault current values to determine recommended rating.

B. Device characteristics and equipment impedances shall be obtained in writing from the equipment supplier.

C. The preliminary analysis shall be based on the Contractor’s estimation of feeder types and lengths and the proposed equipment characteristics.

D. The final analysis shall be based on the equipment and materials actually installed at the project. Conductor and raceway type, lengths, and characteristics shall be supplied by the Contractor on the actual materials and routings to be installed.

E. Coordination TCC’s shall include all pertinent data including MAG-I, FLA, cable damage limit, fault current, partial one-line of devices plotted, motor stall, etc.

F. All timing and delay functions associated with the generator system including automatic transfer switches shall be included in the analysis, such as delay to start, delay to transfer, etc.

3.3 RESULTS

A. The overcurrent device coordination analysis shall present a graphic representation of the required time-current settings for every protective device in the system and a tabular listing for equipment calibration. All devices which are not able to be fully selectively coordinated shall be noted along with recommended action.
 1. All corrective action shall be included in bid.
 2. Provide mission critical breakers or breakers with additional trip features as required for code required coordination.

B. The short circuit analysis shall list the phase and ground fault current available at each switchgear, switchboard and panelboard bus in the system, and define whether each device in the system is adequately rated for the duty imposed. Contractor shall furnish equipment with AIC rating which exceeds maximum available fault current regardless of rating specified on drawings. Equipment ratings on drawings are minimum AIC duty and shall not be reduced.

C. Series rating is not permitted.

D. Label switchgear based on results of arc-flash study.

E. Provide mission critical breakers or breakers with additional trip features as required for code required coordination.

F. Provide equipment and/or breaker features as necessary to limit arc-flash energy per NEC.

END OF SECTION 260573
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Ceiling mounted occupancy/vacancy sensors including dual technology, microphonic, and passive infrared technologies. This includes self-contained PIR sensors as well as low voltage sensors that work with switchpacks.
 2. Wall mounted lighting control stations.

1.2 REFERENCES

A. American National Standards Institute/Institute of Electrical and Electronic Engineers (ANSI/IEEE)

B. ASTM International (ASTM)

C. Canadian Standards Association (CSA).
 1. CSA C22.2 # 14 Industrial Control Equipment
 2. CSA C22.2 # 184 Solid-State Lighting Controls
 3. CSA C22.2 # 156 Solid-State Speed Controls

D. International Electrotechnical Commission (IEC)
 1. (IEC) 801-2 Electrostatic Discharge Testing Standard.
 2. IEC/EN 60669-2-1 Switches for household and similar fixed electrical installations - electronic switches.

E. International Organization for Standardization (ISO)

F. National Electrical Manufacturers Association (NEMA)
 1. WD1 (R2005) - General Color Requirements for Wiring Devices.

G. Underwriters Laboratories, Inc. (UL):
 1. 94 – Flammability Rating
 2. 916 – Energy Management Equipment.
 4. 244A – Appliance Controls

1.3 SYSTEM DESCRIPTION

A. Permanently Installed
 1. Ceiling mounted occupancy/vacancy sensors
 2. Switchpacks
 3. Wall mounted lighting control stations

1.4 SUBMITTALS

A. Submit under provisions of Section 013300.

B. Specification Conformance Document: Indicate whether the submitted equipment:
1. Meets specification exactly as stated.
2. Meets specification via an alternate means and indicate the specific methodology used.

C. Shop Drawings shall include:
 1. Load schedule indicating actual connected load, load type, and voltage per circuit, circuits and their respective control zones, circuits that are on emergency, and capacity, phase, and corresponding circuit numbers.
 2. Schematic of system.
 3. Lighting plan clearly marking product type, location and orientation of each sensor.

D. Product Data: Catalog specification sheets with performance specifications demonstrating compliance with specified requirements.

1.5 QUALITY ASSURANCE

A. Manufacturer: Minimum 15 years experience in manufacture of occupancy/vacancy sensor lighting controls.

B. Manufacturer’s Quality System: Registered to ISO 9001:2000 Quality Standard, including in-house engineering for product design activities.

C. Occupancy/vacancy Sensing Lighting Controls:
 1. Listed by UL specifically for the required loads. Provide evidence of compliance upon request.

D. Installer Qualifications: Installer shall be one who is experienced in performing the work of this section, and who has specialized in installation of work similar to that required for this project.

E. Source Limitations: To assure compatibility, obtain occupancy/vacancy sensors from a single source with complete responsibility over all lighting controls, including accessory products. The use of subcontracted component assemblers is not acceptable.

1.6 PROJECT CONDITIONS

A. Do not install equipment until following conditions can be maintained in spaces to receive equipment:
 1. Ambient temperature: 0° to 40°C (32° to 104°F).
 2. Relative humidity: Maximum 90 percent, non-condensing.
 3. Occupancy/vacancy Sensors must be protected from dust during installation.

1.7 WARRANTY

A. Provide manufacturer’s 5 year parts warranty.

1.8 MAINTENANCE

A. Make ordering of new equipment for expansions, replacements, and spare parts available to end user.

B. Make new replacement parts available for minimum of ten years from date of manufacture.

C. Provide factory direct technical support.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturer: Acuity Brands Lighting, Inc. - nLight
2.2 SENSOR PERFORMANCE REQUIREMENTS

A. Sensing Mechanism:
 1. Occupancy sensors shall sense the presence of human activity within the desired space and fully control the on/off function of the lights.
 2. Sensors shall utilize passive infrared (PIR) technology, which detects occupant motion, to initially turn lights on from an off state, thus preventing false on conditions. Ultrasonic or Microwave based sensing technologies are not acceptable.
 3. For applications where a second method of sensing is necessary to adequately detect maintained occupancy (such as in rooms with obstructions), a sensor with an additional “dual” technology shall be used.
 4. Dual technology sensors shall have one of its two technologies not require motion to detect occupancy. Acceptable dual technology includes PIR/Microphonics (also known as Passive Dual Technology or PDT) which both looks for occupant motion and listens for sounds indicating occupants. Sensors where both technologies detect motion (PIR/Ultrasonic) are not acceptable.
 5. All sensing technologies shall be acoustically passive, meaning they do not transmit sound waves of any frequency (for example in the Ultrasonic range), as these technologies have the potential for interference with other electronic devices within the space (such as electronic white board readers). Acceptable detection technologies include Passive Infrared (PIR), and/or Microphonics technology. Ultrasonic or Microwave based sensing technologies are not acceptable.

B. Power Failure Memory:
 1. Controls incorporate non-volatile memory. Should power be interrupted and subsequently restored, settings and parameters saved in protected memory shall not be lost.

C. Designed and tested to withstand discharges without impairment of performance when subjected to discharges of 15,000 volts per IEC 801-2.

D. Coverage Patterns are tested and verified using the NEMA WD 7 Standard.

E. Sensor shall have time delays from 10 to 30 min.

F. When required, sensors shall automatically adjust time delay and sensitivity settings.

G. All sensors shall provide an LED as a visual means of indication at all times to verify that motion is being detected during both testing and normal operation.

H. All sensors shall have readily accessible, user adjustable settings for time delay and sensitivity. Settings shall be located on the sensor (not the control unit) and shall be recessed to limit tampering.

I. Where required, sensor shall have an internal additional isolated relay with Normally Open, Normally Closed, and Common outputs for use with HVAC control, Data Logging and other control options. Sensors utilizing separate components or specially modified units to achieve this function are not acceptable.

2.3 CEILING MOUNTED SENSORS (LOW VOLTAGE)

A. Product CM 9, CM 10, CM PDT 9, CM PDT 10, as well as nLight Series

B. Provide all necessary mounting hardware and instructions.

C. Sensors shall be Class 2 devices.

D. Provide an internal additional isolated relay with Normally Open, Normally Closed and Common outputs for use with HVAC control, Data Logging and other control options.

E. Where required, sensors shall offer integral Bi-level Automatic-On (just one lighting level comes on automatically when occupancy/vacancy is detected)
F. Shall utilize Zero Crossing Circuitry which increases relay life, protects from the effects of inrush current, and increases sensor's longevity.

G. Shall have no leakage current to load for safety purposes and shall have voltage drop protection.

H. Where required, shall offer zero time delay mode and be able to actuate the output for one second to signal another device that the space being monitored is occupied. Applications may include the use of a lighting control system to manage the delay of the lighting deactivation.

I. Shall have a Tracking/HVAC mode that allows the load connected to the Form C BAS relay to remain on when the lights are turned off manually.

J. Walk through feature shall shut off lights within 2 minutes after momentary occupancy/vacancy.

K. Sensors shall be RoHS compliant.

2.4 SENSOR SWITCHPACKS

A. Product: MP-20, PP-20, nPP16 and nPP16D

B. Control wiring between sensors and control units shall be Class 2, 18-24 AWG, stranded U.L. Classified, PVC insulated in conduit.

C. Integrated, self-contained unit consisting internally of an isolated load switching control relay and a power supply to provide low-voltage power.

D. Shall be compatible with magnetic or electronic low voltage, and magnetic or electronic fluorescent, as well as motor loads.

2.5 MODULAR SYSTEM WALL SWITCHES AND DIMMERS

A. Devices shall recess into single-gang switch box and fit as standard GFI opening.

B. Communication and low voltage power shall be delivered to each device via standard CAT-5 low voltage cabling with RJ-45 connectors.

C. All devices shall have two RJ-45 ports.

D. All devices shall provide toggle switch control. Dimming control and low temperature/high humidity operation are available options.

E. Devices shall be white.

F. Devices with mechanical push-buttons shall provide tactile and LED user feedback.

G. Devices with mechanical push-buttons shall have custom button labeling.

H. Wall switches and dimmers shall be the following nLight model numbers, with device options as specified:
 1. nPODM (single on/off, push-buttons, LED user feedback)
 2. nPODM DX (single on/off, single dimming raise/lower, push-buttons, LED user feedback)
 3. nPODM 2P (dual on/off, push-buttons, LED user feedback)
 4. nPODM 2P DX (dual on/off, dual dimming raise/lower, push-buttons, LED user feedback)
 5. nPODM 4P (quad on/off, push-buttons, LED user feedback)
 6. nPODM 4P DX (quad on/off, quad dimming raise-lower, push-buttons, LED user feedback)

2.6 SOURCE QUALITY CONTROL

A. Perform full-function testing on 100% of all system components and panel assemblies at the factory.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install equipment in accordance with manufacturer's installation instructions.

B. Provide complete installation of system in accordance with Contract Documents.

C. Provide equipment at locations and in quantities indicated on Drawings. Provide any additional equipment required to provide control intent.

D. Sensors shown on drawings are minimum quantity to be provided. Provide additional occupancy/vacancy sensors as required to provide full (100%) room coverage.

3.2 TESTING

A. Upon completion of all wiring and after all fixtures are installed and lamped, a representative shall check the installation prior to energizing the system. Each installed occupancy/vacancy sensor shall be tested in the test mode to see that lights turn off and on based on occupancy/vacancy.

B. At the time testing, the owner's representative shall be thoroughly instructed in the proper operation of the system.

END OF SECTION 260936
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Network integrated power switching systems.
 2. Network light dimming controls.
 3. Network lighting control with 0-10V dimming, switching, remote control of multiple user presets, and room occupancy and daylight sensing for daylight harvesting and energy management.
 4. Main control panel shall be programmed for time of day of each zone with pre-programmed override functions as determined by the Owner.
 5. Wall mounted lighting control stations.

B. Related Information:
 1. Modular lighting controls.

1.2 REFERENCES

A. National Fire Protection Association (NFPA):
 1. NFPA 70 - National Electrical Code.

B. Underwriters Laboratories (UL)
 1. UL 508 – Industrial Control Equipment

1.3 ABBREVIATIONS

A. BAS: Building Automation System.

B. AV: Audio Visual.

1.4 SYSTEM DESCRIPTION

A. Web Accessible, network connected, lighting control system utilizing preset control software, central signal microprocessor, including solid-state power switching modules and relays.

B. System Components: System includes the following addressable components:
 1. Keypad controls.
 2. Touch panel controls.
 4. Timed room lighting.
 5. Daylight compensating lighting controls.
 7. Lighting management modules.
 8. Interface to building automation system – contact closure inputs standard, full integration modules must be available.

C. System Communication:
 1. RS232 interface for AV.
 3. Provide system interface with campus building automation system.
1.5 **ACTION SUBMITTALS**

A. **Product Data:** For each type of product required for complete network lighting control system, demonstrating compliance with requirements.

B. **Shop Drawings:** Indicated the following:
 1. Schematic diagram showing complete network lighting control system and accessories.
 2. Circuits and emergency circuits with capacity and phase, control zones, load type and voltage per circuit.

1.6 **INFORMATIONAL SUBMITTALS**

A. **Buy American Act certificate.**

B. **CEC CCR Title 24 appliance efficiency listing certification.**

C. **Sample of manufacturer's warranty.**

D. **Load Measurement Report:** Submit field test report of completed installation.

1.7 **CLOSEOUT SUBMITTALS**

A. **Operating and maintenance instructions.**

1.8 **QUALITY ASSURANCE**

A. **Manufacturer Qualification:** Manufacturer of network lighting controls with minimum five years record of satisfactory manufacturing and support of components comparable to basis of design system.

B. **Source Requirements:** Provide Network Lighting Controls through a single source from a single manufacturer.

C. **Manufacturer Qualifications:** Approved manufacturer of network lighting controls listed in this Section with minimum five years record of satisfactory manufacturing and support of components comparable to basis of design system.
 1. **Approval of Comparable Products:** Submit the following in accordance with project substitution requirements, within time allowed for substitution review:
 a. Product data, including certified independent test data indicating compliance with requirements.
 b. Samples of each component.
 c. Sample submittal from similar project.
 d. Project references: Minimum of 5 installations not less than 5 years old, with Owner and Architect contact information.
 e. Sample warranty.
 2. Substitutions following award of contract are not allowed except as stipulated in Division 01 General Requirements.
 3. Approved manufacturers must comply separate requirements of Submittals Article.

D. **Electrical Components, Devices, and Accessories:** UL listed and labeled per NFPA 70.

E. **Buy American Act Certification:** Submit documentation certifying that products comply with provisions of the Buy American Act 41 U.S.C 10a – 10d.

1.9 **COORDINATION**

A. Coordinate integrated lighting and dimming controls with systems and components specified in the following sections:
 1. Division 11 Section "Audio-Visual Equipment".
 2. Division 27 Section "Communications Horizontal Cabling".
1.10 PROJECT CONDITIONS

A. Environmental Conditions Range:
 2. Relative Humidity: 10 – 90 percent, noncondensing.

1.11 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of modular dimming controls system if the fail in materials or workmanship within the specified warranty period following substantial completion.
 1. Warranty Period: 100% parts replacement: Two (2) years.
 2. Provide new parts, upgrades, and/or replacements available for a minimum of 5 years available to end user.

B. Manufacturer's Extended Support Service: Extended telephone support: Unlimited period.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Acuity Brands - Fresco.

2.2 SYSTEM CHARACTERISTICS

A. Touch-screen based, network-connected programmable lighting control system that receives digital or analog signals from addressable input devices, assembles signals at central signal processor, and distributes operating signals to addressable control devices that effect a change in state.
 1. Provide system hardware that is designed, tested, manufactured, warranted by a single manufacturer
 2. Operational Life: At least 10 years expected life while operating within the specified ambient temperature and humidity range
 4. Luminaire Compatibility: Supports RGB luminaires in 8 bit and/or 16 bit configurations also supporting MSB or LSB first luminaire settings.
 5. Design and test equipment to withstand electrostatic discharges without impairment when tested according to IEC 61000-4-2
 6. Power Failure Memory: automatically store system settings and recover from a power failure without requiring user input
 7. Wireless devices:
 a. Automatically sync for system operation without addressing
 b. Send and receive messages for real-time operation and feedback
 c. Use industry standard RF protocols
 d. Be in compliance with FCC and IEE standards
 8. Time Clock: automatically adjust for daylight savings time and leap year

2.3 DIMMING AND SWITCHING PERFORMANCE REQUIREMENTS

A. Electrolytic capacitors operate at least 36 degrees F (20 degrees C) below the capacitor’s maximum temperature rating when the device is under full load

B. Inrush tolerance: Use MOSFET that has a maximum rating of six times the operating current of the dimmer/relay

C. Surge tolerance: Panels are designed and tested to withstand surges of 6,000V, 3,000amps according to IEEE C62.41.2 and IEC 61000-4-5 without impairment to performance
D. Power failure recovery: When power is interrupted and subsequently restored, within 3 seconds lighting to automatically return to same levels prior to power failure

E. Utilize half cycle to half cycle zero cross movement to allow for voltage compensation in order to overcome line noise and lamp flickering

F. Incorporate electronic soft start default at initial turn-on that smoothly ramps lights to appropriate levels within 0.5 seconds

G. Utilize air gap off to disconnect the load line from the line supply

H. Control all light sources in smooth and continuous manner. Dimmers with visible steps are not acceptable

I. Assign load type to each dimmer that will provide proper dimming curve for the specific light source to be controlled

J. Minimum and maximum light levels are user adjustable on a circuit by circuit basis

2.4 TOUCH PANEL CONTROLS

A. Product: Fresco Touch Screen (7TSN)

B. Preset lighting scene controller (located at reception area)
 1. General Requirements:
 a. 7” full color multi-touch capacitive touchscreen for controlling lighting and system components (quantity of touchscreens as required for all zones specified on drawings).
 b. Control up to 36 dynamic lighting zones/scenes per touch screen
 c. Link up to 8 touch screens for a possibility of 288 lighting zones/scenes
 d. Connect up to 128 network devices per touch screen
 e. On screen lighting design
 f. Lighting zones/scenes can be comprised of lighting intensity, color, color temperature, and luminaire position
 g. Modify color and color temperature using a digital color palette and UV rating scale
 h. Proximity screen sensor for auto “wake-up”
 i. Auto dimming and user adjustable backlight
 j. User programmable screen lock limiting access to all feature control and programming
 k. Full alpha-numeric scene and zone naming
 l. Configurable interface to reflect project requirements
 m. Lighting zones/scenes support control of forward/reverse phase dimming, 0-10v, RGB, nLight® enabled luminaires, nLight® power packs, DALI, tunable white and moving fixtures
 n. Integral astronomical time clock enables lighting scenes
 o. Partition status control and visualization
 p. Direct DMX control for a single universe (512 slots)
 q. Connect up to 128 nLight® enabled devices
 r. Digital motion sensor control
 s. Digital daylight harvesting response
 t. RS-232/contact closure capable for 3rd party integration
 u. Local wireless Bluetooth connectivity with mobile app
 v. Compatible with Fresco Lighting Management Panels (LMP)
 w. Frame Color: As selected by Architect

2. Electrical:
 a. Fresco Input: 24VDC
 b. Fresco Power Supply: 120V AC
 c. RS-485 network terminal
 d. nLight enabled RJ-45 ports (in/out)
 e. CAT5e Ethernet network terminal
 f. DMX/RDM network terminal

3. Mounting:
 a. Installs in a standard triple gang US back box
 b. Remote mounted power supply
c. Plug in wire harness for RS-485 and DMX connections

4. Protocols:
 a. RS-485
 b. IEEE 802.15 Bluetooth compliant
 c. Controller is compliant to industry standard ANSI E1.11 - 2008, USITT DMX512-A
 d. Supports extended RDM capability as defined by ANSI E1.20
 e. IEEE 802.11 Ethernet compliant
 f. nLight Digital communication

2.5 NETWORKED SYSTEM WALL SWITCHES & DIMMERS

A. Devices shall recess into single-gang switch box and fit a standard GFI opening.

B. Communication and low voltage power shall be delivered to each device via standard CAT-5 low voltage cabling with RJ-45 connectors.

C. All devices shall have two RJ-45 ports.

D. All devices shall provide toggle switch control. Dimming control and low temperature/high humidity operation are available options.

E. Devices shall be white.

F. Devices with mechanical push-buttons shall provide tactile and LED user feedback.

G. Devices with mechanical push-buttons shall be made available with custom button labeling

H. Wall switches & dimmers shall be the following nLight model numbers, with device options as specified:
 1. nPODM (single on/off, push-buttons, LED user feedback)
 2. nPODM DX (single on/off, single dimming raise/lower, push-buttons, LED user feedback)
 3. nPODM 2P (dual on/off, push-buttons, LED user feedback)
 4. nPODM 2P DX (dual on/off, dual dimming raise/lower, push-buttons, LED user feedback)
 5. nPODM KEY (key switch): Use for entry stations, programmed as directed by Owner.
 6. nPODM 4P DX (quad on/off, quad dimming raise-lower, push-buttons, LED user feedback)

2.6 MOBILE CONTROLLER

A. Fresco iPad Application

B. Allows mobile control and programming of the Fresco Touchscreen (7TSN)
 1. General Requirements:
 a. Mobile Apple device supports Bluetooth communication protocol
 b. Provides user control and edit capability of lighting scenes and zones
 c. Edit intensity, color, color temperature, and movement
 d. Edit lighting schedules
 e. Restrict number of users able to connect to touchscreen
 f. Restrict access to making system changes
 g. No PC required for mobile operation

2.7 NETWORKED SYSTEM POWER (RELAY) PACKS

A. Power Packs shall incorporate one Class 1 relay, a 0-10 VDC dimming output, and contribute low voltage power to the rest of the system. Secondary Packs shall incorporate the relay and 0-10 VDC or line voltage dimming output, but shall not be required to contribute system power. Power Supplies shall provide system power only, but are not required to switch line voltage circuit. Auxiliary Relay Packs shall switch low voltage circuits only.

B. Power Packs shall accept 120 VAC, be plenum rated, and provide Class 2 power to the system.
C. All devices shall have two RJ-45 ports.

D. Every Power Pack parameter shall be available and configurable remotely from the software and locally via the device push-button.

E. Power Pack shall securely mount to junction location through a threaded ½ inch chase nipple or be capable of being secured within a luminaire ballast channel. Plastic clips into junction box shall not be accepted. All Class 1 wiring shall pass through chase nipple into adjacent junction box without any exposure of wire leads. Note: UL Listing under Energy Management or Industrial Control Equipment automatically meets this requirement, whereas Appliance Control Listing does not meet this safety requirement.

F. When required by local code, Power Pack must install inside standard electrical enclosure and provide UL recognized support to junction box. All Class 1 wiring is to pass through chase nipple into adjacent junction box without any exposure of wire leads.

G. Power Packs and Power Supplies shall be available that are WiFi enabled.

H. Power Packs (Secondary) shall be available that provide up to 16 Amp switching of all lighting load types.

I. Power Packs shall be available that provide up to 5 Amps switching of all lighting load types as well as 0-10 VDC dimming or LED drivers.

J. Specific Secondary Packs shall be available that provide up to 5 Amps of switching and can dim 120/277 VAC magnetic low voltage transformers.

K. Specific Secondary Packs shall be available that provide up to 4 Amps of switching and can dim 120 VAC electronic low voltage transformers.

L. Specific Power/Secondary Packs shall be available that are UL924 listed for switching of Emergency Power circuits.

M. Specific Secondary Packs shall be available that control louver/damper motors for skylights.

N. Specific Secondary Packs shall be available that provide a pulse on/pulse off signal for purposes of controlling shade systems via relay inputs.

O. Power (Secondary) Packs shall be available that provide up to 20 Amps switching of general purpose receptacle (plug-load) control.

P. Power (Relay) Packs and Supplies shall be the following nLight model numbers:
 1. nPP16 (Power Pack w/ 16A relay)
 2. nPP16 D (Power Pack w/ 16A relay and 0-10VDC dimming output)
 3. nPP16 WIFI (Power Pack w/ 16A relay, WIFI enabled)
 4. nEPP5 D (Power Pack w/ 5A relay and 0-10VDC dimming output)
 5. nSP16 (Secondary Pack w/ 16A relay)
 6. nPP16 ER (UL924 Listed Secondary Pack w/ 16A relay for switching emergency power circuits)
 7. nPP16 D ER UL924 Listed Secondary Pack w/ 16A relay and 0-10VDC dimming output for switching/dimming emergency power circuits)
 8. nSP5 PCD MLV (Secondary Pack w/ 5A relay and magnetic low voltage dimming output)
 9. nSP5 PCD ELV 120 (Secondary Pack w/ 4A relay and electronic low voltage dimming output)
10. nSP5 2P LVR (Louver/Damper Control Pack)
11. nSHADE (Pulse On/Off Control Pack)
12. nPP20 PL (Secondary Pack w/ 20A relay for general purpose receptacle load)
13. nPS 80 (Auxiliary Bus Power Supply)
14. nPS 80 WIFI (Auxiliary Bus Power Supply, WiFi enabled)
15. nAR 40 (Low voltage auxiliary relay pack)
2.8 DIGITAL SENSORS

A. Wired Networked Occupancy/Vacancy Sensors/Photocells

B. Products: Network Daylight Sensors (nLight)
 1. nCM ADCX (0-10v dimming, No Relay)

C. Products: Network Standard Range 360° Ceiling Mount Sensors (nLight)
 1. nCMPDT9 (Low Voltage, Dual Tech)
 2. nCMRPDT9 (Line Voltage, Dual Tech)
 3. nCMR92P (Line Voltage, PIR, 2-Pole)
 4. nCMRPDT92p (Line Voltage, Dual Tech, 2-Pole)
 5. nCM92P (Low Voltage, PIR, 2 Channels)
 6. nCMR9 (Line Voltage, PIR)
 7. nCM9 (Low Voltage, PIR)
 8. nCMPDT92P (Low Voltage, Dual Tech, 2 Channels)

D. Products: Specialty I/O Devices (nLight)
 1. nIO (Contact closure or 0-10VDC dimming)
 2. nIO LEDG LC (Fixture embedded Accudrive driver with Lumen Compensation)
 3. nIO EZ LC (Fixture embedded eldoLED driver dimming interface)
 4. nIO RLX (Raise/lower switch interface)
 5. nIO X (External digital system interface)

E. General requirements
 1. Occupancy sensors sense presence of human activity within the desired space and control on/off function of the lights
 2. Utilize passive infrared (PIR) technology which detects occupant motion
 3. Dual technology sensors utilize PIR/Microphonics (also known as Passive Dual Technology or PDT)
 4. Sensors utilizing Microwave or Ultrasonic technology will not be accepted
 5. Sensors are available with zero, one, or two Class 1 switching relays, and up to one 0-10VDC dimming output.
 6. Provide multiple lens options which are interchangeable for specific applications
 7. Communication and Class 2 low voltage power is delivered to each device with CAT-5 cabling and terminate with RJ-45 connectors
 8. All sensors have two RJ-45 ports for purpose of daisy chain wiring method
 9. Sensors are equipped with automatic override for 100 burn-in of lamps
 10. Sensors capable of being embedded into luminaire
 11. Photocells provide on/off set-point and deadband to prevent artificial light from cycling
 12. Photocell and dimming sensor set-point is automatically calibrated using sensor microprocessor
 13. Photocell min/max thresholds may be manually configured
 14. Dimming sensors control 0-10VDC dimmable ballasts by sinking up to 20mA of Class 2 current

2.9 DEVICE QUALITY

A. Perform 100% function testing of all device

PART 3 - EXECUTION

3.1 INSTALLATION

A. Follow manufacturer’s instructions for all installation steps

B. Provide a complete installation per Contract Documents

C. Properly terminate all DMX wiring per installation instructions

D. Use only recommended DMX cable and follow local codes
E. Properly terminate all CAT5 wiring per installation instructions

3.2 MAINTENANCE
A. Factory trained service technicians available within the continental US
B. Integrated help on-screen and via online videos
C. Factory telephone support via toll free line.

3.3 SOFTWARE
A. Install and program software to meet the Owner's requirements. Provide current licenses. And backup copies of the software for the Owner's records.

3.4 SYSTEM STARTUP
A. Provide manufacturer's system startup and adjustment.
B. Switch each load on and off with manual line test feature of the power switching module before installing processors.
C. Perform operational testing to verify compliance with Specifications. Adjust as required.

3.5 ADJUSTING
A. Within 12 months of the date of Substantial Completion provide onsite service to adjust the system to account for actual occupied conditions.

3.6 DEMONSTRATION
A. Factory authorized service representative to instruct owner's staff to adjust, operate and maintain network power switching systems; and provide instruction using the system software.

3.7 CLOSEOUT ACTIVITIES
A. Demonstration: Schedule demonstration with Owner.
B. Training: Train Owner's personnel to operate, maintain, and program network power switching systems. Allow for a minimum of trips to the jobsite to provide additional training as needed.
 1. Furnish set of approved submittals, and record drawings of actual installation for Owner's personnel in attendance at training session.

END OF SECTION 260943
PART 1 - GENERAL

1.1 WORK INCLUDED

A. Outdoor liquid filled pad mounted transformers (medium voltage) for rating and installation as indicated on Drawings.

1.2 RELATED WORK

A. Section 26 05 26 – Grounding

1.3 REFERENCES

A. IEEE C57.12.00 - General Requirements for Liquid-Immersed Distribution, Power and Regulating Transformers
B. ANSI C57.12.10 – Requirements for Transformers 230 kV and Below
C. IEEE C57.12.70 – Terminal Markings and Connections for Distribution and Power Transformers
D. IEEE C57.12.90 - Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers
E. IEEE C57.98 – Guide for Transformer Impulse Tests
F. IEEE C57.109 – Guide for Liquid Immersed Transformer Though-Fault-Current Duration
G. IEEE C57.111 – Guide for Acceptance of Silicon Insulating Fluid and Its Maintenance in Transformers
H. IEEE C57.121 – Guide for Acceptance and Maintenance of Less Flammable Hydrocarbon Fluid in Transformers
I. NEMA TR1: Transformers, Regulators, and Reactors

1.4 SUBMITTALS

A. Provide submittals in accordance with and in additional to Section 26 00 00, Basic Electrical Requirements, and Division 01 for submittal requirement.
 1. Outline dimensions including plan and elevation views, base plan, and conduit entry opening dimensions.
 2. Support points, locations of all accessories, bushings, and terminal compartments.
 3. Transformer diagrammatic nameplate (each unit) including manufacturer, primary voltage and connections, secondary voltage and connections, rated KVA, number of phases, number and percent taps, frequency and percent impedance.
 4. Location for floor channels, anchor bolts, drain valve, and ground pads.
 5. Total weight of unit (transformer and filling liquid).
 6. Transformer winding temperature rise.
 7. Filling liquid capacity in gallons.
 8. Bill of material showing components, ratings, and part numbers.
 9. Product descriptive literature including standard factory tests for each unit, and options for similar units.
 10. Short-circuit withstand capacities.

B. Submit dimensioned drawings of transformers, including support points, lifting eyes and brackets.
C. Submit the following information as a complete set in 3-ring binder after fabrication, assembly, delivery, installation, and field testing. Deliver to Owner no later than the training included in the contract.
2. Maintenance schedule for the first cycle of scheduled maintenance, not less than 12 months.
3. Spare parts list, renewable parts list, and consumable list.
4. As-built drawings including final fabrication drawings of items specified in 1.4, this Section.
5. Certified test reports.

1.5 DELIVERY, STORAGE AND HANDLING

A. Store in a clean dry location.

B. Handle transformers using only lifting eyes and brackets provided for handling purposes. Protect units against damage from rain, sleet, or snow if handled in inclement weather.

PART 2 - PRODUCTS

2.1 COMPARTMENTAL – TYPE, PAD MOUNTED TRANSFORMERS

A. Acceptable manufacturers
1. Square D
2. General Electric
3. Cooper

B. Transformers shall be equipped with an air filled terminal compartment on the high voltage side, and an air filled terminal compartment on the low voltage side.

C. The ratings of each transformer shall be as follows:
1. KVA Rating: As shown on plans.
2. Temp. Rise: The average temperature rise of the windings measured by the resistance method shall be 65°C when the transformer is operated at rated KVA output in a 40º C ambient, without loss of life expectancy.
3. Impedance: 5.75% or per drawings.
4. H. Voltage: 13,200 delta
5. H.V. BIL: 95 KV
6. H.V. Taps: 2 - 2-1/2% full capacity above and below rated voltage
7. L. Voltage: 208/120 wye
8. L.V. BIL: 10 KV

D. The units shall be FR3, less-flammable, biodegradable seed-oil based filled and shall be in accordance with the latest edition of the NEC. The insulating liquid shall be shipped in the tank of the transformer.

E. The transformers shall be designed to carry short time emergency overloads in accordance with ANSI standards. Duration and magnitude of designed short circuit withstand capability shall be as outlined in IEEE C57.12.00.

F. Transformer features and accessories shall include:
1. De-energized tap changer with cover mounted, externally operated, pad lockable handle;
2. Combination drain and filter valve and sampling device;
3. 1” filling plug and filter press connection in cover;
4. Top liquid thermometer (dial type);
5. Magnetic liquid level gauge;
6. Provision for lifting;
7. Provision for jacking on tank or base;
8. Base for skidding or rolling in two directions;
9. Automatic pressure relief device that automatically reseals after operation;
10. Ground pad;
11. Instruction and diagrammatic nameplate;
12. Welded-on main tank cover and handhole in cover.
13. Bayonet or current limiting fuses (type as determined by fault current)
G. Windings shall be wound with copper conductors.

H. The main transformer tank and attached components shall be designed to withstand pressures of 15 PSI without permanent deformation. Construction shall be from carbon steel plate reinforced with external sidewall braces. All seams and joints shall be continuously welded.

I. Each radiator assembly shall be individually welded and receive a quality control pressurized check for leaks. The entire tank assembly shall receive a similar leak test before tanking.

J. Outdoor units shall be painted Munsell Green.

K. High and low voltage compartments shall be located side-by-side separated by a steel barrier. When facing the transformer, the low voltage compartment shall be on the right. Terminal compartments shall be full height, air filled with individual doors. The high voltage door fastenings shall not be accessible until the low voltage door has been opened. The low voltage door shall have a 3 point latching mechanism with a cabinet handle having provisions for a single padlock. The doors shall be equipped with lift-off type stainless steel hinges and door stops to hold the doors open when working in the compartments. The front sill of the compartment shall be removable to allow the transformer to be rolled or skidded into position over conduit stubs. ANSI tank grounding provisions shall be furnished in each compartment.

L. High voltage terminations and equipment shall be dead front and conform to ANSI C57.12.26 requirements. Provide universal type bushing wells for use with elbow terminators and parking stands for mounting accessory equipment. Bushing wells shall be externally clamped. Inserts (feed thru type) and elbows shall be included.

M. Terminations and equipment shall be arranged for radial feed. A two (2)-position load break switch shall be provided. Switch handle with eye for operation with distribution hot stick shall be located in the high voltage compartment.

N. Provide three (3) -9 kV dead front metal oxide varistor elbow arresters for placement in the high voltage compartment connected to the feed thru inserts.

O. Low voltage bushings shall be molded epoxy and provided with blade type spade terminals with NEMA standard hole spacing arranged for vertical take-off. The low voltage neutral shall be an insulated bushing grounded to the transformer tank by a removable grounding strap.

P. Manufacturer shall perform the following tests on all transformers:
 1. Resistance measurements of all windings on the rated voltage connection and at the tap extremes.
 2. Ratio tests on the rated voltage connection and on all tap connections.
 3. Polarity and phase-relation tests on the rated voltage connections.
 4. No-load loss at rated voltage on the rated voltage connection.
 5. Exciting current at rated voltage on the rated voltage connection.
 6. Impedance and load loss at rated current on the rated voltage connection and on the tap extremes.
 7. Applied potential tests.
 8. Induced potential tests.
 9. Temperature Test:
 a. Furnish temperature tests for each size and type transformer. Certified tests of a similar unit of identical size and type will be acceptable.
 10. All tests shall be conducted in accordance with the latest revision of ANSI C57.12.90 and NEMA TR2.
 11. Furnish manufacturer's certified test report.

Q. Audible sound level shall comply with NEMA TR1.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that pads are ready to receive work.
3.2 INSTALLATION

A. Install in accordance with manufacturer’s instructions.

B. Install safety labels to NEMA requirements.

3.3 FIELD QUALITY CONTROL

A. Check for damage and tight connections prior to energizing transformers. Check primary, secondary, and ground connections.

B. Clean and inspect bushings.

C. Inspect bushing clamps and gaskets.

D. Inspect cover and handhole gasket seals.

E. Inspect tap change seals.

F. Check fluid leaks and external damage to radiators.

G. Check liquid level.

H. Check accessory devices for condition and proper operation.

I. Measure primary and secondary voltages and make appropriate tap adjustments within zero to two percent of rated voltage at no load.

J. Check phase rotation and make appropriate changes in connection to match phase rotation between units connected in secondary-selective schemes.

K. Insulation resistance test: Megger transformer windings high to low and ground, low to high and ground, and high and low to ground.

L. Perform turns ratio test.

M. Field test reports shall be forwarded to the Owner.

END OF SECTION 261213
SECTION 262413
SWITCHBOARDS

PART 1 - GENERAL

1.1 WORK INCLUDED
A. Furnish and install switchboards as herein specified and shown on the associated electrical drawings.

1.2 REFERENCES
A. ANSI C39.1 - Requirements for Electrical Analog Indicating Instruments
B. NEMA AB 1 - Molded Case Circuit Breakers
C. NEMA PB 2 - Dead Front Distribution Switchboards
D. NEMA PB 2.1 - Instructions for Safe Handling, Installation, Operation and Maintenance of Dead-front Switchboards Rated 600 Volts or Less

1.3 SUBMITTALS
A. Provide submittals in accordance with and in additional to Section 260000, Basic Electrical Requirements, and Division 01 for submittal requirement.
B. Submit dimensioned drawings of switchboard showing accurately scaled basic units including, but not limited to, auxiliary compartments and components.
C. Submit schematics and wiring diagrams for controls.
D. Line-by-line specification review by equipment manufacturer with any exception explicitly defined.

1.4 DELIVERY, STORAGE, AND HANDLING
A. Deliver switchboards in factory-fabricated water-resistant wrapping, and mounted on shipping skids. All components and sections shall be identified by the Purchaser’s equipment number or name, which shall be clearly indicated on Shop Drawings and shipping packages.
B. Handle in accordance with NRMS PB2.1 to avoid damage to material components, enclosure, and finish. Switchboard shall be provided with adequate lifting means.
C. Store in a clean, dry space and protected from the weather. Maintain factory wrapping or provide an additional heavy canvas or plastic cover to protect units from dirt, water, construction debris, and traffic. Switchboard shall be stored in a location where the relative humidity below required level for storage per manufacturer’s recommendation. Heaters shall be energized in the switchboard section when relative humidity exceeds the requirement.
D. Provide one (1) set of installation and maintenance instructions with each switchboard. Instructions are to be easily identified and affixed within the incoming or main section of the line-up.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS
A. Square D
B. General Electric Company
2.2 SWITCHBOARD CONSTRUCTION

A. Building main switchgear shall be UL 1558 class.

B. Switchboards shall be of the freestanding type complying with the design and function requirements of the project. Design characteristics shall be as noted in manufacturer's submittal data.

C. Provide factory-assembled, dead-front, metal-enclosed, and self-supporting switchboard consisting of required vertical sections bolted together to form one rigid assembly.

D. Enclosure shall be NEMA Type as per Drawings. Sections shall align at front and rear, or as per configurations shown on Drawings.

E. Line and load terminations shall be accessible from front of the switchboard or as per Drawings.

F. Main section devices shall be individually mounted.

G. Distribution section devices shall be panel (group) mounted.

H. Auxiliary section devices shall be individually mounted.

I. Bus shall be copper. Bus connections shall be accessible from front of the switchboard. All bussing shall be braced for the maximum available fault current as shown on drawings.

J. Provide disconnecting means of all phases, neutral and grounds either in the form of a link, or similar conducting piece, designed to make connection between two suitable terminals or consisting of a terminal plate or stud provided with a suitable wire connection. Simple removal of bolts from a single bus bar joint is not acceptable.

K. Provide a 1 x 1/4 inch tin plated copper ground bus through the length of the switchboard.

L. Neutral bars shall be tin plated copper, full capacity rated.

M. Lugs shall be tin-plated copper.

N. Bus Arrangement: Phase A-B-C, left to right, top to bottom, and front to rear, as viewed from the front. Provided main horizontal bus with continuous current rating as shown on Drawings. Main bus shall be full capacity through each section and have provisions for future extension. Main bus and sub-main busses shall be sized to meet UL and NEMA standards for temperature rise.

O. Exterior and interior steel surfaces shall be cleaned and finished with gray enamel over a rust inhibiting phosphatized coating. Color shall be ANSI 61 gray.

P. Provide a mimic bus. Show bussing, connections and devices in single line form using black laminated plastic strips securely attached on the front panels of the switchboard.

Q. Switchboard electrical ratings and configurations as shown on Drawings.

R. Pull Box: Provide pull box if necessary to terminate incoming service conduits and/or feeder conduits, same construction as switchboard. Top and sides shall be removable. Insulating, fire-resistant bottom with separate openings for each circuit to pass into switchboard. Top entry which shall be clearly indicated on shop drawings.

S. Future Provisions: Fully equip spaces for future devices with bussing and bus connections, suitably insulated and braced for short circuit currents. Continuous current rating as indicated on Drawings. Provide provisions to extend bus to facilitate installation of additional distribution section in the future.
T. Provide integral surge-protective device in all switchboards. Include 3-pole breaker in switchboard and conduit/conductors to surge protective device. Breaker and conduit/conductors shall be size as recommended by manufacturer. Breaker is not shown on Schedules.

2.3 SWITCHING AND OVERCURRENT PROTECTIVE DEVICES

A. Main and feeder protective devices shall be molded case circuit breakers.
 1. Breakers 400 ampere frame and less shall be manufacturer's standard industrial construction bolt-on type, integral inverse time delay thermal and instantaneous magnetic trip. Breakers 225 ampere through 400 ampere shall have continuously adjustable magnetic pick-ups of approximately five to ten times trip rating.
 2. Breakers 600 ampere frame and above shall be equipped with solid-state trip complete with built-in current transformers, solid-state trip unit and flux transfer shunt trip.
 3. Interrupting capacity shall be as noted on Drawings.
 4. Provide mission critical breakers or breakers with additional trip features as required for code required coordination.
 5. Provide equipment and/or breaker features as necessary to limit arc-flash energy per NEC.

1.1 SURGE PROTECTION DEVICES (SPD)

A. All main and distribution switchboards shall be equipped with integral SPD.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Square D
 2. General Electric Company

C. Surge Protection Device Description: IEEE C62.41-compliant, integrally mounted, solid-state, parallel-connected, modular, field-replaceable type, with sine-wave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the switchboard short-circuit rating, and with the following features and accessories:
 1. Fabrication using bolted compression lugs for internal wiring.
 2. Integral disconnect switch.
 3. Redundant suppression circuits.
 4. Redundant replaceable modules.
 5. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
 6. LED indicator lights for power and protection status.
 7. Audible alarm, with silencing switch, to indicate when protection has failed.
 8. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of system operation. Contacts shall reverse position on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.

D. Minimum Surge Current Capability (single pulse rated) per phase:
 1. Main and Distribution Switchboards: 200 kA

E. SPD shall be UL labeled as Type 1 (verifiable at UL.com), intended for use without need for external or supplemental overcurrent controls. Every suppression component of every mode, including N-G, shall be protected by internal overcurrent and thermal overtemperature controls.

F. SPD shall provide surge current paths for all modes of protection: L-N, L-G, and N-G for Wye systems; L-L, L-G in Delta and impedance grounded Wye systems.

G. UL 1449 Third Edition Listed Voltage Protection Ratings (VPRs) shall not exceed the following:

<table>
<thead>
<tr>
<th>System Voltage</th>
<th>L-N</th>
<th>L-G</th>
<th>L-L</th>
<th>N-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>208Y/120</td>
<td>700V</td>
<td>700V</td>
<td>1200V</td>
<td>700V</td>
</tr>
</tbody>
</table>
H. UL 1449 Third Edition Listed Maximum Continuous Operating Voltage (MCOV):

<table>
<thead>
<tr>
<th>System Voltage</th>
<th>L-N</th>
<th>L-G</th>
<th>L-L</th>
<th>N-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>208Y/120</td>
<td>700V</td>
<td>700V</td>
<td>1200V</td>
<td>700V</td>
</tr>
</tbody>
</table>

PART 2 - EXECUTION

2.1 INSTALLATION

A. Install switchboards as indicated in accordance with manufacturer's written instructions and applicable requirements of the NEC, NEMA, ANSI and applicable requirement of the National Electrical Contractors Association's "Standard of Installation".

B. Switchboard shall be bolted directly to floor, through pad, without the use of floor sills.

C. Tighten electrical bus connections with torque wrench to manufacturer's recommendations.

D. Connect phase A, B and C, respectively to Bus No. 1, 2 and 3 from left to right or top to bottom.

E. Adjust operating mechanisms for free mechanical movement.

F. Touch-up scratched or marred surfaces to match original finish.

END OF SECTION 262413
PART 1 - GENERAL

1.1 WORK INCLUDED
A. Distribution panelboards.
B. Branch circuit panelboards.

1.2 REFERENCES
A. NEMA AB 1 - Molded Case Circuit Breakers and Molded Case Switches.
B. NAME KS 1 - Enclosed and Miscellaneous Distribution Equipment Switches (600 Volts Maximum).
C. NEMA PB 1 - Panelboards.
D. NEMA PB 1.1 - Instructions for Safe Installation, Operation and Maintenance of Panelboards Rated 600 Volts or Less.
F. NEMA AB 3 – Molded Case Breakers and Their Application
G. ANSI/UL 67 – Electric Panelboards
H. ANSI/UL 50 – Cabinets and Boxes
I. ANSI/UL 508 – Industrial Control Equipment

1.3 SUBMITTALS
A. Provide submittals in accordance with and in addition to Section 260000, Basic Electrical Requirements, and Division 01 for submittal requirement.
B. Submit dimensioned drawings showing size, circuit breaker arrangement and equipment ratings including, but not limited to, voltage, main bus ampacity, integrated short circuit ampere rating, and temperature rating of circuit breaker terminations.
C. Submit 1/4” scale drawing of each electrical room and other rooms with electrical equipment to demonstrate that all equipment being submitted will fit in the space and all clearances are obtained. This drawing must be included with the submittal for equipment specified in this section.

1.4 PRODUCT DELIVERY, STORAGE AND HANDLING
A. Deliver distribution panelboards in factory-fabricated water-resistant wrapping.
B. Handle panelboards carefully to avoid damage to material component, enclosure and finish.
C. Store in a clean, dry space and protected from the weather.
PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Square D Company
 1. Square D I-Line for distribution panels

B. General Electric
 1. GE Spectra Series

2.2 PANELBOARD CONSTRUCTION

A. General: Provide flush or surface mounted, circuit breaker type distribution or branch circuit panelboards with electrical ratings and configurations, as indicated on the drawings and schedules. Load center type panelboards are not acceptable.

B. Enclosure:
 1. Enclosure shall be proper NEMA type as indicated.
 2. NEMA 1 (Indoors)
 a. Back box shall be galvanized steel for flush mounted branch circuit panelboards. Back box shall have gray enamel electro-deposited finish over cleaned phosphatized steel for all other type panelboards.
 b. Provide panelboard fronts with door-in-door cover.
 3. Construct cabinet in accordance with UL 50. Use not less than 16-gauge galvanized sheet steel, with all cut edge galvanized. Provide a minimum 4-inch gutter wiring space on each side. Provide large gutter where required to accommodate the size and quantity of conductors to be terminated in the panel, and where required by code.
 4. Exterior and interior steel surfaces shall be cleaned and finished with gray enamel over rust inhibiting phosphatized coating. Color shall be ANSI 61 gray.
 5. Doors shall be equipped with flush-type combination catch and key lock. All locks shall be keyed alike.
 6. Branch circuit panelboards shall be 5-3/4-inches deep.
 7. A directory holder with heavy plastic plate, metal frame, and index card shall be mounted inside of each door.
 8. Reinforce enclosure and securely support bus bars and overcurrent devices to prevent vibration and breakage in handling.
 9. Rating: Minimum integrated short-circuit rating, voltage and current rating as shown on drawings.
 10. Labeling: The Contractor shall furnish and install engraved, laminated plastic nameplates on the trim per Section 260553, Electrical Identification

C. Bus:
 1. Provide panelboards with copper rounded edge phase, neutral and ground buses, rated full capacity as scheduled on drawings. Buses shall be full-length and braced for the maximum available fault current as shown on drawings.
 2. Phase bussing shall be stacked front-to-back, A-B-C.
 3. The neutral and ground bus bars shall have termination locations for each of the individual feeders and the lugs sized appropriately. In addition, space shall be provided to terminate the neutrals and grounds in two feeders equal to the largest size circuit breaker that can be installed in the panelboard. The ground bus shall be mounted in the panelboard, opposite the incoming line and neutral lugs and shall be accessible to allow easy installation of bolts, nuts and lock washers used to attach ground lugs. The neutral and ground buses in branch circuit panelboards shall have spaces to terminate 42 neutral and 42 ground wires.
 4. All lugs for phase, neutral, and ground buses shall be tin-plated copper.
 5. Neutral and ground buses shall be tin-plated copper.

2.3 SWITCHING AND OVERCURRENT PROTECTIVE DEVICES

A. Provide molded case circuit breakers with manufacturer’s standard construction, bolt on type, with integral inverse time delay thermal and instantaneous magnetic trip in each pole. Circuit breakers shall be
constructed using glass reinforced polyester insulating material providing superior dielectric strength. Provide circuit breakers UL listed as Type HACR for air-conditioning equipment branch circuits.

B. Circuit breakers shall have an over center, trip-free, toggle operating mechanism that will provide a quick-make, quick-break contact action.

C. Piggyback breakers are not permitted.

D. Provide handle padlock attachments on circuit breakers where required. Device shall be capable of accepting a single padlock. All circuit breakers shall be capable of being individually padlocked in the off position.

E. The circuit breakers shall be connected to the bus by means of solidly bolted connection. In multi-pole breakers, the phase connections on the bussing shall be made simultaneously without additional connectors or jumpers. Multi-pole breakers shall be two or three pole as specified. Handle ties are not permitted. The circuit breaker shall have common tripping for all poles.

F. All circuit breakers shall be provided with visible ON and OFF indications.

G. Provide GFI circuit breakers as indicated on drawing and per NEC requirement.

H. Breaker voltage and trip rating shall be per drawings. Breaker faceplate shall indicate UL certificate standards with applicable voltage systems and corresponding short current rating as per drawings.

I. Molded Case Circuit Breakers:
 1. Breakers 400 ampere frame and less shall be manufacturer's standard industrial construction, bolt-on type, integral inverse time delay thermal and instantaneous magnetic trip. Breakers 225 ampere through 400 ampere shall have continuously adjustable magnetic pick-ups of approximately five to ten times trip rating.
 2. Breakers 600 ampere frame and above shall be equipped with solid-state trip complete with built-in current transformers, solid-state trip unit and flux transfer shunt trip.

J. Provide mission critical breakers or breakers with additional trip features as required for code required coordination.

K. Provide equipment and/or breaker features as necessary to limit arc-flash energy per NEC.

2.4 SURGE PROTECTION

A. Each distribution panel shall be equipped with stand-alone surge-protective device adjacent to panel. Include 3-pole breaker in panelboard and conduit/conductors to surge protective device. Breaker and conduit/conductors shall be size as recommended by manufacturer. Breaker is not shown on Panel Schedule.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Square D (Square D is preferred for standardization)
 2. General Electric Company

C. Surge Protection Device: IEEE C62.41-compliant, integrally mounted, solid-state, parallel-connected, modular (with field-replaceable modules) type, with sine-wave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the panelboard short-circuit rating, and with the following features and accessories:
 1. Fabrication using bolted compression lugs for internal wiring.
 2. Integral disconnect switch.
 3. Redundant suppression circuits.
 4. Redundant replaceable modules.
 5. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
 6. LED indicator lights for power and protection status.
 7. Audible alarm, with silencing switch, to indicate when protection has failed.
8. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of system operation. Contacts shall reverse position on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.

D. Minimum Surge Current Capability (single pulse rated) per phase:
 1. Panelboards: 100 kA

E. SPD shall be UL labeled as Type 1 (verifiable at UL.com), intended for use without need for external or supplemental overcurrent controls. Every suppression component of every mode, including N-G, shall be protected by internal overcurrent and thermal over-temperature controls.

F. SPD shall provide surge current paths for all modes of protection: L-N, L-G, and N-G for Wye systems; L-L, L-G in single phase systems.

G. UL 1449 Third Edition Listed Voltage Protection Ratings (VPRs) shall not exceed the following:

<table>
<thead>
<tr>
<th>System Voltage</th>
<th>L-N</th>
<th>L-G</th>
<th>L-L</th>
<th>N-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>208Y/120</td>
<td>700V</td>
<td>700V</td>
<td>1200V</td>
<td>700V</td>
</tr>
</tbody>
</table>

H. UL 1449 Third Edition Listed Maximum Continuous Operating Voltage (MCOV):

<table>
<thead>
<tr>
<th>System Voltage</th>
<th>Allowable System Voltage Fluctuation (%)</th>
<th>MCOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>208Y/120</td>
<td>25%</td>
<td>150V</td>
</tr>
</tbody>
</table>

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install panelboards in accordance with manufacturer's written instructions and the applicable requirements of the NEC, NEMA, ANSI and the National Electrical Contractors Association's "Standard of Installation".

B. Anchor enclosed firmly to walls and structural surfaces, ensuring that they are permanently and mechanically secured. Direct attachment to dry wall is not permitted. Freestanding panelboards shall be installed on a concrete housekeeping pad with anchors per manufacturer's recommendation.

C. Mounting height:
 1. Distribution Panelboards: Such that highest operating handle is no greater than 79 inches above finished floor.
 2. Branch Circuit Panelboards: Such that highest operating handle is no greater than 79 inches above finished floor.
 3. Where panelboards occur in groups, the tops shall be aligned if it can be done without exceeding items 1 and 2 above.

D. Install panelboards plumb. Adjust trim to cover all openings. Seal all conduit openings and cap all used knockout holes.

E. Provide blank plates for unused open spaces in panelboards. Keep the front door closed after work to protect from damage, dirt, and debris at all times.

F. Install identification nameplates in accordance with Section 260553, Electrical Identification.

3.2 FIELD QUALITY CONTROL

A. Visual and Mechanical Inspection: Inspect for physical damage, proper alignment, anchorage, and grounding. Check proper installation and tightness of connections for circuit breakers and lugs.
3.3 PANELBOARD SCHEDULE

A. The Contractor shall provide engraved, laminated plastic nameplates for circuit identification as indicated on the Drawings for distribution panelboards.

B. The Contractor shall fill the index directory inside the front door of branch circuit panelboards identifying each existing and new circuit. Where changes are made, the schedule shall reflect the changes. At the end of the job, these schedules shall reflect as-built record conditions.

END OF SECTION 262416
PART 1 - GENERAL

1.1 WORK INCLUDED

A. Wiring Devices:
 1. Wall switches.
 2. Receptacles.
 3. Device plates and box covers.

B. Wiring devices for HVAC in Division 23 shall meet the requirement of this specification.

1.2 REFERENCES

A. Americans with Disabilities Act (ADA)
B. ANSI/NEMA OS 1- Sheet-Steel Outlet Boxes, Device Boxes, Covers, and Box Supports.
C. ANSI/UL 20 – General Use Snap Switches.
D. ANSI/UL 498 – Attachment Plugs and Receptacles.
E. ANSI/UL 943 – Ground Fault Circuit Interrupters.
F. NEMA 250 – Enclosures for Electrical Equipment (1000 Volts maximum).
G. NEMA WD 1 – General-Purpose Wiring Devices.
H. NEMA WD 5 - Specific-Purpose Wiring Devices.
I. Texas Accessibility Standards. (TAS)

1.3 SUBMITTALS

A. Provide Division 01 for submittal requirement.

1.4 DELIVERY, STORAGE AND HANDLING

A. Deliver wiring devices individually wrapped in factory-fabricated containers.

B. Handle wiring devices carefully to avoid damage, breaking and scoring.

C. Store in a clean dry space and protected from the weather.

PART 2 - PRODUCTS

2.1 GENERAL

A. Provide factory fabricated wiring devices in the type and electrical rating for the service indicated. Where type and grade are not indicated, provide proper selection to correspond with branch circuit wiring and overcurrent protection. Attachment of wires to devices shall be by screw pressure under the head of binding screws. Arrangements depending on spring pressure or tension are not acceptable. All binding screws shall be brass or bronze.
B. Device color:
1. Switches and receptacles on normal power shall be white.
2. Switches and receptacles on emergency power shall be red.

2.2 WALL SWITCHES

A. Acceptable manufacturers
1. Arrow-Hart
2. Hubbell
3. General Electric
4. Leviton
5. Other manufacturers equal in design and function will be considered upon A/E approval following substitution procedure in Section 260000 and Division 01 for substitution requirement.

B. Material
1. Wall switches for lighting circuits and motor loads under 1/3 hp shall be AC general use snap switch with toggle handle, 20 amperes and 120 volt AC with number of poles as required; Arrow-Hart 1990 Series.
2. Pilot light type shall be equipped with red toggle handle (glow when on), 20 amperes and 120 volt AC with number of poles as required; Arrow-Hart 1990PL Series.
3. A listed manual switch having a horsepower rating not less than the rating of the motor and marked “Suitable as Motor Disconnect” shall be permitted to serve as disconnect means for stationary motor of 2 horsepower or less.
4. Switch terminal screws or connectors shall be designed to accommodate No. 10 solid conductor.

2.3 RECEPTACLES

A. Acceptable manufacturers
1. Arrow-Hart
2. Hubbell
3. General Electric
4. Leviton
5. Other manufacturers equal in design and function will be considered upon A/E approval following substitution procedure in Section 260000 and Division 01 for substitution requirement.

B. Material
1. Hospital grade receptacles shall be installed in corridors; Arrow-Hart 8200 Series.
2. Dedicated circuit and convenience duplex receptacles shall be rated 20 amperes, 125 volt AC; Arrow-Hart 5362 Series.
3. GFCI receptacles shall be rated 20 amperes, 125 volt with integral ground fault current interrupter; Arrow-Hart GF5342 Series.
4. Receptacles within 6'-0" of sink or wet area shall be GFI type.
5. All receptacles in restrooms, outdoors, and within 6' of a sink shall be GFI type.
6. Circuit breakers serving vending machines, and EWCs shall be GFI (do not install GFI device at EWCs and vending machines).
7. Specific-use receptacles shall have volts, amps, poles and NEMA configuration as noted on drawings.
8. Heavy-duty lock-blade receptacles shall be NEMA WD5 heavy-duty specification grade.
9. Provide combination receptacle/USB outlets as shown and detailed.
10. Weatherproof receptacles as specified shall be mounted in a cast steel box with gasketed, weatherproof device plate as specified. Provide cast metal in-use cover where exposed to rain.

2.4 WALL PLATES

A. Acceptable manufacturers
1. Arrow-Hart
2. Hubbell
3. General Electric
4. Leviton
5. Other manufacturers equal in design and function will be considered upon A/E approval following substitution procedure in Section 260000 and Division 01 for substitution requirement.

B. Material
1. Wall plates in electrical rooms, mechanical rooms, restrooms, corridors and other common areas shall be 316 or 302 stainless steel with cutouts as required for devices indicated on drawings, unless otherwise noted.
2. Other wall plates shall be smooth heavy duty nylon, 0.1-inch thick. Plastic is not acceptable. Color shall match existing in same area.
3. Where switches or outlets are shown adjacent to each other, they shall be ganged with partitions between different type services and covered by a single custom wall plate.
4. Exposed boxes:
 a. Dry interior spaces: Use cast metal plates with cast metal box. Use heavy cadmium-plated sheet steel plates with steel boxes and copper-free aluminum with aluminum boxes. All screws shall be stainless steel. Edges of plates must be flush with edges of boxes.
 b. Other locations: Use weatherproof devices plates. Provide cast metal plates with gasketed spring door
5. Jumbo plates are not permitted.
6. Weatherproof cover plate shall be gasketed cast aluminum or feraloy (by Crouse-Hinds) with hinged gasketed device covers (cast metal in-use cover where exposed to rain).

2.5 CUSTOM ENGRAVED COVER PLATES

A. In all areas, provide custom engraved cover plate in accordance with Section 260553, Electrical Identification, on all new and existing receptacles, switches, and low voltage lighting control stations indicating panelboard and circuit number with 3/16 inch black letters/numbers.

PART 3 - EXECUTION

3.1 INSPECTION

A. Installer must examine the areas and conditions under which wiring devices are to be installed and notify the Contractor in writing of conditions detrimental to the proper and timely completion of the work. Inspect devices for physical damage. Do not proceed with the work until unsatisfactory conditions have been corrected.

3.2 DEVICE COORDINATION

A. Where items of equipment are provided under other sections of this specification or by the Owner, provide a compatible receptacle and/or device plate for the cap or plug, and cord of the equipment.

3.3 INSTALLATION

A. General:
1. Install wiring devices as indicated, in accordance with the applicable requirements of the latest release of NEC, NEMA, and ANSI.
2. The approximate location of switches, power outlets, etc., is indicated on the drawings. These drawings, however, may not give complete and accurate information in regard to locations of such items. Determine exact locations by reference to the general building drawings and by actual measurements during construction of the building before rough-in, subject to the approval of the Constructor Inspector.

B. Wall Switches and Lighting Control Stations:
1. Location:
 a. Install wall switches and lighting control stations in suitable outlet box centered at the height of 48-inches above finished floor, OFF position down.
 b. Where wainscot occurs at the 48" level, install device in the wall below the wainscot and as near the 48" level as possible to provide the most pleasing appearance, but in no case partially in the wainscot and partially in the wall.
c. Where shown near doors, install devices not less than 2" and not more than 12" from door trim.
d. Verify all door swings before rough-in and locate devices on strike side of door as finally installed.

2. Position:
 a. Wall switches: Install wall switches in a uniform position so the same direction of operation will open and close the circuits throughout the project, generally up or to the left for the ON position.

C. Receptacles:
 1. Location:
 a. Install convenience outlets in suitable steel outlet boxes centered at the height of 18 inches above the finished floor, 6 inches above countertop or at the backsplash level, or as indicated on the drawings. Coordinate with equipment and architectural drawings.
 b. Install receptacles generally where indicated on drawings. The Owner's representative reserves the right to make any reasonable changes in receptacle locations without change in the contract sum.
 c. Install specific-use receptacles at heights shown on Drawings.
 2. Position:
 a. Install receptacles vertically with ground pole on bottom. Install receptacles horizontally, where field condition does not allow vertical installation, with ground pole on left.
 3. Feed through to non-GFCI receptacles is not permitted.

D. Plates:
 1. Where cover plates do not completely conceal the rough openings for the devices, it shall be the responsibility of the Contractor to patch, paint, etc. around the opening to the satisfaction of the Owner's representative.
 2. All devices and cover plates shall be plumb and parallel to adjacent surfaces or trim. Devices must be flush with the finished trim cover plates and plates must be tight to surfaces over which they are installed.
 3. Where switches controlling devices that are out of sight, or where three or more switches are gang mounted, plates shall be labeled to identify items being controlled, or areas being lighted. Labeling shall be 3/16-inch Condensed Gothic and shall be filled with black enamel.

END OF SECTION 262726
SECTION 262813
FUSES, 600 VOLT

PART 1 - GENERAL

1.1 WORK INCLUDED

A. Dual-element, current limiting Class R fuses for loads up to 600 volts, 0-600 Amps.
B. Time delay, current limiting Class L fuses for loads up to 600 volts, 601-6000 Amps.

1.2 REFERENCES

A. UL 248-12 - Standard For Safety For Low-Voltage Fuses-Part 12: Class R Fuses
B. UL 248-10 - Standard For Safety For Low-Voltage Fuses-Part 10: Class L Fuses
C. Where application of local codes, trade association standard or publications appears to be in conflict with the requirements of this Section, the Architect/Engineer shall be asked for an interpretation.

1.3 SUBMITTALS

A. Provide submittals in accordance with and in addition to Section 260000, Basic Electrical Requirements, and Division 01 for submittal requirement.

1.4 PRODUCT DELIVERY, STORAGE AND HANDLING

A. Store fuses in a clean and dry space and protected from weather.

PART 2 - PRODUCTS

2.1 MATERIAL AND EQUIPMENT

A. Furnish fuses manufactured by Buss, or equal, in accordance with the following:
 1. Motors, 0 to 600 Amp:
 a. 250 volt - Buss LPN-RK, UL Class RK1.
B. Size fuses serving motor loads as specifically recommended by motor or equipment manufacturer or in the range of 150% to 175% of motor nameplate rating per NEC in accordance to the type of motor.
C. Interrupting Rating: 300,000 RMS Amps.
D. Maintenance Stock, Fuses:
 1. Furnish the following:
 a. Three spare fuses of each size and type for a spare set.
 b. Provide spare fuse cabinet and locate in main electrical room.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install fuses where indicated, in accordance with the manufacturer's written instructions, the applicable requirements of NEC, national and local codes, regulations, and requirements.
B. Provide quantity of spare fuses and fuse cabinet per the requirement of this Section at the location per drawing or the direction of Owner's Representative, in addition to replace blown or defective fuses during installation, startup, system commissioning and acceptance.

END OF SECTION 262813
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Fusible switches.
 2. Nonfusible switches.
 3. Molded-case circuit breakers (MCCBs).
 4. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.
 B. NO: Normally open.
 C. SPDT: Single pole, double throw.

1.4 SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Include evidence of NRTL listing for series rating of installed devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

B. Field quality-control reports.
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.5 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.6 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 2. Fuse Pullers: Two for each size and type.
PART 2 - PRODUCTS

2.1 FUSIBLE AND NON-FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Type HD, Heavy Duty, Six Pole, Single Throw, 600-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

D. Type HD, Heavy Duty, Double Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

E. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper conductors.
 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 5. Hookstick Handle: Allows use of a hookstick to operate the handle.
 6. Lugs: Mechanical type, suitable for number, size, and conductor material.
 7. Service-Rated Switches: Labeled for use as service equipment.
 8. Accessory Control Power Voltage: As required.

2.2 MOLDED-CASE CIRCUIT BREAKERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Square D; a brand of Schneider Electric.

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

C. Thermal-Magnetic Circuit Breakers: For frame sizes 250 amp and below, inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits and adjustable magnetic trip setting.

D. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. 400 amp frame and above.
 2. Instantaneous trip.
 3. Long- and short-time pickup levels.
 4. Long- and short-time time adjustments.

E. Current-Limiting Circuit Breakers: Frame sizes 600 amp and below.

F. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 3. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 4. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
2.3 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 2. Outdoor Locations: NEMA 250, Type 3R.
 4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
 6. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7 or Type 9.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

3.2 FIELD QUALITY CONTROL

A. Acceptance Testing Preparation:
 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

B. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

C. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.3 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Division 26 Section "Overcurrent Protective Device Coordination Study". Provide mission critical breakers or breakers with additional trip features as required for code required coordination.

END OF SECTION 262816
SECTION 262923
INSTALLATION OF VARIABLE FREQUENCY DRIVES

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Install variable frequency drives furnished under Section 23 29 23, Variable Frequency Drives. Refer to 23 29 23 for additional information.

1.2 RELATED SECTIONS

A. Section 23 29 23 – Variable Frequency Drives
B. Section 23 05 48 - Vibration Isolation
C. Section 23 09 23 – Direct Digital Control Systems
D. Section 23 09 93 – Sequence of Operation
E. Section 26 05 19 - Cable, Wire and Connectors, 600 Volt
F. Section 26 05 33 – Raceways, Conduits and Boxes

1.3 REFERENCES

A. NFPA 70 - National Electrical Code
B. IEEE - 112B, 587 and 519

1.4 DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, protect and handle products to site under provisions of Section 23 00 00.
B. Accept products on site in factory-fabricated protective containers, with factory-installed shipping skids and lifting lugs. Inspect for damage.
C. Store in clean dry place and protect from weather and construction traffic. Handle carefully to avoid damage to components, enclosures, and finish.

1.5 SCHEDULES ON DRAWINGS

A. In general, all capacities of equipment and electrical characteristics are shown in schedules on the Drawings. Reference shall be made to the schedules for such information. The capacities shown are minimum capacities. Variations in the capacities of the scheduled equipment supplied under this contract will be permitted only with the written direction of the owner. All equipment shall be shipped to the job with not less than a prime coat of paint or as specified hereinafter. Where installation instructions are not included in these Specifications or on the Drawings, the manufacturer's instructions shall be followed.

PART 2 - PRODUCTS

Not Used
PART 3 - EXECUTION

3.1 INSTALLATION

A. Contractor shall provide unistrut mounting bracket for drives. Contractor shall reinforce the wall studs with bracing as required to adequately support the drive. Installation of the VFD shall allow for clearance in front of the drive as required by the latest revision of the National Electric Code for an electrical panel.

END OF SECTION 262923
PART 1 - GENERAL

1.1 WORK INCLUDED

A. The extent of engine-generator system work is indicated by drawings and schedules, and by the requirements of this section. The engine-generator system is defined to include, but is not necessarily limited to, engine-generator set, starting system, fuel supply system, automatic transfer switches, and all necessary accessories, instruments, devices, etc., required to provide a complete and operating system.

1.2 QUALITY ASSURANCE

A. Refer to the Electrical Special Provisions.

B. Equipment furnished under this section shall be guaranteed against defective parts or workmanship under terms of the manufacturer's and dealer's standard warranty for a period of one year and shall cover full parts and labor.

1.3 SUBMITTALS

A. Manufacturer's Data: Submit manufacturer's data on engine-generator set, transfer switches, all auxiliary systems and accessories; manufacturer's certification, Owner's manuals, etc. Manufacturer's certification shall state that the complete installation of the engine-generator set, accessories, and appurtenances will function as intended in the space and configuration as shown on the drawings.

B. Shop Drawings: Submit dimensioned drawings of installed engine-generator system including, but not necessarily limited to, an accurately scaled equipment layout, connection details of auxiliary systems, and electrical connection details of automatic transfer switches and controls.

C. Substitutions: The engine generator set listed under Part 2 of this section establishes the minimum quality considered acceptable, however, other units will be considered if adequate data is submitted to the Architect/Engineer at least 10 days prior to bid opening date, and written approval to bid is granted. The Architect/Engineer reserves the right to reject proposed substitutes. No later substitutes will be considered. Each bidder submitting an alternate unit for consideration shall furnish the following information:
 1. Drawings of the engine-generator set offered hereunder.
 2. Literature describing the engine-generator and indicating its current production status.
 3. Drawings and/or literature describing auxiliary equipment to be furnished.
 4. The following data in tabulated form:
 a. Make of engine.
 b. Number of cylinders.
 c. Bore, inches.
 d. Stroke, inches.
 e. Piston displacement, cubic inches.
 f. Piston speed, feet per minute, at rated RPM.
 g. BMEP at rated KW output.
 h. Combustion air required, cubic feet per minute.
 i. Cooling air required, cubic feet per minute.
 j. Engine heat radiated to ambient, BTU per hour.
 k. Generator heat radiated to ambient, BTU per hour.
 l. Exhaust gas flow, cubic feet per minute.
 m. Allowable exhaust back pressure, inches of mercury.
 n. Make and type of generator.
 o. Generator electrical rating, KVA or KW at 0.8 power factor, impedance.
 p. Number and type of bearings.
PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. The engine-generator system shall be standby rated to carry the specified load continuously for the duration of a utility service outage. Rating shall not be less than indicated. Refer to load summary on drawings.

B. The engine-generator set shall be capable of starting all loads as shown on drawings with a maximum terminal voltage drop acceptable to the existing freight elevator manufacturer.

C. Engine-generator system shall be housed in manufacturer's sound attenuated weatherproof enclosure. Enclosure shall be sized to house engine-generator set, batteries, day tank, fuel transfer pumps if required, controls, feeder breakers, and generator load bank breaker.
 1. Sound Performance: Sound attenuated enclosure shall reduce the sound level of the engine generator while operating at full rated load to a maximum of 74 dBA measured at any location 23 ft. from the engine generator in a free field environment.

2.2 ACCEPTABLE MANUFACTURERS

A. Caterpillar
B. Cummins

2.3 GENERATOR

A. Description:
 1. Continuous KW: 150 KW minimum
 2. Operating P.F.: 0.8
 3. Continuous KVA: 187.5 KVA minimum
 4. Enclosure: Weatherproof sound attenuated with up-blast discharge section
 5. Duty: Continuous
 6. R.P.M.: 1800
 7. Voltage Regulation: ±2%; ±5% adjustment
 8. Regulator: Solid state, silicon controlled rectifier
 9. Voltage: 208Y/120
 10. 3 phase, 4 wire
 11. Frequency: 60 Hz
 12. Type: Brushless
 13. Exciter Type: Rotating
 14. Number of Bearings: 1
 15. Coupling: Flexible disc
 16. Amortisseur Windings: Full
 17. Temperature Rise: Per NEMA MG 1-22.40
 18. Insulation: Class F, NEMA MG 1-1.65
 19. Alternator: Shall be 80° rise based on single step starting

B. Performance: Measured in accordance with NEMA MG 1-22.42 and MG 1-22.43:
 1. Efficiency at Full Load: 95.6%
 2. Efficiency at 3/4 Load: 95.6%
 3. Harmonic Content: Less than 6%
 4. Wave Form Deviation Factor, No Load Line-to-Line: Less than 6%
 5. Telephone Influence Factor, Open Circuit: Less than 50

2.4 ENGINE

A. The engine shall be a compression ignition engine. It shall be a two or four stroke cycle, water cooled, solid-injection or unitized-injection type engine of either vertical in-line or V-type.
B. The rated net horsepower of the engine at the generator synchronous speed, with all accessories attached, shall not be less than that required to produce the KW specified above. The horsepower rating shall take into account generator efficiency. The generator set shall be rated to produce the specified KW continuously without overload, at an ambient temperature of 110ºF at the altitude of the site.

C. The unit shall be fueled with #2 diesel fuel.

D. The engine speed shall be governed by an electric governor, to maintain rated speed under variable load conditions from no-load to full-load generator output. Speed droop adjustable 5%, automatic overspeed shutdown.

E. Fuel System:
1. The fuel system shall be that which is normally used by the diesel engine manufacturer. It shall include a replaceable element fuel filter and water separator conveniently located for servicing.
2. Day Tank: A double wall UL142 day tank unit with capacity of 24 hours minimum plus 5% for unused fuel and 10% for overflow prevention shall be incorporated into the base of the engine-generator set. The tank shall incorporate threaded pipe connections, float switch, and mounting brackets. Day tank shall be mounted inside the weather housing on unit. Flexible fuel connections at the engine shall be provided. An engine-mounted fuel filter, fuel pressure gauge and engine fuel priming pump shall be provided.
3. Provide refuel spill containment.

F. Engine lubrication shall be provided by an engine-driven positive displacement lubricating oil pump. The lubrication system shall include a full flow oil filter equipped with replaceable cartridge type filter element, oil level indicator, oil pressure gauge, low oil pressure shutdown, and oil cooler.

G. The engine shall be provided with one or more dry type replaceable element air cleaners.

H. The engine shall be equipped with a 24 volt electric starting system of sufficient capacity to crank the engine at a speed which will allow full diesel starting of the engine. Batteries shall be furnished having sufficient capacity for cranking the engine for at least 40 seconds at firing speed. A battery rack and necessary cable and hardware shall be furnished and installed within the generator set housing. A fully automatic float type battery charger (120 volt) shall be provided to maintain the starting batteries at full charge. The charger shall be equipped with a DC voltmeter to monitor battery voltage and a DC ammeter to monitor the charge rate. The charger shall be designed such that it will not be damaged during engine cranking. A battery box heater shall be provided to facilitate cold weather starting of the engine. The heater shall be suitable for operation on 120 volt, single phase.

I. Water Cooled Generator Sets: A thermostatically controlled engine coolant heater shall be provided to ensure proper cold weather starting of the engine. The coolant heater shall be sized in accordance with the engine manufacturer’s recommendations. The heater shall be suitable for operation on 120 or 208 volts. A lube oil pressure switch shall be included for automatic cut-out of the heater on engine start.

J. Liquid Radiator Cooling:
1. The engine shall be furnished with a liquid radiator cooled cooling system having sufficient capacity for cooling the engine when the diesel generator set is delivering full rated load at the ambient temperature and altitude specified. Fan shall be pusher type, belt driven.
2. The radiator and engine cooling systems shall be filled with a solution of 50% ethylene glycol.

K. Exhaust System: Provide critical type silencer properly sized according to the silencer manufacturer's recommendation for the engine used. Silencer shall be located in sound attenuated engine-generator set enclosure. A flexible exhaust fitting and necessary reducers shall be provided for mounting between the engine exhaust and the exhaust pipe.

L. The engine and generator shall be equipped with suitable base for mounting the engine-generator unit on a concrete foundation. Spring type vibration isolators shall be provided.
M. Provide sound attenuated weatherproof enclosure with vertical discharge section. The enclosure shall reduce the sound level of the generator set while operating at rated full load to a maximum of 74 dBA at any location 23 feet from the generator set in a free field environment.
 1. Vertical discharge of air mixed with exhaust shall not discolor building finishes.

N. Generator Auxiliary Panel:
 1. Provide 60A MCB, 120/208V 3-phase panel within generator enclosure to serve all generator auxiliaries such as lights, convenience receptacle, battery charger, heaters, etc.
 2. Generators requiring 240V auxiliary power are not acceptable.

2.5 ENGINE-GENERATOR SET CONTROLS

A. An engine-generator control panel shall be provided and mounted on the engine-generator set. The control panel shall include the following:
 1. DC engine controls including run-stop-remote switch, remote start-stop terminals, oil pressure gauge, coolant temperature gauge, charge rate ammeter and solid-state engine monitoring system with individual fault lamps, four shut downs, and individual external alarm terminals with pre-shutdown alarm circuit for high coolant temperature and low oil pressure in compliance with NFPA 76A.
 2. AC output controls including AC voltmeter, AC ammeter, meter switch, voltmeter-ammeter phase selector with an off position, voltage adjusting rheostat, frequency meter, running time meter, exciter circuit breaker, fine speed control potentiometer, and phase angle indicator.
 3. Critical data such as engine running, low fuel, etc., shall be connected to campus EMCS system.

B. Main line circuit breakers as shown on the drawings shall be provided and mounted on the engine-generator set. Breakers shall be as specified in Section 262413, except ground-fault indication in accordance with NEC. A junction box with adequate space to terminate the load cables, sized as shown on the drawings, shall be provided and mounted on the engine-generator set.

C. Provide separate load bank breaker and breakers to serve each emergency and optional standby branch.

2.6 REMOTE ANNUNCIATION

A. Provide remote control and annunciator panel as shown on drawings.

B. In addition, generator control panels and automatic transfer switches shall be connected to the Campus building automation system. The following information shall be transmitted via the building automation system:
 1. Generator Start Signal.
 2. Generator Stop Signal.
 3. Load Transfer to Emergency.
 4. Load Transfer to Normal.
 5. Fuel Tank Level.
 6. Include all required building automation system scope of work in Bid.

2.7 PAINTS AND FINISHES

A. Unit shall be cleaned and painted in accordance with the manufacturer's standard system.

2.8 PERFORMANCE CURVES

A. Vendor shall furnish a set of performance curves showing the relationship of fuel consumption rate versus KVA.

B. The following curves for the engine are required as minimum:
 1. BHP vs RPM
 2. Torque vs RPM
 3. Fuel consumption rate vs BHP
PART 3 - EXECUTION

3.1 INSTALLATION

A. The engine-generator system installation shall comply with applicable provisions of NFPA 37 and NFPA 70.

B. The engine-generator units shall be set at the location shown on the drawings.

C. Contractor shall furnish one complete set of replaceable filters or filter elements as spares.

D. The Contractor shall be responsible for all state and federal permitting procedures.

END OF SECTION 263213
SECTION 263623
AUTOMATIC TRANSFER SWITCHES

PART 1 - GENERAL

1.1 WORK INCLUDED
A. The Section specifies furnishing and installation of automatic transfer switches to automatically transfer between the normal and emergency power sources.

1.2 RELATED WORK
A. This Section shall be used in conjunction with the following other specifications and related Contract Documents to establish the total requirements for automatic transfer.
1. Section 260553 - Electrical Identification

1.3 REFERENCE STANDARDS
A. The materials and installation shall conform to the minimum requirements and latest revisions of the following codes, standards and regulations wherein they apply:
1. IEEE C37.2 – Electrical Power System Device Function Numbers and Contact Designations
2. NEMA ICS 1 – General Requirements for Industrial Control and Systems
3. NEMA ICS 6 – Industrial Control and System Enclosure
4. NEMA ICS 10, Part 1 – Electromagnetic AC Transfer Switch Equipment
5. NFPA 70 – National electrical Code
6. UL 1008 – Transfer Switch Equipment
7. NFPA 110 – Standard for Emergency and Standby Power Systems
8. IEEE 446 – Recommended Practice for Emergency and Standby Power Systems

1.4 SUBMITTALS
A. Provide submittals in accordance with and in additional to Section 260000, Basic Electrical Requirements, and Division 01 for submittal requirement.
1. Descriptive product literature, to include, but not limited to:
 a. Rated current, voltage and frequency
 b. Number of poles
 c. Symmetrical rms amperes withstand current at rated voltage
 d. Physical dimensions, to include drawout clearances and working clearances
 e. NEMA enclosure type
 f. Itemized list of accessories
 g. UL 1008 3-cycle close and withstand rating

2. Plan, elevation, side, and front view arrangement drawings, including overall dimension, weights, clearances for installation, drawout of removable components, and working clearances, as well as mounting or anchoring requirements and conduit entrance locations.

3. Schematic diagram (show wiring and only those components which are part of switch).

4. Provide wire diagram prior to shipping. Show all factory wiring on wiring diagram and clearly indicate all wiring and connections to remote devices which are to be made in the field.

5. Submit proposed switch settings, delays, etc. for review and approval. Revise as directed by Owner and Engineer.

B. Submit 1/4” scale drawing of each electrical room and other rooms with electrical equipment to demonstrate that all equipment being submitted will fit in the space and all clearances are obtained. This drawing must be included with the submittal for equipment specified in this section.
1.5 PRODUCT DELIVERY AND STORAGE

A. Deliver unit to the project site, protected from the weather and damage due to shipping and handling. Cover all piping connections.

B. Store unit in a clean and dry space and protected from weather.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. ASCO

B. Other manufacturers equal in design and function will be considered upon A/E approval following substitution procedure in Section 260000 and Division 01 for substitution requirement.

2.2 RATINGS

A. The transfer switches shall have voltage rating, current rating and interrupting ratings as shown on Drawings.

B. The transfer switches shall be 100 percent equipment rated for continuous duty as shown on the Drawings and shall conform to the applicable requirements of UL 1008 for emergency system total load. The automatic transfer switches shall be fully rated to protect all types of loads, inductive and resistive, from loss of continuity of power without de-rating.

C. All pilot devices and relays shall be of the industrial type with self-cleaning contacts and rated 10 amperes.

2.3 CONSTRUCTION

A. The transfer switches shall consist of completely enclosed contact assemblies and a separate control logic panel. The transfer switch shall be open-transition. The contact assemblies shall be operated by a non-fused motor operator or stored energy mechanism and be energized only momentarily during transfer, providing inherently double throw switching action. Control power for all transfer operations shall be derived from the line side of the source to which the load is being transferred.

B. Transfer switches shall be capable of being operated manually under full load conditions. Manual operation shall be accomplished via a permanently affixed manual operator or integrally mounted pushbutton operators located on the face of the transfer switch assemblies. Removable manual operating handles and handles which move in the event that electrical operations should suddenly become energized while performing a manual transfer operation are not acceptable. The manual operator shall provided the same contact-to-contact transfer time as provided under normal automatic operation to prevent possible flashovers from switching the main contacts slowly. In addition, provisions shall be made to allow disengagement of the electrical operator during manual operation.

C. Each transfer switch shall be positively interlocked both mechanically and electrically to prevent simultaneous closing of both sources under either automatic or manual operation. Main contacts shall be mechanically locked in position in both normal and emergency positions. A neutral position shall not be possible under normal electrical operation unless a delayed transition accessory is required for switching highly inductive loads. Each transfer switch shall have a manual neutral position for load circuit maintenance. A transfer switch position indicator shall be visible from the front of the switch to show which source the transfer switch is connected.

D. All three-phase four-wire transfer switches shall be true four-pole switched neutral type with fully rated and connected to a common shaft. The fourth (neutral) pole contacts shall be identical construction as, and operate simultaneously with, the main power contacts. Add-on or overlapping neutral contacts are not acceptable.
2.4 MICROPROCESSOR-BASED CONTROLLER

A. A microprocessor-based controller shall be separately mounted from the power switching portion of the transfer switch. The two sections shall be connected by control cables with plug-in connectors. The control section shall be capable of being disconnected from the power section for maintenance purposes.

B. The controller shall be rated for an operation temperature range of -20 degree C to +70 degree C, and a storage temperature range of -30 degree C to +85 degree C. The microprocessor-based controller shall be capable of operating with control input power available within the range of 55 percent to 133 percent of nominal voltage indefinitely. Connection to any external battery or to the engine battery is not permissible. The controller shall not in any way be adversely affected by line voltage or frequency fluctuation during the course of transferring heavy electrical loads from one source to another. Adverse effects may include, but are not limited to, an unintended retransfer to the original source.

C. The controller shall be equipped with self diagnostics, which performs periodic checks of the memory, input/output (I/O), and communication circuits, with a watchdog/power fail circuit.

D. The controller shall be accurate to within 1 percent of full-scale value for measured parameter. Voltage and current for all phases shall be sampled simultaneously to assure high accuracy in conditions of low power factor or large waveform distortions.

E. A digital readout shall display each option as it is functioning. Readouts shall display:
 1. Three phase voltage with 1 percent accuracy to display all three separate phase-to-phase voltage simultaneously, for both the normal and emergency source.
 2. Frequency with 1 percent accuracy to display frequency for both normal and emergency source.
 3. Availability of normal source and emergency source.

F. The following metered readings shall also be communicated by the Controller, via local display and serial communication.
 1. Current, per phase RMS and neutral
 2. Current unbalance %
 3. Voltage, phase-to-phase and phase-to-neutral
 4. Voltage unbalance %
 5. Real power (KW), per phase and 3-phase total
 6. Apparent power (KVA), per phase and 3-phase total
 7. Reactive power (KVAR), per phase and 3-phase total
 8. Power factor, per phase and 3-phase total
 9. Frequency
 10. Accumulated energy (KWH, KVAH, and KVARH)

G. When timers are functioning, the microprocessor shall display the timer counting down. All set points can be reprogrammed from the front of the switch when the switch is in the program mode. A test push button shall be included as part of the microprocessor.

H. The controller shall be capable of storing records in memory for access either locally or remotely for up to 100 events. The reports shall include date, time and a description of the event, and shall be maintained in a non-volatile memory.

2.5 ACCESSORIES

A. The following logic and options shall be supplied:
 1. The logic of the transfer switch shall function via a microprocessor-based controller. The set points shall be field adjustable without use of the special tools. The switch shall have a multi-tap voltage selection plug for ease of voltage adjustment in the field. LED lights shall be included on the exterior of the switch to show:
 a. Normal source available
 b. Emergency source available
 c. Normal source connected
 d. Emergency source connected
The switch shall include the following:

1. **Load energized**
2. **Position indicators shall be visible from the front of the switch.**

The switch shall include the following:

a. Provide a time delay transfer from the normal power source to the emergency power source (0 seconds to 30 minutes). This option does not affect the engine start circuit.

b. Provide a timer to override a momentary power outage or voltage fluctuation (0 seconds to 120 seconds).

c. Provide a time delay transfer from the emergency power source to the normal power source (0 seconds to 30 minutes).

d. Provide a timer to allow the generator to run unloaded after retransfer to the normal power source (0 seconds to 30 minutes).

e. Provided single-phase under-voltage and under-frequency sensing on the emergency power source. Voltage shall be factory set at 90 percent pickup and 80 percent dropout. Frequency sensing shall be set at 58-hertz pickup and 56-hertz dropout.

f. Provide a pilot light to indicate that the switch is in the normal position as an integral part of the microprocessor.

g. Provide a pilot light to indicate that the switch is in emergency position as an integral part of the microprocessor.

h. Provide a pilot light to indicate that the normal power is available as an integral part of the microprocessor.

i. Provide a pilot light to indicate that the emergency power is available as an integral part of the microprocessor.

j. Provide auxiliary relay contacts that are energized when the power is available on the normal source.

k. Provide auxiliary relay contacts that are energized when the power is available on the emergency source.

B. The following features shall be provided:

1. **Time delay normal to emergency, adjustable.**
2. **Time delay emergency to emergency, adjustable**
3. Green pilot light to indicate switch in normal position and red pilot light to indicate switch in emergency position.
4. White pilot lights marked “Normal Source” and “Emergency Source” to indicate that respective source voltages are available.
5. Tripped position indicating lights for both sources.
6. Relay auxiliary contacts (2 NO and 2 NC) to indicate transfer switch position and the availability of each sources.

C. When the alternate source is an engine generator, the following features shall also be provided:

1. **Time delay engine start, adjustable.**
2. **Time delay engine cool off, adjustable.**
3. **Engine start contact.**
4. Frequency/voltage relay for emergency source, frequency adjustable from 45 to 50 Hz and voltage fixed at 90 percent pickup, 70 percent dropout.
5. Four-position selector switch permitting four (4) modes of transfer switch operation: TEST (simulates normal power outage), AUTO (standard automatic operation), OFF (de-energizes control relays and opens the engine start circuit for maintenance purpose), ENGINE START (retains transfer switch in normal position and initiates a testing of the engine start circuit). Furnish white pilot light for OFF indication.

D. Provide engine generator exerciser (selectable load no-load transfer).

2.6 COMMUNICATIONS

A. Provide in the transfer switch a microprocessor-based unit capable of communicating phase and ground current, peak demand, present demand, energy consumption, contact status, and mode of trip. The transfer switch shall respond to open and close commands from a master control unit via a non-proprietary communication network.
B. Provide communications capability to monitor the normal and emergency switch position and normal and emergency source availability. Provide additional communications capability to bypass time delays during transfer or retransfer, and to initiate engine start for no-load or load testing of the transfer switch from a remote master computer.

2.7 WIRING TERMINATIONS

A. Terminal blocks shall conform to NEMA ICS 4. Terminal facilities shall be arranged for entrance of external conductors from the top or bottom of the enclosure. The main transfer switch terminals shall be suitable for the termination of conductors shown on the plans.

2.8 SEQUENCE OF OPERATION

A. The transfer switch shall automatically transfer its load circuits to an emergency or alternate power supply upon failure of its normal or preferred source.

B. Upon loss of phase-to-phase voltage of the normal source to 80 percent of nominal, and after a time delay, adjustable from 0.5 to 15 seconds, to override momentary dips and/or outages, a 10-ampere, 30-Vdc contact shall close to initiate starting of the emergency or standby source power plant. Transfer to the alternate source shall take place immediately upon attainment of 90 percent of rated voltage and frequency of that source. For switches not involving engine generator sets as power plants, transfer shall occur after an adjustable time delay of 1 to 60 seconds to override momentary dips and outages.

C. When the normal source has been restored to 90 percent of rated voltage, and after a time delay, adjustable from 0 seconds to 30 minutes, the load shall be retransferred to the normal source.

D. A time delay, adjustable from 0 seconds to 30 minutes, shall delay shutdown of the emergency or standard power source after retransfer to allow the generator to run unloaded for cool-down, after which the generator shall be automatically shut down.

E. If the emergency or standby power should fail while carrying the load, transfer to the normal power supply shall be made instantaneously upon restoration of the normal source to satisfactory conditions.

2.9 ENCLOSURE AND FINISH

A. Each transfer switch shall be provided in enclosure suitable for locations as indicated on Drawings.

B. NEMA 1 enclosure shall be painted with the manufacturer’s standard painting procedures to ensure suitability for environmental conditions as referenced in the planes. Color shall be light gray ANSI 61.

PART 3 - EXECUTION

3.1 PRODUCT HANDLING AND VISUAL INSPECTION

A. Handle unit carefully to avoid damage to material components, enclosure and finish. Use only lifting and brackets provided for that purpose. Unit shall be inspected prior to installation for damage. Damaged units shall be rejected and not be installed on project.

3.2 FOUNDATION PAD

A. Install automatic transfer switch on a concrete housekeeping pad or wall/rack mounted per manufacturer’s instruction.

B. Coordinate conduit stub-up locations prior to placing conduit and forms for foundation pad.

3.3 INSTALLATION

A. Install the automatic transfer switch as shown on the drawings. Installation shall follow manufacturer’s installation procedures and be in accordance with NEC.

B. Coordinate controller functions with packaged engine generator controls. The entire system shall be demonstrated functional as a whole.

C. Coordinate interfaces with other life safety and/or building control systems.

3.4 TOUCH-UP PAINTING

A. Restore any marred surfaces to factory finish.

3.5 FIELD TESTING

A. Test the switches with the packaged engine generator set in operating condition. Demonstrate to the Owner that the automatic transfer switches perform all required functions.

B. The manufacturer’s representative(s) shall be on site for testing and start-up the systems.

3.6 TRAINING

A. Provide on-site training for Owner’s designated personnel in the construction, operation, maintenance, troubleshooting and repair of the automatic transfer switch.

B. Formal training for the operation and maintenance shall be provided by factory trained and certified personnel.

C. The training shall consist of a minimum of 4-hour training sessions or per Owner’s direction.

D. The timing of the training shall coincide with the schedule for the manufacturer’s representative(s) to be on site for testing and start-up.

E. The specific training shall be provided at a location designated and provided by the Owner for a minimum of 10 personnel selected by the Owner.

F. A training program shall be submitted with material, instructor’s qualification, and proposed schedule, a minimum 60 days prior to the proposed training. The Owner reserves the right of approval of any training course, material, instructor and schedule.

G. The training program shall consist of, but not limited, instruction in the following subjects:
 1. Review of the applicable one-line drawings, wiring diagrams, and schematic for the automatic transfer switch.
 2. Review of the factory record shop drawings and placement of the various components.
 4. Instruction in manufacturer’s published procedures for operation, maintenance, troubleshooting, and safety. Instruction shall include all modes of equipment operation and alignment.
 5. Review of maintenance procedures for removal and placement of major components, and removal and replacement of renewable parts, as applicable.
 6. Discuss the maintenance timetable and procedures to be followed in an ongoing maintenance program.
 7. Provide binders to participants complete with copies of drawings and other course material covered.

H. A minimum of 4 bound copies of training material shall be provided at the time of training, with four additional copies submitted at the time of substantial completion included in the Owner’s manuals.

END OF SECTION 263623
PART 1 - GENERAL

1.1 WORK INCLUDED

A. Complete lightning protection system for existing building.

B. System design.

C. Air terminals, interconnecting conductors, and other system components and accessories.

D. Grounding and bonding for lightning protection.

E. System inspection and certification.

1.2 RELATED WORK

A. This Section shall be used in conjunction with the following other specifications and related Contract Documents to establish the total requirements for lightning protection systems.
 1. Section 26 00 00 - Basic Electrical Requirements
 2. Section 26 05 33 - Raceways, Conduit, and Boxes
 3. Section 26 05 26 - Grounding

B. In the event of conflict involving requirements of lightning protection systems between this Section and any other Sections, the provisions of this Section shall govern.

1.3 APPLICABLE CODES AND STANDARDS

A. The materials and installation shall conform to the minimum requirements and latest revisions of the following codes, standards and regulations wherein they apply:
 1. NFPA 70 - National Electrical Code
 2. UL 96 - Lightning Protection Components
 3. UL 96A - Installation Requirements for Lightning Protection Systems
 4. NFPA 780 - Lightning Protection Systems
 5. LPI 175 - Standard of Practice for the Design - Installation - Inspection of Lightning Protection Systems

1.4 SYSTEM DESCRIPTION

A. Lightning Protection System: UL 96A Master Labeled system consisting of air terminals on roofs, roof mounted mechanical equipment, stacks, bonding of structure and other metal objects; grounding electrodes; and interconnecting conductors. Lightning protection systems shall be incorporated into the building system by the lightning protection contractor as required for a complete master labeled system.

1.5 QUALIFICATIONS

A. Manufacturer: Company specializing in lightning protection equipment with minimum three years documented experience and member of the Lightning Protection Institute.

B. Installer: The Contractor for the work covered by this specification shall be recognized as being regularly engaged in the design and installation of lightning protection systems. The Contractor must have minimum three years documented experience and member of the Lightning Protection Institute (LPI). Installer shall be a certified LPI master installer of lightning protection systems.
1.6 COORDINATION
A. Coordinate the work of this Section with concrete, roofing and exterior and interior finish installations.
B. Coordinate all provisions for down conductors and system connections with all trades.

1.7 SUBMITTALS
A. Provide submittals for the following information in addition to and in accordance with Section 26 00 00, Basic Electrical Requirements, and Division 01 for submittal requirement.
 1. Shop drawings showing layout of air terminals, grounding electrodes, and bonding connections to structure and other metal objects. Include terminal, electrode, and conductor sizes, and connection and termination details.
 2. Shop drawings shall include locations of conductors, roof penetrations, floor penetrations, etc., and method of installing in/on existing building. Once the contract has been established the Contractor shall make a review of provisions being made for the system installation and comment, in writing, with changes or compliance within two weeks of finalizing the contract. Contractor shall coordinate locations of conductors in walls. Cut and patch existing walls as necessary to conceal down conductors. Failure to coordinate these requirements shall not relieve lightning protection Contractor from properly completing its work. This Contractor shall employ the proper trades to provide the chases in walls and roof and floor penetrations required to install the conductors.
 3. Product data showing dimensions and materials of each component, and include indication of listing in accordance with UL 96.
 4. As Built Record Drawings: The Contractor shall maintain a master set of As Built Record Drawings that shows changes and any other deviations from the Base Drawings in accordance with Section 26 00 00.

1.8 MASTER LABEL
A. The system design shall equal to or exceed the requirement of UL 96A for a Master “C” Label. Upon completion, the lightning protection systems shall be inspected by a representative of Underwriters Laboratories, Inc. The lightning protection systems must pass UL inspection and wear UL label.

1.9 WARRANTY
A. Provide a warranty for material and installation per Section 26 00 00, Basic Electrical Requirements, unless a longer warranty period is required in specific product specifications.

PART 2 - PRODUCTS
2.1 GENERAL
A. The system provided under this specification shall be the standard product of a manufacturer regularly engaged in the production of lightning protection systems and shall be the manufacturer’s latest approved design.
B. Materials used in connection of the installation of the lightning protection system shall be proved for lightning protection systems by UL. No combination of materials shall be used that form an electrolytic couple of such nature that corrosion is accelerated in the presence of moisture. Where unusual conditions exist which would cause corrosion of conductors, conductors with protective coatings or oversized conductors shall be used.
C. Where a mechanical hazard is involved, conductor size shall be increased to compensate therefore, or suitable protection shall be provided. The conductors may be protected by covering them with molding or tubing made of nonmetallic material.
D. Aluminum materials may not be used except on roofs that utilize aluminum roofing components. When aluminum materials are used, provide all materials of aluminum composition to ensure compatibility, except down conductors and grounding. Provide copper down conductors with bimetal transition at the roof assembly rated for the application.

2.2 CONDUCTORS

A. All conductors shall be stranded copper and of the grade ordinarily required for commercial electrical work generally designated as being 98 percent conductive when annealed. Aluminum conductors may only be used on roofs that are built of aluminum roofing components. Conductor minimum size shall be in compliance with NFPA 780.

2.3 AIR TERMINALS

A. Air terminals shall be copper or copper alloy or aluminum per UL 96. Class II air terminal shall be of solid construction. Air terminal minimum diameter shall be in compliance with NFPA 780.

2.4 GROUND ROD

A. Ground rod shall be copper-clad steel, 3/4-inch diameter by 10 feet in length.

2.5 CONNECTIONS

A. Connector fittings shall be copper or copper alloy or aluminum per UL 96 and compatible with material type used for air terminals and conductors.

B. All belowground and concealed connections shall be made with exothermic welded connections.

2.6 ROOF PENETRATIONS

A. Roof penetrations shall be accomplished with through-roof fittings specially designed for this purpose. Through-roof fittings shall utilize solid rods with appropriate hardware. Fittings shall incorporate a positive means for sealing around the rod.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that surfaces are ready to receive work.

B. Verify that field measurements are as shown on the shop drawings.

C. Beginning of installation means installer accepts existing conditions.

3.2 PROTECTION OF SURROUNDING ELEMENTS

A. Protect elements surrounding work of this Section from damage or disfiguration.

B. All roof work shall be by roofing company holding existing roof system warranty. Include their cost in bid.

3.3 CONDUCTORS

A. Install in accordance with manufacturer's instructions. Conceal down conductors. Concealed down conductors shall be installed in continuous insulating PVC raceways. Metallic raceways shall not be used.

1. Coordinate required furrings to conceal down conductors with Owner and Architect.

2. Include all cost in bid.
B. PVC conduit shall not be installed in plenums. If PVC conduit has to be installed in plenum space, the PVC conduit shall have fire rated walls installed creating a chase space for the conduit.

C. The Contractor shall bond each down conductor to the ground rod (Cad-Weld or equivalent) which is bonded to the counterpoise conductors creating a common ground.

D. No bend of a conductor shall form an angle beyond 90 degrees nor shall have a bend radius less than 8 inches per NFPA 780.

3.4 AIR TERMINALS

A. Air terminal height and support shall be in compliance with the requirement of NFPA 780.

B. Air terminals shall not be mounted such they have to be moved to perform maintenance on the equipment they protect.

3.5 GROUND RING ELECTRODE

A. A ground ring electrode encircling the building or structure shall be installed. Lightning protection systems down conductors shall be connected to the ground ring electrode.

B. Interconnect lightning protection ground ring electrode with building ground electrode system.

3.6 ROOF CONNECTIONS

A. Make direct connections to lightning protection system with copper conductor for all roof mounted equipment, enclosures, mast, fan stacks and all metallic objects alike. Provide bonding jumpers across all equipment mounting isolators and ductwork isolators to provide a complete ground path.

B. All antennas shall be grounded.

3.7 ROOF ATTACHMENT AND PENETRATIONS

A. Roof penetration. Contractor shall inform Owner's representative, in advance, of any required roof penetrations and shall obtain approval. Wherever the system penetrates the roof, approved through-roof fittings or sleeves shall be furnished by the lightning protection contractor and installed by the roofing contractor. All patching masonry and structural work shall be furnished and installed by the general contractor.

B. All attachments to roofs must be in strict accordance with the roof manufacturer’s recommendations. The lightning protection contractor shall submit details of all roof attachment to the appropriate roof manufacturer for approval prior to installation. Once the lightning protection system installation is complete, the lightning protection contractor shall engage the appropriate roof manufacturer to inspect all roof attachments on that manufacturer’s roof. Subsequent to the inspection, the roof manufacturer shall furnish the Owner with a letter indicating that all lightning protection systems component roof attachment and penetration are satisfactory and such attachments and penetrations will not in any way to void or reduce the warranty on roof. Any fees for services or inspections provided by the roof manufacturer to accomplish the above related requirements shall be at the expense of the lightning protection contractor.

3.8 COVER-UP INSPECTION

A. Prior to cover-up of concealed components and connections, notify the Owner so that a cover-up inspection can be performed. Correct any deficiencies prior to concealment of components and connections.

3.9 INSPECTION AND MASTER LABEL

A. Upon completion, the lightning protection systems shall be inspected by the representative of the Owner.
B. Obtain the services of Underwriters Laboratories, Inc. to provide inspection and certification of the lightning protection systems. If the system does not pass UL inspection, the Contractor must make corrections to the system in order to pass inspection. Contractor shall furnish the Owner with appropriate approval certificate.

C. Obtain UL Master Label and attach to building at a location as directed by Owner.

3.10 CONFLICTS

A. In the event a conflict exists between this specification and any of the referenced standards, the requirements of referenced standards govern. Necessary variances or corrections shall be made at the expense of the lightning protection contractor in order to obtain UL Master Label.

END OF SECTION 264100
PART 1 - GENERAL

1.1 WORK INCLUDED
A. Interior lighting fixtures and accessories
B. Exit lights
C. LEDs
D. Drivers
E. Emergency lighting relays

1.2 REFERENCES
A. NEPA 101 - Code for Safety to Life from Fire in Buildings and Structures
B. NEMA WD1 - General-Purpose Wiring Devices
C. UL 844 - Electric Lighting Fixtures for Use in hazardous (classified) Locations
D. UL 924 - Emergency Lighting and Power Equipment
E. IESNA – Lighting Handbook
F. NEMA WD 1 - General Color Requirements for Wiring devices
G. NFPA 70 – National Electrical Code

1.3 DESIGN CRITERIA
A. Lighting level design shall be per IESNA (Illuminating Engineering Society of North America) recommendation.

1.4 SUBMITTALS
A. Provide submittals in accordance with and in addition to Section 260000, Basic Electrical Requirements, and Division 1 for submittal requirement.

B. Submit manufacturer's data on interior lighting fixtures in booklet form, with separate sheet for each fixture, assembled by luminaire "type" in alphabetical order, with the proposed fixture and accessories clearly labeled.

C. Submit dimensioned drawings and performance data including complete photometric test data for each luminaire, candlepower distribution curves in two or more planes, candlepower chart zero to 90 degrees, lumen output zonal summary chart, average and maximum brightness data, and coefficients of utilization for zonal cavity calculations, spacing to mounting height ratio, efficiency and visual comfort probability. Also provide luminaire weights, mounting data, and accessory information for each luminaire type.

D. Submit point-by-point calculations for all interior spaces (two separate calculations).
1. Normal + emergency
2. Emergency

E. LEDs: Catalog cuts showing voltages, colors, approximate hours life, approximate initial lumens, and lumen maintenance curve.

F. Drivers: Catalog cuts showing type, wiring diagram, nominal watts, input voltage, starting current, input watts, sound rating, power factor and low temperature characteristics.
1.5 PRODUCT DELIVERY, STORAGE AND HANDLING

A. Deliver lighting fixtures individually wrapped in factory-fabricated fiberboard type containers.

B. Handle lighting fixtures carefully to prevent breakage, denting and scoring the fixture finish. Do not install damaged lighting fixtures.

C. Store lighting fixtures in a clean, dry space and protected from the weather.

PART 2 - PRODUCTS

2.1 GENERAL

A. Lighting fixtures and accessories shall comply with the design and function requirements of the project. Design characteristics shall be as noted in manufacturer's submittal data.

B. Provide lighting fixtures of the size, type and rating as scheduled, complete with, but not limited to LEDs, reflectors, drivers, and wiring.

2.2 INTERIOR LIGHTING FIXTURES

A. Lenses shall be UV stabilized, injection-molded, clear, 0.150-inch minimum thickness virgin acrylic. Provide a minimum of 8 hold-down lens retaining clips for troffers utilizing framed diffuser lenses.

B. Lighting fixture door frames shall be flush steel hinged and equipped with rotary-action cam latches.

C. Lighting fixture housing shall be minimum 22-gauge, cold-rolled steel with pre-punched knockouts and access plate for electrical connections. End plates shall be minimum 20-gauge with pre-punched hanger holes. Driver mounts shall be separated for heat dissipation.

D. Reflector Finishes
 1. Painted Finishes: Provide electro-statically applied dry polyester white powder coat finish with minimum reflectance of 88 percent on all light reflecting surfaces.
 2. Specular/Semispecular Finishes: Provide Alzak-type anodized finish on aluminum louvers and reflectors as specified in Luminaire Schedule as shown on the drawings. Minimum reflectivity shall be:
 a. Specular: 80 percent
 b. Semi-specular: 75 percent

E. UL Listing
 1. All Luminaries and components shall be UL tested, listed, and labeled.
 2. Luminaries installed in damp or wet locations shall be UL listed and labeled as suitable for damp or wet locations.
 3. Recessed luminaries installed in fire rated ceilings and using a fire rated protective cover shall be thermally protected for this application and shall be approved for the installation in a fire-rated ceiling.

2.3 LEDS

A. All LED luminaires shall be UL Listed and be furnished complete with LEDs and Power supplies at locations indicated on the drawings. Each fixture shall bear the UL Label, and shall comply with Code Requirements.

B. Luminaires shall meet the US Department of Energy’s Energy Star performance criteria.

C. LED luminaires shall be designed with heat sinking adequate such that the junction temperature of the LEDs in maintained to meet the rated life as published by the LED manufacturer. Luminaire manufacturer shall provide validation documentation. Heat sinking shall not become compromised with time, lack of
maintenance, and/or vibration resistance so that the heat-sink does not become detached from the LED PCB.

D. The LED luminaires shall have a complete 5 year warranty from date of installation

E. The LED luminaires shall be UL, or ETL listed and be furnished complete with LEDs and power supplies.

F. LED power supplies shall operate LEDs within the current limit specification of the manufacturer

G. Shall operate from 60Hz or 50Hz input source and have input power factor above 90% and a minimum efficiency of 70-80% at full rated load of the driver.

H. Shall have short circuit and overload protection.

I. Shall have a minimum starting temperature of 0°F and a maximum case temperature rating of at least 70°C.

J. Power supply output shall be regulated to +/-5% across published load range.

K. Shall have a Class A sound rating.

L. Shall comply with the requirements of the Federal Communications Commission (FCC) rules and regulations, Title 47CFR part 15, non-consumer (Class A) for EMI/RFI.

M. Shall have a 5 year warranty from date of manufacturer against defects in material or workmanship, including a replacement, for operation at or below the maximum case temperature specification.

N. Manufacturer shall have a 15 year history of producing power supplies for the North American market.

O. Dimmable power supplies shall be controlled by a (DC 0-10V Device/AC forward-phase control device/AC reverse phase control device) and shall be capable of operating, flicker-free, from 100-1% dimming range.
 1. Dimmable power supplies shall allow the light output to be maintained at the lowest control setting (prior to off) without dropping out.
 2. Shall be compatible with lighting control systems procured on the project.

P. All LEDs shall have a color temperature as noted on drawings with CRI ≥80. Confirm color temperature at time of preparing submittals.

Q. L70 rated life shall be a minimum of 50,000 hours.

R. All LED modules, unless noted otherwise, shall be provided by the light fixture manufacturer and integral to the luminaire.

S. LED modules/arrays shall be replaceable in the field. If luminaires are still under warranty, the Owner shall be compensated for the labor to do replacement work or the manufacturer shall send a factory representative to the site to do the work.

T. Replacement modules should have the ability to be “tuned” to match the output of remaining adjacent luminaires in the event that some time has passed and there has been light loss.

PART 3 - EXECUTION

3.1 INSPECTION

A. Prior to order of lighting fixture, check the building electrical system requirements, architectural finishes, and the type of ceilings that lighting fixture will be installed. Any discrepancies of compatibility pertaining trim, frames, color, mounting, driver, voltage and etc. shall be brought to the attention of A/E by written notice. Do not proceed with procurement until discrepancies are resolved in a satisfactory manner.
3.2 INSTALLATION OF LIGHTING FIXTURES

A. Install light fixtures in accordance with the manufacturer's written instructions, the applicable requirements of NEC, and national and local codes, standards, and regulations.

B. Install luminaries at locations as shown on the Drawings; install aligned, aimed, and leveled. Install fixtures in accordance with manufacturer's installation instructions complete with mounting accessories, trim and support materials. Fasten fixtures securely to structural support members of the building; solid pendant fixtures shall be plumb.

C. Coordinate with other crafts to avoid conflicts between luminaires, supports, fittings and mechanical equipment.

D. Surface Mounted Fixtures:
 1. Fixtures shall be supported from structure at four points near each corner of fixtures.

E. Recessed Fixtures:
 1. Handle specular/semi-specular louvers and down light cones using only new clean white cotton or silk gloves. Do not touch louvers or cones with bare hands. Leave luminaries clean and free of any visible dust, debris, or fingerprints with all LEDs operational at time of acceptance of work.
 2. All recessed fixtures shall be supported from building structure above ceiling with galvanized steel wire at not less than 4 points near corners of fixture. Size of wire shall be capable of supporting weight of fixtures.
 3. Recessed luminaries trims shall fit snugly to the mounting surface and shall not exhibit light leaks or gaps. Provide feed-through junction boxes or provide separate junction boxes. All components shall be accessible through the ceiling opening.
 4. Connect recessed luminaries to junction box with flexible steel conduit and fixture wire.

F. Lighting Fixtures Adjustment
 1. Adjust to illuminate intended areas as directed.

G. Immediately before final observation, clean all fixtures, inside and out, including plastics and glassware, and adjust all trim to properly fit adjacent surface, replace broken or damaged parts, and test all fixtures for electrical as well as mechanical operation.

H. Protect installed fixtures from damage during the remainder of the construction period.

I. Upon completion of installation of interior lighting fixtures, and after circuitry has been energized, apply electrical energy to demonstrate capability and compliance with requirements. When possible, correct malfunctioning units at the site, then retest to demonstrate compliance; otherwise, remove and replace with new units, and proceed with retesting.

END OF SECTION 265100
SECTION 337119
UNDERGROUND DUCTBANKS

PART 1 - GENERAL

1.1 WORK INCLUDED

A. This Section specifies the requirements necessary to provide underground ductbanks.
 1. Primary ductbanks.
 2. Normal and emergency secondary service entrance ductbanks.
 3. ATS and generator control ductbanks.

PART 2 - PRODUCTS

2.1 CONDUIT AND FITTINGS

A. All products shall be new, first-quality materials.

B. Nonmetallic Conduit: rigid schedule 40 PVC per NEMA TC-6 & 8. Conduit shall be of standard length, with tapered end and matching solvent weld couplings. Provide fitting of the same type material as ducts.
 1. Underground 90s shall be long radius fiberglass.
 2. Stub-ups shall be schedule 40 PVC.

C. Conduit sizes:
 1. 4” for 15 KV cables between pad mounted transformer and medium voltage switchgear.
 2. Sizes as noted for normal and emergency service entrance conduits.
 3. Sizes as noted for ATS and generator control conduits.

D. Provide spacers with minimum 3” separation between conduits.

E. Provide polypropylene pull string full length.

2.2 CONCRETE

A. Cast-in-place concrete and components: Conform to the following general requirements:
 1. Provide concrete work per ACI 301.
 2. Concrete shall be normal weight, air-entrained, with 28 day strength of 2,500 psi.
 3. Slump: Performed at the point of placement shall not exceed 6 inches. Make slump tests for each nine cubic yards of concrete placed.
 4. Color: All electrical ductbank concrete shall be color dyed red by mixing red inorganic pigment (iron oxide) in cement; rate shall be 1 ½ pounds of iron oxide per cubic yard of cement.
 5. Cylinder Tests: Make four cylinder tests from each pouring operation and not less than four cylinders for each 18 cubic yards, or part thereof, over 10 cubic yards of concrete poured and not less than once a day nor less than once for each concreting operation. Take samples at point of placement; conform to ASTM C 172 and ASTM C 31.
 a. Test two (2) cylinders at 7 days.
 b. Test two (2) cylinders at 28 days.
 c. Tests conform to ASTM C 39.
 6. Temperature limits for concrete work shall be in accordance with civil engineering standard.

2.3 REINFORCING STEEL

A. All switchgear, generator, and transformer pads shall be steel reinforced.

B. All ductbanks shall be steel reinforced.
PART 3 - EXECUTION

3.1 TRENCH EXCAVATION

A. Comply with the following OSHA Part 1926 – Safety and Health Regulations for Construction, Subpart P - Excavation
 1. 1926.650 - Requirements for Open Excavations
 2. 1926.651 - Requirements for Specific Excavations
 3. 1926.652 - Requirements for Protective Systems
 4. 1926.653 - Definitions

B. Before beginning trenching operations, stake out the proposed ductbank routing including trench width and obtain approval from the Owner’s representative. After trenching has begun and before any ducts or conduits are placed, notify the Owner’s representative so that the trenching and installation may be inspected. Also notify the Owner’s representative prior to any placement of concrete for ductbanks, so that he may observe the placement.

C. Excavate a trench of sufficient width to allow thorough compacting of the backfill under and around the ductbank. Refer to details on drawings.

D. Where excavation is in rock, remove all rock to a depth below the grade shown on the Drawings. Rock is defined as material that cannot be ripped or excavated by a backhoe with a one cubic yard bucket with rock teeth. Water shall be continuously pumped out from the trench.

E. The Owner’s approval is required for the extent of the trench excavation prior to the ductbank installation. Contractor shall schedule excavation in accordance with the Owner’s requirements prior to beginning construction.

F. Provide all necessary repairs to erosion control measures and reseeding of grass in areas disturbed by trenching. Repair or replace any damaged paving to Owner’s satisfaction.

G. Sheet and brace the excavation as required to prevent caving. The trench width may be increased accordingly. Maintain sheeting until the ductbank has been inspected and backfilled to either a depth over the top of the ductbank or as indicated on Drawings. Leave sheeting and shoring in place where directed by the Owner’s representative.

3.2 DUCTBANK INSTALLATION

A. Primary ductbanks (top of ductbank concrete) shall be minimum 42” below finished grade.

B. Secondary ductbanks (top of ductbank concrete) shall be minimum 36” below finished grade.

C. Provide conduit in one complete lot. Partial shipment is not approved.

D. Carefully handle and place all conduits to prevent breakage or other damage. Brace and support all conduits as shown on the Drawings to prevent shifting when concrete is poured.

E. Lay conduit in true straight line of a gradual or uniform sweep. Provide factory made long sweep bends for all bends 15 degrees or more, either horizontal or vertical, unless prior approval is given by Owner to bend conduit in field. Bend radius shall be 48” minimum unless noted otherwise on Drawings.

F. Space ducts or conduits a minimum of 3 inches, or in accordance with Drawings, from adjacent ducts. Place spacers or separators on not greater than 5-foot centers.

G. Stagger joints 6 inches vertically and horizontally in horizontal duct runs and make joints watertight in accordance with manufacturer’s recommendations. Where necessary to cut a tapered end on a duct, make the cut with a tool or lathe designed to cut such a taper to match the taper of the particular duct used.
H. Cleanout conduits as work progresses and securely plug all open ends to prevent water, mud or debris from entering the duct.

I. Prior to acceptance of ductbank by the Owner, the Contractor shall pull an approved mandrel through each conduit witnessed by the Owner's representative. Mandrel must not be less than 12 inches long with a diameter approximately 1/2 inch less than the inside diameter of the duct or conduit. Swab all conduits clean immediately before pulling cable.

J. Form conduits into ductbanks as shown on the Drawings. Quantity of spacers shall be as required to ensure conduit is supported to maintain a true straight line without sagging. Spacers shall be nonmetallic, non-decaying material as manufactured by Formex. Conduits shall be secured to the spacers using plastic ties; use of wire is not acceptable.

K. Install steel reinforcing as detailed on drawings.

L. Backfill around conduits using concrete as detailed on drawings.

M. Do not install ductbank under permanent fixtures.

N. Concrete shall be thoroughly mixed with red dye.

O. All unused ductbank conduits shall have a nylon or polypropylene pull strung installed for future use. The pull string shall be Greenlee or equal with minimum of 240 lbs. tensile strength, and shall be rot and mildew resistant. Wire shall not be used as pull string.

P. Ductbank penetrations of foundation wall shall comply with the following:
 1. The conduit shall make individual penetrations of the foundation wall.
 2. The conduit shall penetrate the foundation wall in the following manner:
 a. For new construction, the foundation wall shall have a steel sleeve installed that is 2” larger in diameter than the conduit to be installed. For existing construction, the hole shall be core drilled. In multiple duct situations, sufficient space shall remain between the penetrations to maintain the structural integrity of the foundation wall.
 b. A rubber seal, equal to Link-Seal, shall be installed in the space between the conduit and the sleeve or drilled hole, near the interior surface of the foundation wall. The same space shall have waterproofing installed on the exterior side of the rubber seal.

Q. Identify the ductbank location with metallic safety tape or vinyl tape with magnetic tracer marked "CAUTION! BURIED HIGH VOLTAGE ELECTRICAL LINE". Tape shall be 6” wide located 8 inches below grade, above each edge and center of the ductbank as detailed on drawings. Identify each individual conduit by termination point in adjacent switchgear, ATS, transformer, etc.

R. Refer to drawings for additional requirements.

3.3 TRENCH BACKFILLING

A. Backfill above concrete ductbank with select fill, not sand. Backfill shall be mechanically compacted in 6-inch lifts to 95% at optimum moisture content as determined by ASTM D 698.

B. Consolidate the ductbank fill material under roads or similar traffic areas in such a manner as to provide an unyielding foundation for the paving. Remove all excess materials.

C. Backfill shall be free of all organic material or any other material that would cause subsequent settlement.

D. Contractor shall assume full responsibility for any deficiency in quantity of material or filling of depressions caused by settlement of backfill material. Damage to other trade's work caused by settling shall be corrected at the Contractor's expense. Contractor shall assume full responsibility for damages to any underground utility lines or other structure.
E. Dispose of all excess material from the construction site as directed by the Owner. Contractor should remove excess spoils and other material from the site.

3.4 RECORD DRAWINGS

A. Provide all concrete test reports required per Division 03 specifications.

B. All ductbank locations shall be located with respect to site horizontal controls. All ductbanks shall be located at ends and change of directions. Record accurately all ductbank bends (radius and center point) ±1-foot by 0-inch accuracy on the construction As-Build drawings.

C. Record the installed length of each conduit in the ductbank to the nearest foot and transmit to the Owner's representative.

END OF SECTION 337119
UNIVERSITY OF NORTH TEXAS
TERRILL HALL MEP UPGRADE
UNIV OF NORTH TEXAS RFCSP752-20-243994DH
1611 West Mulberry Street

100% CONSTRUCTION DOCUMENTS
JULY 13, 2020

Yaggi Engineering Inc.
5840 Interstate 20 W, Suite 270
Arlington, Texas 76017
PH: 817.483.2373
www.yaggiengineering.com

ARCHITECT:
GSO Architects
5310 Harvest Hill Rd. Suite 226, LB 156
Dallas, Texas 75230
PH: 972.385.9651
www.GSOarchitects.com

MECHANICAL:

PLUMBING:

ELECTRICAL:

MECHANICAL ENGINEERS

PLUMBING ENGINEERS

ELECTRICAL ENGINEERS

50% CONSTRUCTION DOCUMENTS
JULY 22, 2019

JURISDICTION
UNIVERSITY OF NORTH TEXAS

BUILDING CODE
2017 IBC

PLUMBING CODE
2017 IPC

MECHANICAL CODE
2017 IMC

ELECTRICAL CODE
2017 NEC

FIRE/LIFE SAFETY
2017 IFC

TEXAS ACCESSIBILITY STANDARDS
TEXAS GOV. CODE CHAPTER 469

ENERGY CODES
2017 IECC

ARCHITECTURE

100% CONSTRUCTION DOCUMENTS
OCTOBER 29, 2019

JULY 13, 2020

RFCSP752-20-243994DH

PLANNING

DESIGN

CONSTRUCTION

ARCHITECTS

ENGINEERS
Phasing Scope - Phase 1
Phase 1 will include all infrastructure installation in basement and exterior services for mechanical, plumbing, fire protection, and electrical system, construction of outside air intake structure and fire protection room.

Air handling unit installation shall be phased to provide airflow to existing systems at all times. New air handling unit shall be installed before first unit is removed.

Schedule
February 1st 2021 to May 1st 2021
Phasing Scope - Phase 2

Phase 2 will include all work shown for the First floor. Contractor will have access to 50% of the floor at a time to complete all work within the area.

Schedule

May 10, 2021 to August 13, 2021

Special consideration and phasing will be required for a Year Round Clinic Facility on the Floor. Clinic will stay operational during construction activities.
Phase 3 will include all work shown for the Second floor. Contractor will have access to 50% of the floor at a time to complete all work within the area.

Schedule

August 16, 2021 - October 22, 2021

Special consideration and phasing will be required for Year Round Facility on the Floor. Facilities will stay operational during construction activities.

Year Round Facility Departments on Floor
- Computer Lab
- Graduate Room
- Sleep Lab
Phasing Scope - Phase 4

Phase 4 will include all work shown for the Third floor. Contractor will have access to 50% of the floor at a time to complete all work within the area.

Schedule

October 25, 2021 - December 31, 2021

Special consideration and phasing will be required for Year Round Facility on the Floor. Facilities will stay operational during construction activities.

Year Round Facility Department on Floor
- Smoking Lab
GC TO INSTALL 5/8" WATER RESISTANT GYP BD TO AT LEAST 4'-0" AFF AT ALL WET WALLS IN ROOM, TYPICAL.

STAGGER JOINTS AT TYPE 'X' GYP BD, WATER RESISTANT GYP BD AND CEMENT BOARD, SCREW SPACING AT 8" AT JOINT AND PERIMETER AND 12" IN FIELD OF BOARD.
FLOOR 1
SOUTH ENTRANCE
FOR FURNISHINGS ONLY

FURNITURE LOCATIONS

AS NOTED
NOTES:
1. REPLACE DOOR CONTROLS WITH HEAVY DUTY GRADE ONE "LEVER" HANDLE TYPE CONFORMING TO TAS/ADA STANDARDS FOR ACCESSIBILITY.
2. ALL DOORS TO HAVE AN OPENING AND CLOSING FORCE WHICH COMPLIES TO TAS/ADA REQUIREMENTS.
3. ALL DOOR HARDWARE AND SIGNAGE MUST COMPLY TO TAS/ADA STANDARDS.
4. REFER SPECIFICATIONS FOR ADDITIONAL HARDWARE INFORMATION AND REQUIREMENTS.
5. G.C. TO VERIFY IF ANY OF THE REMOVED DOORS ARE RATED.
6. ALL INTERIOR DOOR HARDWARE AND FRAMES FINISH TO BE BUILDING STANDARD COLOR—COORDINATE FINISHES AND KEYING WITH UNT PROJECT MANAGER.
7. ALL HARDWARE TO BE TAMPER-RESISTANT.
8. G.C. TO COORDINATE CORES AND KEYING WITH UNT PROJECT MANAGER AND ACCESS CONTROL TO MATCH UNIVERSITY'S PREFERRED SYSTEM.
9. G.C. TO COORDINATE WALL STOP AND DOOR STOP LOCATIONS WITH PROJECT MANAGER AND NOT TO OBSTRUCT PATH.
STRUCTURAL NOTES

042200 MASONRY WALLS

1. ALL MASONRY CONSTRUCTION SHALL CONFORM TO TMS 402 "BUILDING CODE REQUIREMENTS FOR MASONRY STRUCTURES" AND TMS 602 "SPECIFICATION FOR MASONRY STRUCTURES", LATEST EDITION.

2. STEEL STUDS, JOISTS, LINTELS, AND RUNNER TRACK MEMBERS SHALL BE OF TYPE SHOWN ON THE STRUCTURAL PLANS AND DETAILS.

3. MINIMUM STEEL GRADES (FY): 12 GA (97 MILS), 14 GA (68 MILS); 16 GA (54 MILS) STUDS AND TRACK: 50 KSI; HORIZONTAL STEEL: 60 KSI.

4. PROVIDE HOOKED DOWELS IN FOUNDATIONS FOR VERTICAL REINFORCING ABOVE. LAP SPLICES SHALL BE MADE BY STOPPING THE POUR OF GROUT NOT LESS THAN 1-1/2 INCH BELOW THE TOP OF THE UPPERMOST UNIT GROUTED.

5. BLOCK CELLS SHALL BE GROUT FILLED WITH VERTICAL REINFORCING BARS AT CORNERS, TIED AT THE CLEANOUTS AND THE CLEANOUTS SHALL BE SEALED.

6. CLEANOUT OPENINGS SHALL BE PROVIDED AT THE BOTTOM OF CELLS TO BE GROUT FILLED IN EACH UNIT.

7. TOLERANCES TO COMPLY WITH ASTM C955.

8. WELDING TO COMPLY WITH COLD-FORMED STEEL ENGINEERS INSTITUTE TECH NOTE 5606-1 - WELDING FOR COLD-FORMED STEEL STRUCTURAL FRAMING (2015 EDITION), AISI/COFS/GP-2015 STANDARD FOR MANUFACTURED LIGHT GLAZE STEEL FRAMING AND THEIR CONNECTIONS SHALL BE AS DEPICTED ON THE DRAWINGS IN THE FINAL, COMPLETED STRUCTURAL CONFIGURATION. HOWEVER, NO ALLOWANCE IS REQUIRED FOR THE TEMPORARY BRACED CONDITION, THE BRACING DESIGN ENGINEER MUST DESIGN STRUCTURAL LIGHT GAGE CFS FRAMING CONNECTORS FABRICATED BY THE STEEL NETWORK (TSN), RALEIGH, N.C., 888-474-4876. CONNECTORS GENERIC BENT PLATE LIGHT GAGE CONNECTORS IS NOT ALLOWED WITHOUT DESIGN CALCULATIONS.

9. PROVIDE 9 GAGE GALVANIZED HORIZONTAL JOINT REINFORCING (DUR-O-WALL OR ENGINEER APPROVED FASTENERS) IN EVERY 24" HORIZONTAL CLEARANCE FOR THE SCHEME IS THE FULL RESPONSIBILITY OF THE CONTRACTOR, INCLUDING ANY ADDITIONAL COLLATERAL MATERIALS TO STEEL MEMBERS SHALL BE MADE WITH SELF-DRILLING SCREWS OR WELDING. THE CONTRACTOR IS RESPONSIBLE FOR INSTALLATION OF PERMANENT BRACING INCLUDING, BUT NOT LIMITED TO FLOOR, ROOF FRAMING, METAL DECK AND SLAB SYSTEMS. THE DESIGN DOES NOT PROVIDE 9 GAGE GALVANIZED HORIZONTAL JOINT REINFORCING FOR THE TEMPORARILY BRACED CONDITIONS. THE CONTRACTOR IS RESPONSIBLE FOR INSTALLATION OF PERMANENT BRACING INCLUDING, BUT NOT LIMITED TO FLOOR, ROOF FRAMING, METAL DECK AND SLAB SYSTEMS. THE DESIGN DOES NOT PROVIDE 9 GAGE GALVANIZED HORIZONTAL JOINT REINFORCING FOR THE TEMPORARILY BRACED CONDITIONS.

10. SUBMIT PROPOSED GROUT MIX DESIGNS FOR REVIEW PRIOR TO USE. MIX NUMBER OR OTHER POSITIVE IDENTIFICATION OF THE MIX IS REQUIRED.

11. JOINING OF STRUCTURAL MEMBERS SHALL BE MADE WITH SELF-DRILLING SCREWS OR WELDING. ATTACHMENT OF COLLATERAL MATERIALS TO STEEL MEMBERS SHALL BE MADE WITH SELF-DRILLING SCREWS OR WELDING. A 3" OR 4" MINIMUM GAP BETWEEN STEEL AND MASONRY WALLS IS REQUIRED TO ALLOW GROUT TO SET UP AND REACH TYPICAL DETAIL PER LAP SPLICE SCHEDULE SHOWN IN THE DRAWINGS.

12. WIRE TYING OF FRAMING MEMBERS IN STRUCTURAL APPLICATIONS SHALL NOT BE PERMITTED.

13. ATTACHMENT OF COLLATERAL MATERIALS TO STEEL MEMBERS SHALL BE MADE WITH SELF-DRILLING SCREWS OR WELDING.

14. ATTACHMENT OF COLLATERAL MATERIALS TO STEEL MEMBERS SHALL BE MADE WITH SELF-DRILLING SCREWS OR WELDING.

15. PROVIDE 9 GAGE GALVANIZED HORIZONTAL JOINT REINFORCING (DUR-O-WALL OR ENGINEER APPROVED FASTENERS) IN EVERY 24" HORIZONTAL CLEARANCE FOR THE SCHEME IS THE FULL RESPONSIBILITY OF THE CONTRACTOR, INCLUDING ANY ADDITIONAL COLLATERAL MATERIALS TO STEEL MEMBERS SHALL BE MADE WITH SELF-DRILLING SCREWS OR WELDING. THE CONTRACTOR IS RESPONSIBLE FOR INSTALLATION OF PERMANENT BRACING INCLUDING, BUT NOT LIMITED TO FLOOR, ROOF FRAMING, METAL DECK AND SLAB SYSTEMS. THE DESIGN DOES NOT PROVIDE 9 GAGE GALVANIZED HORIZONTAL JOINT REINFORCING FOR THE TEMPORARILY BRACED CONDITIONS. THE CONTRACTOR IS RESPONSIBLE FOR INSTALLATION OF PERMANENT BRACING INCLUDING, BUT NOT LIMITED TO FLOOR, ROOF FRAMING, METAL DECK AND SLAB SYSTEMS. THE DESIGN DOES NOT PROVIDE 9 GAGE GALVANIZED HORIZONTAL JOINT REINFORCING FOR THE TEMPORARILY BRACED CONDITIONS.

16. LATERAL BRACING SHALL BE PROVIDED BY USE OF PLYWOOD SHEATHING, GYPSUM SHEATHING, OR BY SUBSTITUTE AIRWATER RESISTANT SHEATHING AS REQUIRED.

17. LIGHT GAGE FRAMING CONNECTORS SPECIFIED BY PART NUMBER OR MODEL NAME ARE STANDARD SECTIONS, paragraphs 17, 18, and 19 of the Structural Specification have been deleted.

18. PROVIDE STANDARD HOOKS AT ENDS OF ALL BARS WHICH TERMINATE IN TIE BEAMS OR BOND BEAMS. INSIDES OF SUCH CELL WALLS.

19. CLEANOUT OPENINGS SHALL BE PROVIDED AT THE BOTTOM OF THE CELLS TO BE SEALED.

20. PROVIDE STANDARD HOOKS AT ENDS OF ALL BARS WHICH TERMINATE IN TIE BEAMS OR BOND BEAMS. INSIDES OF SUCH CELL WALLS.

21. CLEANOUT OPENINGS SHALL BE PROVIDED AT THE BOTTOM OF THE CELLS TO BE SEALED.

22. PROVIDE STANDARD HOOKS AT ENDS OF ALL BARS WHICH TERMINATE IN TIE BEAMS OR BOND BEAMS. INSIDES OF SUCH CELL WALLS.

23. CLEANOUT OPENINGS SHALL BE PROVIDED AT THE BOTTOM OF THE CELLS TO BE SEALED.
20'-7 1/2"
7'-3 1/2"
6'-0 1/2"
7'-3 1/2"
8"
3'-11 1/4"
T/EXIST. CONCRETE
EL = 0' - 8"
T/CONCRETE
6" CMU W/ #4
TYP
S-100
1 1/4"
5/8" APA EXPOSURE 1 RATED SHEATHING, SPAN 32/16. SHEATHING TO BE FIRE RETARDANT.
EL = 11' - 11"
T/CONCRETE
3 S-100
5/8" APA EXPOSURE 1 RATED SHEATHING, SPAN 32/16. SHEATHING TO BE FIRE RETARDANT.
EL = 12' - 0"
S-100
6", 18GA STUD - SEE PLAN FOR SPACING
6", 18SA TRACK - ATTACH TO ROOF STUD W/ #12 SCREW T&B
LEVEL 1 EL 0' - 0"
LEVEL 2 EL 12' - 0"
LEVEL 3 EL 22' - 6"
BASEMENT EL = 15' - 4"
EXIST 6" CMU
EXIST 8" CMU
6" CMU W/ #4 @ 24" OC - TYP.
64" WIDE X 48" HIGH ROUGH OPENING FOR LOUVER
6" BOND BEAM W/ (2) #4 CONT.
1x8 FASCIA BOARD - SEE ARCH DWGS
6", 18 GA STUD - SEE PLAN FOR SPACING
ROOF SHEATHING - SEE PLAN
SIMPSON STRONG TIE "SSC CONNECTOR W/ (5) #10 SCREWS INTO STUD AND 3/8" DIA ANCHOR BOLT - USE HILTI "HIT - H7270" ADHESIVE, MIN EMBED = 3¾"
18GA TRACK - ATTACH TO ROOF STUD W/ #12 SCREW T&B
LEVEL 1 EL 0' - 0"
LEVEL 2 EL 12' - 0"
LEVEL 3 EL 22' - 6"
EXIST COLUMN BEYOND
6" CMU W/ #4 @ 24" OC - TYP.
64" WIDE X 48" HIGH ROUGH OPENING FOR LOUVER
6" BOND BEAM W/ (2) #4 CONT.
3" = 1'-0" 1 LEVEL 1 PARTIAL PLAN - LOUVER CHASE
3/8" = 1'-0" 2 SECOND FLOOR PLAN - LOUVER CHASE
1 1/2" = 1'-0" 4 BOTTOM OF CMU WALL
1 1/2" = 1'-0" 5 TOP OF CMU WALL DETAIL
3/8" = 1'-0" 3 SECTION THRU LOUVER CHASE
1 1/2" = 1'-0" 6 6" CMU TO EXIST WALL
1 1/2" = 1'-0" 7 ROOF STUD TO EXIST WALL CONN.
PROVIDE NEW SIAMESE FIRE DEPARTMENT CONNECTION.

PROVIDE NEW 4" STANDPIPE UP TO LEVEL THREE.

PROVIDE NEW 2-1/2" BRANCH LINE FROM 6" STANDPIPE TO EXISTING HOSE RACK CABINET.

NEW CONTROL VALVE ASSEMBLY. REFER TO DRAWING DETAIL 2/FP-001.

NEW FIRE PUMP AND WET PIPE SPRINKLER ASSEMBLY. REFER TO DETAIL & SCHEDULES ON DRAWING FP-001.

NEW 6" FIRE LINE FROM WATER MAIN.

ROUTE NEW 6" UNDERGROUND TO MAIN WATER LINE.
COORDINATE WITH EXISTING AND NEW UTILITIES.
PROVIDE BACKFLOW PREVENTION.

ROUTE NEW 6" UNDERGROUND TO MAIN WATER LINE.
COORDINATE WITH EXISTING AND NEW UTILITIES.
PROVIDE BACKFLOW PREVENTION.
EXISTING FIRE HOSE CABINET TO REMAIN FOR NEW RENOVATION.

PROVIDE NEW 4" STANDPIPE TO LEVEL THREE.

PROVIDE NEW 2-1/2" BRANCH LINE FROM 4" STANDPIPE TO EXISTING FIRE DEPT HOSE CABINET.

LEVEL 1F - FIRE PROTECTION
EXISTING FIRE HOSE CABINET TO REMAIN

PROVIDE NEW 4" STANDPIPE TO LEVEL THREE.

PROVIDE NEW 2-1/2" BRANCH LINE FROM 4" STANDPIPE TO EXISTING FIRE DEPT HOSE CABINET.
EXISTING FIRE HOSE CABINET TO REMAIN

PROVIDE NEW 4" STANDPIPE TO THIRD FLOOR.

PROVIDE NEW 2"-1/2" BRANCH LINE FROM 4" STANDPIPE TO EXISTING FIRE DEPT HOSE CABINET.
NOTE: SOME SYMBOLS SHOWN ON THIS LEGEND MAY NOT Pertain TO THIS PROJECT

PLUMBING SYMBOL LEGEND

PLUMBING ABBREVIATIONS

PLUMBING GENERAL NOTES

1. PROVIDE AUTOMATIC TRAP PRIMERS FOR FLOOR DRAIN TRAP SEALS.
2. PROVIDE ACCESSIBLE-pointer HOSE BIBBS 24" ABOVE FINISHED FLOOR UNLESS OTHERWISE ON DRAWINGS. MOUNT HOSE BIBBS 24" ABOVE FINISHED FLOOR UNLESS OTHERWISE ON DRAWINGS.
3. PROVIDE ALL OFFSETS AND FITTINGS AND MAKE CONNECTION TO SITE UTILITIES.
4. PROVIDE FLOOR DRAIN LOCATIONS WITH ARCHITECTURAL DRAWINGS. SET FLOOR DRAIN LOCATIONS WITH ARCHITECTURAL DRAWINGS.
5. COORDINATE EXACT FLOOR DRAIN LOCATIONS WITH ARCHITECTURAL DRAWINGS.
6. COORDINATE PIPING WITH ALL ELECTRICAL EQUIPMENT (PANELS, TRANSFORMERS, ETC.) AND MAKE READY FOR USE) TO ALL EQUIPMENT, WHETHER FURNISHED BY THIS CONTRACTOR OR FURNISHED BY OTHERS.

PLUMBING DRAWING INDEX
100% CONSTRUCTION DOCUMENTS

UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE
11611 WEST MULBERRY STREET

PLUMBING

1. REMOVE EXISTING WATER CLOSET, FLUSH VALVE, CLOSET CARRIER, AND TRIM. CAP ALL PLUMBING ROUGHIN FOR FUTURE REMODEL.

2. REMOVE EXISTING URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. CAP ALL PLUMBING ROUGHIN FOR FUTURE REMODEL.

3. REMOVE EXISTING LAVATORY, FAUCET, AND TRIM. CAP ALL PLUMBING ROUGHIN FOR FUTURE REMODEL.

4. REMOVE EXISTING LAVATORY, FAUCET, WALL CARRIER AND TRIM. CAP ALL PLUMBING ROUGHIN FOR FUTURE REMODEL.

5. REMOVE EXISTING ELECTRIC WATER COOLER AND TRIM. CAP ALL PLUMBING ROUGHIN FOR FUTURE REMODEL.

6. REMOVE EXISTING H&CW SUPPLY LINES, VENT, AND SANITARY LINES FROM CEILING AND BELOW FLOOR. CAP PIPING FOR FUTURE REMODEL.

KEY NOTES:

1. REFER TO SHEET P-001 FOR GENERAL NOTES, LEGENDS, AND DETAILS.

GENERAL NOTES:
REMOVE EXISTING WATER Closet, FLUSH VALVE, CLOSET CARRIER, AND TRIM. CAP ALL PLUMBING ROUGHIN FOR FUTURE REMODEL.

REMOVE EXISTING URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. CAP ALL PLUMBING ROUGHIN FOR FUTURE REMODEL.

REMOVE EXISTING LAVATORY, FAUCET, AND TRIM. CAP ALL PLUMBING ROUGHIN FOR FUTURE REMODEL.

REMOVE EXISTING SINK, FAUCET, TRIM, AND PLUMBING ROUGH-IN BEHIND WALL. CAP ALL PLUMBING ROUGHIN ABOVE CEILING AND BELOW FLOOR FUTURE REMODEL.

KEY NOTES:
1. REFER TO SHEET P-001 FOR GENERAL NOTES, LEGENDS, AND DETAILS.

7/13/20
100% CONSTRUCTION DOCUMENTS

UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE
11611 WEST MULBERRY STREET

PLUMBING DEMOLITION SECOND FLOOR PLAN

LEVEL 2F - PLUMBING - DEMOLITION
LEVEL 3F - PLUMBING - DEMOLITION

1. REMOVE EXISTING WATER CLOSET, FLUSH VALVE, CLOSET CARRIER, AND TRIM. CAP ALL PLUMBING ROUGHIN FOR FUTURE REMODEL.
2. REMOVE EXISTING URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. CAP ALL PLUMBING ROUGHIN FOR FUTURE REMODEL.
3. REMOVE EXISTING LAVATORY, FAUCET, AND TRIM. CAP ALL PLUMBING ROUGHIN FOR FUTURE REMODEL.
4. REMOVE EXISTING ELECTRIC WATER COOLER AND TRIM. CAP ALL PLUMBING ROUGHIN FOR FUTURE REMODEL.

KEY NOTES:
- REFER TO SHEET P-001 FOR GENERAL NOTES, LEGENDS, AND DETAILS.

GENERAL NOTES:
- REMOVE EAST, NORTH, SOUTH, AND WEST EXISTING WATER COOLER AND TEMPORARILY INSTALL A TEMPORARY WATER COOLER.
- REMOVE AND REPLACE EXISTING WATER CLOSET, FLUSH VALVE, AND CLOSET CARRIER.
- REMOVE AND REPLACE EXISTING URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM.
- REMOVE AND REPLACE EXISTING LAVATORY, FAUCET, AND TRIM.
- REMOVE AND REPLACE EXISTING ELECTRIC WATER COOLER.
- CAP ALL PLUMBING ROUGHIN FOR FUTURE REMODEL.
KEY NOTES:
1. REFER TO SHEET P-001 FOR GENERAL NOTES, LEGENDS, AND DETAILS.
2. ALL FLOOR DRAINS SHOWN ON BASEMENT FLOOR PLAN ARE EXISTING TO REMAIN UNLESS OTHERWISE NOTED.

GENERAL NOTES:

No. Date Description
CONNECT NEW WATER CLOSET, FLUSH VALVE, CLOSET CARRIER, AND TRIM.
EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

CONNECT NEW LAVATORY, FAUCET, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

CONNECT NEW LAVATORY, FAUCET, WALL CARRIER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

CONNECT NEW ELECTRIC WATER COOLER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

3" SEWER AND 1/2" CW LINES UP TO SERVE NEW WATER CLOSET ON 2ND FLOOR.
2" SEWER AND 1/2" CW LINES UP TO SERVE NEW LAVATORY ON 2ND FLOOR.
2" SEWER LINE AND 1/2" CW UP TO SERVE NEW SHOWER ON 2ND FLOOR.
ROUTE 3/4" HW & HWR UP TO THIRD FLOOR TO EXISTING WATER.

KEY NOTES:
1. REFER TO SHEET P-001 FOR GENERAL NOTES, LEGENDS, AND DETAILS.

GENERAL NOTES:
1. CONNECT NEW WATER CLOSET, FLUSH VALVE, CLOSET CARRIER, AND TRIM.
2. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.
3. CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM.
4. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.
5. CONNECT NEW LAVATORY, FAUCET, AND TRIM.
6. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.
7. CONNECT NEW LAVATORY, FAUCET, WALL CARRIER AND TRIM.
8. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.
9. CONNECT NEW ELECTRIC WATER COOLER AND TRIM.
10. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.
11. 3" SEWER AND 1/2" CW LINES UP TO SERVE NEW WATER CLOSET ON 2ND FLOOR.
12. 2" SEWER AND 1/2" CW LINES UP TO SERVE NEW LAVATORY ON 2ND FLOOR.
13. 2" SEWER LINE AND 1/2" CW UP TO SERVE NEW SHOWER ON 2ND FLOOR.
14. ROUTE 3/4" HW & HWR UP TO THIRD FLOOR TO EXISTING WATER.

CONNECT NEW WATER CLOSET, FLUSH VALVE, CLOSET CARRIER, AND TRIM.
EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

CONNECT NEW LAVATORY, FAUCET, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

CONNECT NEW LAVATORY, FAUCET, WALL CARRIER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

CONNECT NEW ELECTRIC WATER COOLER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

3" SEWER AND 1/2" CW LINES UP TO SERVE NEW WATER CLOSET ON 2ND FLOOR.
2" SEWER AND 1/2" CW LINES UP TO SERVE NEW LAVATORY ON 2ND FLOOR.
2" SEWER LINE AND 1/2" CW UP TO SERVE NEW SHOWER ON 2ND FLOOR.
ROUTE 3/4" HW & HWR UP TO THIRD FLOOR TO EXISTING WATER.

KEY NOTES:
1. REFER TO SHEET P-001 FOR GENERAL NOTES, LEGENDS, AND DETAILS.

GENERAL NOTES:
1. CONNECT NEW WATER CLOSET, FLUSH VALVE, CLOSET CARRIER, AND TRIM.
2. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.
3. CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM.
4. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.
5. CONNECT NEW LAVATORY, FAUCET, AND TRIM.
6. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.
7. CONNECT NEW LAVATORY, FAUCET, WALL CARRIER AND TRIM.
8. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.
9. CONNECT NEW ELECTRIC WATER COOLER AND TRIM.
10. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.
11. 3" SEWER AND 1/2" CW LINES UP TO SERVE NEW WATER CLOSET ON 2ND FLOOR.
12. 2" SEWER AND 1/2" CW LINES UP TO SERVE NEW LAVATORY ON 2ND FLOOR.
13. 2" SEWER LINE AND 1/2" CW UP TO SERVE NEW SHOWER ON 2ND FLOOR.
14. ROUTE 3/4" HW & HWR UP TO THIRD FLOOR TO EXISTING WATER.

CONNECT NEW WATER CLOSET, FLUSH VALVE, CLOSET CARRIER, AND TRIM.
EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

CONNECT NEW LAVATORY, FAUCET, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

CONNECT NEW LAVATORY, FAUCET, WALL CARRIER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

CONNECT NEW ELECTRIC WATER COOLER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

3" SEWER AND 1/2" CW LINES UP TO SERVE NEW WATER CLOSET ON 2ND FLOOR.
2" SEWER AND 1/2" CW LINES UP TO SERVE NEW LAVATORY ON 2ND FLOOR.
2" SEWER LINE AND 1/2" CW UP TO SERVE NEW SHOWER ON 2ND FLOOR.
ROUTE 3/4" HW & HWR UP TO THIRD FLOOR TO EXISTING WATER.

KEY NOTES:
1. REFER TO SHEET P-001 FOR GENERAL NOTES, LEGENDS, AND DETAILS.

GENERAL NOTES:
1. CONNECT NEW WATER CLOSET, FLUSH VALVE, CLOSET CARRIER, AND TRIM.
2. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.
3. CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM.
4. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.
5. CONNECT NEW LAVATORY, FAUCET, AND TRIM.
6. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.
7. CONNECT NEW LAVATORY, FAUCET, WALL CARRIER AND TRIM.
8. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.
9. CONNECT NEW ELECTRIC WATER COOLER AND TRIM.
10. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.
11. 3" SEWER AND 1/2" CW LINES UP TO SERVE NEW WATER CLOSET ON 2ND FLOOR.
12. 2" SEWER AND 1/2" CW LINES UP TO SERVE NEW LAVATORY ON 2ND FLOOR.
13. 2" SEWER LINE AND 1/2" CW UP TO SERVE NEW SHOWER ON 2ND FLOOR.
14. ROUTE 3/4" HW & HWR UP TO THIRD FLOOR TO EXISTING WATER.
CONNECT NEW WATER CLOSET, FLUSH VALVE, CLOSET CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

CONNECT NEW LAVATORY, FAUCET, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

PROVIDE TACO 009 RECIRCULATION PUMP, 1/25 HP, 120V., 1 PH. CONNECT 3/4" HWR LINE TO EXISTING CW SUPPLY TO WATER HEATER. SET FLOW TO 3 GPM WITH BELL & GOSSETT CIRCUIT SETTER. REFER TO DETAIL 1/ P-003.

ROUTE NEW 3/4" HW & HWR DOWN TO FIRST FLOOR RESTROOM

KEY NOTES:

1. REFER TO SHEET P-001 FOR GENERAL NOTES, LEGENDS, AND DETAILS.
LEVEL 3F - PLUMBING

KEY NOTES:

1. REFER TO SHEET P-001 FOR GENERAL NOTES, LEGENDS, AND DETAILS.

GENERAL NOTES:

1. CONNECT NEW WATER CLOSET, FLUSH VALVE, CLOSET CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

2. CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

3. CONNECT NEW LAVATORY, FAUCET, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

4. CONNECT NEW ELECTRIC WATER COOLER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

5. CONNECT NEW ELECTRIC WATER COOLER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

6. CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

7. CONNECT NEW LAVATORY, FAUCET, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

8. CONNECT NEW ELECTRIC WATER COOLER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

9. CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

10. CONNECT NEW LAVATORY, FAUCET, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

11. CONNECT NEW ELECTRIC WATER COOLER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

12. CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

13. CONNECT NEW LAVATORY, FAUCET, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

14. CONNECT NEW ELECTRIC WATER COOLER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

15. CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

16. CONNECT NEW LAVATORY, FAUCET, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

17. CONNECT NEW ELECTRIC WATER COOLER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

18. CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

19. CONNECT NEW LAVATORY, FAUCET, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

20. CONNECT NEW ELECTRIC WATER COOLER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

REFERENCES:

1. SHEET P-001 FOR GENERAL NOTES, LEGENDS, AND DETAILS.

2. CONNECT NEW WATER CLOSET, FLUSH VALVE, CLOSET CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

3. CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

4. CONNECT NEW LAVATORY, FAUCET, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

5. CONNECT NEW ELECTRIC WATER COOLER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

6. CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

7. CONNECT NEW LAVATORY, FAUCET, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

8. CONNECT NEW ELECTRIC WATER COOLER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

9. CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

10. CONNECT NEW LAVATORY, FAUCET, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

11. CONNECT NEW ELECTRIC WATER COOLER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

12. CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

13. CONNECT NEW LAVATORY, FAUCET, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

14. CONNECT NEW ELECTRIC WATER COOLER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

15. CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

16. CONNECT NEW LAVATORY, FAUCET, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

17. CONNECT NEW ELECTRIC WATER COOLER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

18. CONNECT NEW URINAL, FLUSH VALVE, WALL CARRIER, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

19. CONNECT NEW LAVATORY, FAUCET, AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.

20. CONNECT NEW ELECTRIC WATER COOLER AND TRIM. EXTEND EXISTING PLUMBING ROUGHIN AND CONNECT TO NEW PLUMBING FIXTURE.
<table>
<thead>
<tr>
<th>CX.3.3 – FUNCTIONAL PERFORMANCE TESTING (FPT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX.2 – COMMISSIONING DESCRIPTION:</td>
</tr>
<tr>
<td>SYSTEMS IS REQUIRED FOR ALL MECHANICAL SYSTEMS EXCEPT FOR THE FOLLOWING:</td>
</tr>
<tr>
<td>• CONDITIONS UNDER WHICH THE TEST WILL BE PERFORMED.</td>
</tr>
<tr>
<td>COMMISSIONING OF THE MECHANICAL SYSTEMS DISTRIBUTION SYSTEMS SHALL BE TESTED, ADJUSTED, AND BALANCED BY A LICENSED ENGINEER OR A COMPANY OR INDIVIDUAL HOLDING A CURRENT CERTIFICATION FROM A RECOGNIZED TESTING AND VERIFICATION COMPANY.</td>
</tr>
<tr>
<td>• MANUFACTURER'S PRINTED INSTALLATION AND DETAILED START-UP PROCEDURES, FULL SEQUENCES OF OPERATION, O&M DATA, PERFORMANCE DATA AND CONTROL DRAWINGS.</td>
</tr>
<tr>
<td>• FUNCTIONAL PERFORMANCE TEST PROCEDURES USED DURING THE COMMISSIONING PROCESS.</td>
</tr>
<tr>
<td>• RESULTS OF FUNCTIONAL PERFORMANCE TESTS.</td>
</tr>
<tr>
<td>A REPORT OF TEST PROCEDURES AND RESULTS IDENTIFIED AS "FINAL COMMISSIONING REPORT" SHALL BE DELIVERED TO THE BUILDING OWNER AND SHALL INCLUDE THE FOLLOWING:</td>
</tr>
<tr>
<td>• A NARRATIVE OF HOW EACH SYSTEM IS INTENDED TO OPERATE, INCLUDING RECOMMENDED OPERATING AND MAINTENANCE PROCEDURES.</td>
</tr>
<tr>
<td>• A NARRATIVE DESCRIPTION OF THE ACTIVITIES THAT WILL BE ACCOMPLISHED DURING EACH PHASE OF COMMISSIONING, INCLUDING THE PERSONNEL INTENDED TO ACCOMPLISH EACH OF THE ACTIVITIES.</td>
</tr>
</tbody>
</table>
| • VERIFY AND DOCUMENT THAT EQUIPMENT AND SYSTEMS ARE INSTALLED, STARTED AND RECEIVE PROPERLY INSTALLED AND OPERATIONAL. EACH PIECE OF EQUIPMENT SHALL RECEIVE A PRE-FUNCTIONAL CHECKLIST, STARTUP AND CHECKOUT PROCEDURES THAT WERE NOT COMPLETED SUCCESSFULLY. THE CXA OR THE CONTRACTOR SHALL DEVELOP THE PRE-FUNCTIONAL CHECKLISTS. THE CONTRACTOR SHALL PREPARE A REPORT OF TEST PROCEDURES AND RESULTS IDENTIFIED AS "PRELIMINARY COMMISSIONING REPORT". THESE REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROVAL. ALL PRE-FUNCTIONAL REPORTS SHALL BE SUBMITTED TO THE CXA FOR REVIEW AND APPROV
M - FAN SCHEDULE

1. Provide variable-speed drive for all pumps.
2. Provide motor data for pumps.
3. Provide design for pumps.
4. Provide pump data.
5. Provide pump schedule.

Lay-In Ceiling Supply Diffuser

- **Type:** Lay-In
- **Material:** Aluminum
- **Deflection:** 0 degree

BEFORE

- **Notes:**
 - Provide all specifications with details.
 - Provide all specifications with details.

AFTER

- **Notes:**
 - Provide all specifications with details.
 - Provide all specifications with details.

AIR DISTRIBUTION SCHEDULE

1. Provide all specifications with details.
2. Provide all specifications with details.
3. Provide all specifications with details.

BEFORE

- **Notes:**
 - Provide all specifications with details.
 - Provide all specifications with details.

AFTER

- **Notes:**
 - Provide all specifications with details.
 - Provide all specifications with details.
GENERAL NOTES:

1. INSTALL NEW AHU-2 IN IT'S NEW LOCATION. PREPARE DUCTWORK AND PIPING TO CONNECT TO EXISTING SYSTEMS.

2. SCHEDULE A WINDOW TO SHUT DOWN AHU-2 AND CONNECT THE DUCT AND PIPING TO THE NEW AHU-2. PERFORM ALL START-UP OPERATIONS FOR THE NEW UNIT. THE SCHEDULED DOWN TIME OF THE BUILDING AIR SHOULD BE AS BRIEF AS POSSIBLE.

3. DEMO THE OLD AHU-2.

4. INSTALL THE NEW AHU-1 IN THE LOCATION PREVIOUSLY OCCUPIED BY AHU-2.

5. SCHEDULE A WINDOW TO SHUT DOWN AHU-1 AND CONNECT THE DUCT AND PIPING TO THE NEW AHU-1. PERFORM ALL START-UP OPERATIONS FOR THE NEW UNIT. THE SCHEDULED DOWN TIME OF THE BUILDING AIR SHOULD BE AS BRIEF AS POSSIBLE.
GENERAL NOTES:

DEMO EXISTING FAN-POWERED BOX. PRESERVE THE POWER AND PIPING CONNECTIONS FOR REUSE.

DEMO EXISTING VAV BOX.

DEMO EXISTING EXHAUST FAN.

KEYNOTES:

No. Date Description

LEVEL 1F - DUCTWORK - DEMOLITION
GENERAL NOTES:

DEMO EXISTING FAN-POWERED BOX. PRESERVE THE POWER AND PIPING CONNECTIONS FOR REUSE.

DEMO EXISTING VAV BOX.

KEYNOTES:

1. REPLACE VAV BOXES ON WEEKENDS WHEN BUILDING IS UNOCCUPIED, AS MUCH AS POSSIBLE.

INTERRUPTIONS TO EXISTING SERVICES SHALL BE SCHEDULED FOR TIMES OTHER THAN NORMAL OPERATING HOURS (SUCH AS NIGHTS AND WEEKENDS). SUCH INTERRUPTIONS TO SERVICES SHALL NOT BE MADE WITHOUT THE PRIOR WRITTEN CONSENT OF THE OWNER'S REPRESENTATIVE AND PROPER COORDINATION WITH OTHER TRADES. PRE-WORK SHALL BE PERFORMED TO MAKE THE SHUTDOWN PERIOD AS BRIEF AS POSSIBLE.

LEVEL 2F - DUCTWORK - DEMOLITION
INTERRUPTIONS TO EXISTING SERVICES SHALL BE SCHEDULED FOR TIMES OTHER THAN NORMAL OPERATING HOURS (SUCH AS NIGHTS AND WEEKENDS). SUCH INTERRUPTIONS TO SERVICES SHALL NOT BE MADE WITHOUT THE PRIOR WRITTEN CONSENT OF THE OWNER'S REPRESENTATIVE AND PROPER COORDINATION WITH OTHER TRADES. PRE-WORK SHALL BE PERFORMED TO MAKE THE SHUTDOWN PERIOD AS BRIEF AS POSSIBLE.

PHASE WORK ACCORDING TO THE FOLLOWING PLAN:

1. INSTALL NEW AHU-2 IN IT'S NEW LOCATION. PREPARE DUCTWORK AND PIPING TO CONNECT TO EXISTING SYSTEMS.

2. SCHEDULE A WINDOW TO SHUT DOWN AHU-2 AND CONNECT THE DUCT AND PIPING TO THE NEW AHU-2. PERFORM ALL START-UP OPERATIONS FOR THE NEW UNIT. THE SCHEDULED DOWN TIME OF THE BUILDING AIR SHOULD BE AS BRIEF AS POSSIBLE.

3. DEMO THE OLD AHU-2.

4. INSTALL THE NEW AHU-1 IN THE LOCATION PREVIOUSLY OCCUPIED BY AHU-2.

5. SCHEDULE A WINDOW TO SHUT DOWN AHU-1 AND CONNECT THE DUCT AND PIPING TO THE NEW AHU-1. PERFORM ALL START-UP OPERATIONS FOR THE NEW UNIT. THE SCHEDULED DOWN TIME OF THE BUILDING AIR SHOULD BE AS BRIEF AS POSSIBLE.
1. PROVIDE NEW DIFFUSERS IN ALL CEILINGS SHOWN TO BE REPLACED ON
ARCHITECTURAL REFLECTED CEILING DRAWINGS.

2. CONTRACTOR SHALL COORDINATE REMOVAL OF CEILINGS FOR INSTALLATION OF
NEW OPEN WOOD SLAT SYSTEM.

3. ALL DIFFUSERS WITHIN LOBBY SHALL BE INSTALLED ABOVE
NEW OPEN WOOD SLAT SYSTEM. REFER TO
ARCHITECTURAL DRAWINGS FOR TOTAL AREA OF WOOD
SLAT CEILING.

4. CONTRACTOR SHALL COORDINATE REMOVAL OF CEILINGS FOR INSTALLATION OF
NEW OPEN WOOD SLAT SYSTEM.

5. REMOVE EXISTING DIFFUSERS AS REQUIRED AND
REINSTALL EXISTING IN AREAS WITHOUT NEW CEILING.

6. CONSTRUCTION WORK IN ALL OTHER AREAS. REMOVE EXISTING DIFFUSERS AS REQUIRED AND
REINSTALL EXISTING IN AREAS WITHOUT NEW CEILING.
1. PROVIDE NEW DIFFUSERS IN ALL CEILINGS SHOWN TO BE REPLACED ON ARCHITECTURAL REFLECTED CEILING PLANS. ALL EXISTING DIFFUSERS SHALL BE REMOVED AND REPLACED.

2. PROVIDE NEW RETURN DIFFUSERS FOR PLENUM RETURN WHERE SHOWN.

3. REFER TO ARCHITECTURAL DRAWINGS FOR NEW CEILINGS. ALL EXISTING SPLIT SYSTEMS SERVING SLEEP LAB TO REMAIN.

4. PROVIDE NEW DIFFUSERS IN ALL CEILINGS SHOWN TO BE REPLACED ON ARCHITECTURAL REFLECTED CEILING PLANS. REMOVE EXISTING DIFFUSERS AS REQUIRED AND REINSTALL EXISTING IN AREAS WITHOUT NEW CEILING WORK IN ALL OTHER AREAS.

5. PROVIDE NEW RETURN DIFFUSERS FOR PLENUM RETURN WHERE SHOWN.

6. PROVIDE NEW DIFFUSERS IN ALL CEILINGS SHOWN TO BE REPLACED ON ARCHITECTURAL REFLECTED CEILING PLANS. REMOVE EXISTING DIFFUSERS AS REQUIRED AND REINSTALL EXISTING IN AREAS WITHOUT NEW CEILING WORK IN ALL OTHER AREAS.
KEYNOTES:

CONNECT NEW 6" CHWS AND CHWR TO EXISTING 6" LINES. COORDINATE SHUT DOWN WITH FACILITY TO MAKE CONNECTIONS. PROVIDE ALL REQUIRED ISOLATION VALVES TO ALLOW INSTALLATION OF LINES. EXISTING PIPING SERVING EXISTING UNITS WILL REMAIN OPERATIONAL TILL NEW UNITS ARE FUNCTIONING.

CONNECT NEW 2" HEATING HOT WATER LINES TO EXISTING 3" PIPING. PROVIDE ALL REQUIRED ISOLATION VALVES TO ALLOW INSTALLATION OF LINES.

REPLACE EXISTING CHILLED AND HEATING HOT WATER PUMPS WITH NEW. COORDINATE SHUT DOWN WITH FACILITY TO LIMIT DOWNTIME OF BUILDING.
1. NOTE: THIS DETAIL APPLIES TO PRIMARY AND PACKAGED.

2. NOTE: STEAM SIZES UP TO 8".

3. INERTIA PUMP BASE (ASHRAE TYPE C) WITH OPTIONAL INERTIA BASE.

4. TYPICAL SUPPLY DUCT CONNECTION

5. INSULATED PIPE HANGER

6. VERTICAL IN-LINE PUMP FLOOR MOUNTED TYPE

7. TYPICAL RETURN CONNECTION

8. TYPICAL RETURN AIR BOOT

9. VARIABLE VOLUME TERMINAL WITH HEAT

10. TYP DUCT THRU NON RATED WALL ASSEMBLY

11. TYPICAL WALL LOUVER WITH PLenum

12. TEMPORARY EXHAUST FAN AT DUST BARRIER

13. RETURN REGISTER (SEE PLAN DRAWINGS FOR TYPE AND SIZE)

14. INDICATED PER SPEC.

15. SPIN-IN COLLAR WITH VOLUME DAMPER

16. FLAT BLACK

17. INERTIA PUMP BASE (ASHRAE TYPE C)

18. CONC. PAD

19. HEATER AND CONT

20. HORIZ. WIND

21. CONSTRUCTION

22. NOTE: CONSTRUCTION DUST JOINTS WITH MASTIK

23. TAPE OVER OUTER JACKET TO TYPICAL CEILING SUPPLY AREA

24. SUCTION DIFFUSER W/ (OR INTERIA BASE)

25. TYP. ALL PIPE SIZES UNO ADJUSTABLE SOCKETS

26. SEE SPECS FOR ROD SIZES

27. SEE SPECS FOR ROD SIZES

28. 2x4 BLOCKING & SPRING VIBRATION SUPPORT STRAP HANGERS, SECURE TO STRUCTURE. (TYP. OF 4)

29. PRESSURE GAUGE

30. MONITOR NEGATIVE PRESSURE

31. PIPE SUPPORTS FROM DIFFUSER MANUFACTURER

32. P/T PORT W/BLOW AIRFLOW SENSOR

33. BIRDSCREEN

34. AIRFLOW SENSOR

35. MOTOR LIFT RING DOWN VALVE (TYP.)

36. D/P MANOMETER TO SWITCHING CONTROLS PACKAGE

37. STEAM SIZES UP TO 8"

38. PRESSURE INDEPENDENT FLOOR

39. REINFORCE PAD WITH 6x6xW2.9xW2.9 EACH WAY, MINIMUM OF FOUR DOWELS. EMBED

40. CLEARANCE FOR SERVICE MAXIMUM 12".

41. THE LONGEST SPAN BETWEEN MOUNTS

42. SPRING VIBRATION CLEARANCE 1" OPERATING 4" 6"

43. SPIN-IN COLLAR WITH QUADRANT DAMPER PROVIDE 1" STAND-OFF BRACKET ON EXTERNAL DUCT INSULATION (SEE SPECS) FOR HARD CEILINGS

44. QUADRANT DAMPER HANDLE TO BE ACCESSIBLE

45. PRE-INSULATED FLEX DUCT TOP EDGES OF 1" X 45 CHAMFER

46. INSULATION O.D.

47. FLEX CONNECTION TO DIFFUSER

48. MATERIALS AND INSULATION

49. MOTOR FILL WITH CONCRETE

50. NOTE 2

51. ESCAPE HATCH MOUNTS

52. STAND-OFF BRACKET. LOCATE QUADRANT DAMPER HANDLE TO BE ACCESSIBLE

53. MOISTURE PENETRATION

54. INSULATION

55. P/T PORT W/BLOW

56. AIRFLOW SENSOR

57. BIRDSCREEN

58. AIRFLOW SENSOR

59. FLEX CONNECTION TO DIFFUSER

60. MÖLLETT IPW 1/2" DIAMETER TO MATCH AS NEEDED FOR TYPE UNO ROD

61. SPIN-IN COLLAR WITH VOLUME DAMPER

62. PROVIDE 1" STAND-OFF BRACKET ON EXTERNAL DUCT INSULATION (SEE SPECS) FOR HARD CEILINGS

63. SPIN-IN COLLAR WITH QUADRANT DAMPER

64. PROVIDE 1" STAND-OFF BRACKET ON EXTERNAL DUCT INSULATION (SEE SPECS) FOR HARD CEILINGS

65. QUADRANT DAMPER HANDLE TO BE ACCESSIBLE

66. NOTE: THIS DETAIL APPLIES TO PRIMARY AND PACKAGED.

67. MAXIMUM 12".

68. THE LONGEST SPAN BETWEEN MOUNTS

69. SPRING VIBRATION CLEARANCE 1" OPERATING 4" 6"

70. SPIN-IN COLLAR WITH QUADRANT DAMPER PROVIDE 1" STAND-OFF BRACKET ON EXTERNAL DUCT INSULATION (SEE SPECS) FOR HARD CEILINGS

71. QUADRANT DAMPER HANDLE TO BE ACCESSIBLE

72. PRE-INSULATED FLEX DUCT TOP EDGES OF 1" X 45 CHAMFER

73. INSULATION O.D.

74. FLEX CONNECTION TO DIFFUSER

75. MATERIALS AND INSULATION

76. MOTOR FILL WITH CONCRETE

77. NOTE 2

78. ESCAPE HATCH MOUNTS

79. STAND-OFF BRACKET. LOCATE QUADRANT DAMPER HANDLE TO BE ACCESSIBLE

80. MOISTURE PENETRATION

81. INSULATION

82. P/T PORT W/BLOW

83. AIRFLOW SENSOR

84. BIRDSCREEN

85. AIRFLOW SENSOR

86. FLEX CONNECTION TO DIFFUSER

87. MÖLLETT IPW 1/2" DIAMETER TO MATCH AS NEEDED FOR TYPE UNO ROD
SEQUENCE OF OPERATION FOR HOT WATER HEATING SYSTEM

GENERAL SYSTEM OPERATION:

The building's heating system is a closed-loop circulating hot water system. It consists of a boiler, distribution piping, heating coils in air handling units and VAV boxes, and two (2) pumps. The system is controlled by a master controller for staging and control. The controller is capable of integrating auto reset and pressure alarm.

SERVICING SYSTEM OPERATION:

In case of pump failure, as indicated by a current sensor, the pump shall be locked out. The lag or redundant pump shall be started. An alarm shall be sent to the BAS controller, indicating the failed pump. The BAS controller shall be capable of integrating auto reset and pressure alarm.

GENERAL SYSTEM REQUIREMENTS:

- **Reduced Pressure Zone Protection:**
 - See specifications for additional requirements.

- **Electric Heat Circulation Pumps:**
 - The pumps will be cycled for even run times. Boiler shall be provided with a bypass controller for staging and control. The controller shall be capable of integrating auto reset and pressure alarm.

- **Boiler Plant:**
 - The boiler plant is enabled when there is a call for heating via control valve opening. Air to the boiler plant shall be provided by a static inflow of air. The boiler plant shall be capable of providing continuous measured values for the following points at the operator's workstation.

- **Pump Failure:**
 - If a pump is operating and fails, as indicated by a current sensor, that pump shall be locked out. The lag or redundant pump shall be started. An alarm shall be sent to the BAS controller, indicating the failed pump. The BAS controller shall be capable of integrating auto reset and pressure alarm.

PRESSURE OPERATIONS:

- **Pump Operation:**
 - When operating in the heating mode, a 30% lockout is provided. To equalize run times, the pumps shall rotate every seven days (adjustable).

PROVIDE CONTINUOUSLY MEASURED VALUES FOR THE FOLLOWING POINTS AT THE OPERATOR'S WORKSTATION:

- **A. PUMP STATUS (CURRENT SENSOR):**
 - THIS PUMP IS CURRENTLY RUNNING.

- **B. ENTERING AND LEAVING WATER TEMPERATURE (DEGREE F):**
 - MEASURED AT THE INLET AND OUTLET OF THE BOILER.

- **C. SYSTEM SUPPLY TEMPERATURE (DEGREE F):**
 - MEASURED AT THE INLET AND OUTLET OF THE BOILER.

- **D. SYSTEM RETURN TEMPERATURE (DEGREE F):**
 - MEASURED AT THE INLET AND OUTLET OF THE BOILER.

- **E. BOILER STATUS (ON/OFF):**
 - THIS BOILER IS CURRENTLY ON.

- **F. PUMP VFD %:**
 - THIS PUMP'S VFD IS MODULATING AT X%.

- **G. PUMP FAILURE:**
 - INDICATOR THAT A PUMP IS FAILING.

- **H. PRESSURE SENSOR:**
 - MEASURED AT XI PSI.

- **I. PRESSURE:**
 - MEASURED AT XI PSI.

- **J. PILOT PRESSURE (PSI):**
 - MEASURED AT XI PSI.

PREVIOUS AUTOMATIC AIR VENTS AT HIGH POINTS OF SYSTEM:

- **PREVIOUS AUTOMATIC AIR VENTS AT HIGH POINTS OF SYSTEM:**
 - PROVIDE CONTINUOUSLY MEASURED VALUES FOR THE FOLLOWING POINTS AT THE OPERATOR'S WORKSTATION:

- **A. PUMP STATUS (CURRENT SENSOR):**
 - THIS PUMP IS CURRENTLY RUNNING.

- **B. ENTERING AND LEAVING WATER TEMPERATURE (DEGREE F):**
 - MEASURED AT THE INLET AND OUTLET OF THE BOILER.

- **C. SYSTEM SUPPLY TEMPERATURE (DEGREE F):**
 - MEASURED AT THE INLET AND OUTLET OF THE BOILER.

- **D. SYSTEM RETURN TEMPERATURE (DEGREE F):**
 - MEASURED AT THE INLET AND OUTLET OF THE BOILER.

- **E. BOILER STATUS (ON/OFF):**
 - THIS BOILER IS CURRENTLY ON.

- **F. PUMP VFD %:**
 - THIS PUMP'S VFD IS MODULATING AT X%.

- **G. PUMP FAILURE:**
 - INDICATOR THAT A PUMP IS FAILING.

- **H. PRESSURE SENSOR:**
 - MEASURED AT XI PSI.

- **I. PRESSURE:**
 - MEASURED AT XI PSI.

- **J. PILOT PRESSURE (PSI):**
 - MEASURED AT XI PSI.

DIAGRAM:

- **AV:**
 - Automatic or standby (not shown in diagram).

- **HWS:**
 - Hot water supply.

- **HWR:**
 - Hot water return.

- **VFD:**
 - Variable frequency drive.

- **PS:**
 - Pressure switch.

- **FL:**
 - Flow switch.

- **ON/OFF:**
 - On/off switch.

- **DI:**
 - Differential pressure indicator.

- **AV:**
 - Automatic or standby (not shown in diagram).

- **HWS:**
 - Hot water supply.

- **HWR:**
 - Hot water return.

- **VFD:**
 - Variable frequency drive.

- **PS:**
 - Pressure switch.

- **FL:**
 - Flow switch.

- **ON/OFF:**
 - On/off switch.

- **DI:**
 - Differential pressure indicator.

- **AV:**
 - Automatic or standby (not shown in diagram).

- **HWS:**
 - Hot water supply.

- **HWR:**
 - Hot water return.

- **VFD:**
 - Variable frequency drive.

- **PS:**
 - Pressure switch.

- **FL:**
 - Flow switch.

- **ON/OFF:**
 - On/off switch.

- **DI:**
 - Differential pressure indicator.

- **AV:**
 - Automatic or standby (not shown in diagram).

- **HWS:**
 - Hot water supply.

- **HWR:**
 - Hot water return.

- **VFD:**
 - Variable frequency drive.

- **PS:**
 - Pressure switch.

- **FL:**
 - Flow switch.

- **ON/OFF:**
 - On/off switch.

- **DI:**
 - Differential pressure indicator.

- **AV:**
 - Automatic or standby (not shown in diagram).

- **HWS:**
 - Hot water supply.

- **HWR:**
 - Hot water return.

- **VFD:**
 - Variable frequency drive.

- **PS:**
 - Pressure switch.

- **FL:**
 - Flow switch.

- **ON/OFF:**
 - On/off switch.

- **DI:**
 - Differential pressure indicator.
UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

TLC Project No.: F-004790

Address:
4131 N. Central Expressway, Suite 200
Dallas, TX 75204

Phone: 214.540.5900

Website: www.tlc-engineers.com

Consultants:
- **ARCHITECT:** GSO Architects
 - 5310 Harvest Hill Rd. Suite 226, LB 156
 - Dallas, Texas 75230
 - PH: 972.385.9651
 - www.GSOarchitects.com
- **ELECTRICAL ENGINEER:** Yaggi Engineering Inc.
 - 5840 Interstate 20 W, Suite 270
 - Arlington, Texas 76017
 - PH: 817.483.2373
 - www.yaggiengineering.com
- **Texas Registration No. F-9622**

EXISTING ELECTRICAL SCHEDULES

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
</table>

EXISTING MAIN SWITCHBOARD E5.01

EXISTING DISTRIBUTION PANEL DP-1

EXISTING DISTRIBUTION PANEL DP-2

EXISTING PANEL PBA

EXISTING PANEL PBA
<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Description</th>
<th>Panel A</th>
<th>Panel B</th>
<th>Panel C</th>
<th>Panel D</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>07-13-20</td>
<td>100% Construction Documents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel A

- **Description**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE
- **Location**: 11611 WEST MULBERRY STREET
- **Contact**: Texas Registration No. F-9622

Panel B

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel C

- **Description**: ELECTRICAL ENGINEER:
- **Location**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel D

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel E

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel F

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel G

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel H

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel I

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel J

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel K

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel L

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel M

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel N

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel O

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel P

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel Q

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel R

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel S

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel T

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel U

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel V

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel W

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel X

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel Y

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE

Panel Z

- **Description**: ELECTRICAL SCHEDULES
- **Contact**: UNIVERSITY OF NORTH TEXAS TERRILL HALL MEP UPGRADE
Plumbing Equipment Schedule

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Model No.</th>
<th>Amps</th>
<th>Voltage</th>
<th>KVA</th>
<th>Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Domestic Water Pump</td>
<td>1</td>
<td>16.8</td>
<td>230V</td>
<td>3</td>
<td>E24-12</td>
</tr>
<tr>
<td>2</td>
<td>Domestic Water Pump</td>
<td>2</td>
<td>16.8</td>
<td>230V</td>
<td>3</td>
<td>E24-12</td>
</tr>
</tbody>
</table>

Notes:
1. Do not connect to overhead water supply.

Electrical Schedule

Exhaus Fan Schedule

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Model No.</th>
<th>Amps</th>
<th>Voltage</th>
<th>KVA</th>
<th>Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exhaus Fan</td>
<td>E320-0.75</td>
<td>0.75</td>
<td>230V</td>
<td>0.3</td>
<td>E20-01</td>
</tr>
</tbody>
</table>

Notes:
1. Disconnect provided with fan.
2. Verify branch breaker size with mechanical equipment manufacturer prior to submitting panels for review.

Pump Schedule

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Model No.</th>
<th>Amps</th>
<th>Voltage</th>
<th>KVA</th>
<th>Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chilled Water Pump</td>
<td>F320-100</td>
<td>10</td>
<td>230V</td>
<td>5</td>
<td>E20-01</td>
</tr>
</tbody>
</table>

Notes:
1. Chilled and heating pumps are furnished with foot.
2. Verify branch breaker size with mechanical equipment manufacturer prior to submitting panels for review.

Hand Dryer Schedule

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Model No.</th>
<th>Amps</th>
<th>Voltage</th>
<th>KVA</th>
<th>Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hand Dryer</td>
<td>H320-10</td>
<td>1</td>
<td>120V</td>
<td>1.8</td>
<td>E24-12</td>
</tr>
</tbody>
</table>

Branch Circuit Wire Size Schedule

<table>
<thead>
<tr>
<th>Work Done By</th>
<th>Conductors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Refer to NEC 2017 for minimum wire size. Refer to electrical plans and specifications. Refer to mechanical drawings and specifications for piping size and location. Refer to architectural drawings for location of equipment and layout of electrical equipment.

University of North Texas Terrill Hall MEP Upgrade

11611 West Mulberry Street

518073

07-13-20

100% Construction Documents

No.

Date

Description

PWC

RTY