Addendum #1

Please note the following clarifications are hereby made to the aforementioned RFQ.

This addendum is being issued to add the Pre-Bid Sign-In Sheet, PowerPoint, and to answer questions that have been submitted as follows:

Questions and Answers

Question 1: In section 5) Description of the Team, it specifies that the “successful design team will have at least 5 years’ experience with CMAR delivery method” and “design team shall have at least five years’ experience of MEP renovations at universities in actively occupied spaces”. How do you define five years of experience for each of these? Is it per team member or for the team as a whole?

This section is specifically referring to the individuals of the team. List all of the experience for every individual, including subcontractors, you intend to use on this project.

Question 2: In section 3, it says “Include current availability”. How would you like this quantified?

We do not require any specific way of quantifying this. Provide in your own way the best way of illustrating to us the availability of each member of the team.

Question 3: Are existing drawings for site utilities, MEP, and structural systems available?

Yes, GIS information on the site utilities for this building is included in the response.

Question 4: We were wondering given the primary MEP scope if MEP could serve as prime and use an Architect (MWBE) to fulfill most of the HUB requirements on this project?

This is acceptable.

Question 5: Could we please be provided a copy of the assessment report UNT prepared for Curry Hall?

Yes, this is included in this response.
Question 6: Will the new fire sprinkler scope require a full upfront design, or will it be a performance-based design where we provide specifications only for a sprinkler contractor to base their design on?

A performance based design is acceptable but it must include any design for location of fire protection equipment and piping such as a dedicated pump room, FDC connections, and building riser locations, etc.

Question 7: Will the new fire alarm scope require a full upfront design, or will it be a performance-based design where we provide specifications only for an alarm contractor to base their design on?

The fire alarm is existing and the design will only require connecting new equipment to the system.

Question 8: Will we be required to execute the detailed cost estimate, or will this be done by the CMAR?

You will be required to provide a detailed cost estimate at several design submittals.

Question 9: On the call, UNT requested a “25-yr” MEP system. Can you elaborate exactly what that means?

We want the installed equipment and materials to last a long time since UNT owns these buildings and intends to keep them indefinitely. Long average life expectancies of these items are a priority.

Question 10: Are life-cycle cost analyses (LCCAs) required to show which HVAC system is the best for a 25-yr life?

These analyses will be part of the decision on the direction the MEP design will go.

Question 11: The RFQ mentions landscape and civil work. If these are required, can you elaborate on that scope?

The scope of these items will be limited to repair work if the MEP scope strays outside the building and disturbs exterior landscaping or grading.

Question 12: Are commissioning services required and to be done by others?

UNT will procure a Commissioning/TAB team independently of the design or CMAR team. All parties will be required to work with these firms.

Question 13: Is it safe to assume that UNT prefers that the new HVAC system use the existing chilled water and hot water systems and that alternative systems are not preferred?

That is correct.

*Attachments: A Curry Hall Assessment
B Curry Hall Utilities*

*End of Addendum*

Monica Madrid
Issued by
October 15, 2020
Date

ACKNOWLEDGEMENT: Please acknowledge receipt of this addendum by initializing the appropriate line on the Addenda Checklist, Section 4 of the RFP.
1. Introduction
2. General Building Description
3. Building Analyses
 3.1. Exterior Structure
 3.1.1. Walls, and Structural Foundation
 3.1.2. Roof Construction
 3.1.3. Exterior Windows and Doors
 3.2. Interior Structure
 3.3. Conveying System
 3.4. Plumbing
 3.4.1. Domestic Water Distribution
 3.4.2. Plumbing Fixture
 3.4.3. Sanitary and Storm Drainage
 3.5. Heating, Ventilating, and Air Conditioning
 3.5.1. Energy Supply
 3.5.2. Heat Generating System
 3.5.3. Cooling Generating System
 3.5.4. Air Distribution Systems
 3.5.5. Other HVAC Systems & Controls
 3.6. Life and Fire Safety
 3.7. Electrical
 3.7.1. Distribution Systems & Back-up Generator
 3.7.2. Lighting & Fire Protection System
 3.8. Equipment
 3.9. Indoor Environmental Quality
1. Introduction

Facilities, Planning, Design & Construction conducted an in-House assessment to provide a building condition report of Curry Hall, 200 Ave. A, Denton, Texas. The primary interest of FPDC is to document the existing condition of the building and to make a comparison as it relates to the 2015 International Building Codes, which is the current building code adopted by University of North Texas System. Curry Hall is in need of Mechanical, Electrical, and Plumbing improvements. In addition, various environmental issues such as asbestos containing material (ACM) and mold are of concern.

Assessment in this report are based on the following work:

- Observational building inspection with key building managers
- Comfort questionnaires distributed to building occupants
- Review of historical data pertaining to the building including past conditional assessment reports, major capital expenditure projects records from TMA and construction as-built drawings and specification
- Visual, non-intrusive review of major building components including the following:
 - Building Envelope
 - MEP Systems
 - Structural & Architectural Elements
 - Site Elements
 - Life Safety and Fire Protection Systems
2. Executive Summary
Curry Hall was constructed in 1912 and it is located at 200 Ave. A, Denton, Texas. Curry Hall has undergone several renovation and currently it is found in fair condition overall, with some major issues typical of a building that is over hundred years old. Some of the existing components are buildings original. Some issues have been identified within the building and site that might significantly affect the function of the building. Any items, which are not in use after the renovation, should be demoed and capped out.

2.1. Critical Risk Issues

* Heating, Ventilation and Air Conditioning Equipment*

The HVAC equipment in the building has exceeded its expected useful life by 3 years and is in poor shape. The entire supply and return air ductwork is poorly designed. Units are found in the attic and above ceiling. Hydronics piping are building originals. BAS controls needs to be replaced.

* Life Safety and Fire Protection System*

Voice Alarm System by Honeywell is installed in the building. Curry Hall has no wet sprinkler system. Consider adding a complete fire suppression system at each floor to improve life safety.

* Electrical Equipment*

Electrical equipment in the building was renovated and replaced in 1991. All the equipment are outdated and exceeded its expected useful life. Additionally, much of the equipment in the basement has rusted due to moisture. All equipment needs to be grounded properly.

* Lighting and Branch Wiring*

The branch wiring devices includes switches, receptacles and other devices. All branch wiring and lighting was last renovated and replaced as MEP renovation of 1991. All circuits has shared neutral which is a violation of a code. The interior & exterior lighting in the building are old and does not meet current standards. Consider complete replacement of lighting and branch wiring devices.
2.2. Moderate Risk Issues

Plumbing
Most of the sanitary and vent piping is buildings original and the entire piping in the building has exceeded its expected useful life by 60 years. Consider renovating entire first and second floor. Third floor restroom is ADA compliant.

Interiors
Most of the interior finishes such as doors, windows, carpet, signage and ceilings were replaced in 1991. Consider replacement of the damaged doors, ceiling and re-caulking the windows.

Conveyance
The conveyance system was installed in 1991 as part of MEP renovation. It needs replacement of the cabin and the hydraulic motors.

2.3. Low Risk Issues

BAS system
The Building Automation System of Curry Hall is iNET supervised by Building Struxureware. It was installed in 2011 and controls needs to be updated in the next 5 years.

HVAC & Electrical
Curry Hall ventilation system, chilled & heating water pump, security system & exit sign will require replacement in the next 5 years.
3. Description
The Building information is summarized in the table below. Information that is more
detailed may be found in the various section of the report and appendices.

<table>
<thead>
<tr>
<th>Building Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Building</td>
</tr>
<tr>
<td>Construction Type</td>
<td>IBC – Type II – B</td>
</tr>
<tr>
<td>Last Renovation</td>
<td>1991</td>
</tr>
<tr>
<td>Historical Category</td>
<td>None</td>
</tr>
<tr>
<td>Use</td>
<td>Classroom/Offices</td>
</tr>
<tr>
<td>Architects</td>
<td>Wilson, Patterson & Ass. – Architects & Engineers</td>
</tr>
<tr>
<td>Floors</td>
<td>Three-Level</td>
</tr>
<tr>
<td>Ownership</td>
<td>UNT</td>
</tr>
<tr>
<td>Year Constructed</td>
<td>1912</td>
</tr>
<tr>
<td>Usable area</td>
<td>15,834</td>
</tr>
<tr>
<td>Operational Hours</td>
<td>7:00 -10:00 PM - Weekdays</td>
</tr>
<tr>
<td>Gross SF area</td>
<td>27,894</td>
</tr>
<tr>
<td>Operational Hours</td>
<td>7:00 -6:00 PM - Weekend</td>
</tr>
<tr>
<td>Building Houses</td>
<td>College of Visual Arts & Design / Department of Teach North Texas</td>
</tr>
<tr>
<td>Classroom / Lecture rooms</td>
<td>6</td>
</tr>
<tr>
<td>Conference Room</td>
<td>1</td>
</tr>
<tr>
<td>Restroom</td>
<td>6</td>
</tr>
<tr>
<td>Utility/Mechanical</td>
<td>7</td>
</tr>
<tr>
<td>Laboratories</td>
<td>6</td>
</tr>
<tr>
<td>Offices</td>
<td>22</td>
</tr>
</tbody>
</table>

Location

<table>
<thead>
<tr>
<th>Address</th>
<th>200 Avenue A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>Denton</td>
</tr>
<tr>
<td>State</td>
<td>Texas</td>
</tr>
<tr>
<td>Zip Code</td>
<td>76201</td>
</tr>
</tbody>
</table>

Table 1: Building Details
Figure 1: Campus Map

Figure 2: Building Map
4. Building Analyses

4.1 Exterior Structure

4.1.1. Structural Foundation and Exterior Walls
Curry Hall was originally constructed in 1912 and has a gross area of 27,894 square feet. The building is located at 200 Avenue A, Denton, Texas and it houses College of Visual Arts, Design, and Department of North Texas Teach.

Curry Hall has been renovated several times. First major renovation was held in 1971 and then in 1991. The building appears to be in good condition, since it was renovated.

The building foundation is a combination of reinforced concrete block and concrete walls supported on reinforced concrete strip footings.

The foundation components are performing adequately based on visual review of finished and exposed walls. The building superstructure is steel structure framed supported on concrete foundation wall. It is observed that exterior wall has been damaged due to moisture at some location. The foundation walls are in fair condition overall with localized cracks and deterioration. No structurally significant settlement was apparent to causal observation. The building's exterior structure has not undergone any major renovation since it was built.
Curry Hall exterior walls are masonry bricks on CMU blocks with sill and decorative cast stone assemblies at the main entry vestibule and entrance, window and doors. The walls are assumed to have rigid insulation layers. No cyclical maintenance has been reported in the last 10 years with a combination of masonry brick and CMU block with insulated systems on the exterior walls. Architectural columns are found in excellent condition at the entrance of the building.

Figure 4: Masonry bricks on CMU Blocks with sill

Figure 5: Architectural Columns and Decorative Cast Stone
4.1.2 Roof Construction
Curry Hall has typical low-sloped roof, which is composed of a multi-ply modified bitumen built-up roof with two plies composed of Tremlastics SP and Alumanation 301 on Asphalt base coat. The roof has a metal deck under the lightweight insulating concrete. Current roofing was installed in 2017 and has approximately 12 years of remaining life with continued maintenance and spot patching. The roofing system appears in excellent condition.

Figure 6: Sloped modified bitumen Built-up roof with two plies
4.1.3 Exterior Windows & Doors

The building exterior windows and doors appears to be in poor condition. The building’s exterior windows are aluminum framed single-hung window with insulated low-e coating glass. It is observed that windows sealing and window tint needs to be redone. Overall, windows glass are in fair condition.

Curry Hall has three main entrance located at East and West Side. Each entrance consist of out swinging door. The building exterior doors are aluminum framed with low-e coating insulated glazed glass and appears in poor condition.

Closures and E-lock are not operating adequately. In addition, aluminum frames are damaged and rusted and it requires repair and painting on the existing frames. The closure on the doors and entire E-lock system at the exterior doors need to be replaced to secure the building.

Figure 7: Windows & Exterior Hallow Metal Doors
4.2 Interior Structure

Curry Hall interior structure appears to be in fair condition based on visual inspection. The building is two-story high structure, above the first floor level. Each floor divide by a concrete slab on grade and interior columns supporting each floor. All occupied space are separated with a 6 1/8" partition wall composed of Gypsum wallboard and metal stud layers. The classrooms and office at Curry Hall are covered with carpet, which is mostly buildings original. The entire third floor is covered with VCT tile. Ceiling tile are 2x4 grids with suspended acoustical tile. The ceiling tile has some minor water spot in few locations, few missing tile and shows signs of sagging due to lack of humidity control. The ceiling tiles appears to be in fair to poor condition.
4.3 Conveying System

Curry Hall has a hydraulic elevator that serves three levels. The hydraulic elevator is periodically maintained by ThyssenKrupp elevator. This equipment is served by an electro-hydraulic power unit with a motor capacity of 25 HP and powered with 120/208Y Volt. Elevator power unit is manufactured by Schindler Elevator Corporation. The power unit is found in good condition.

The elevator cabin is in poor condition and needs to be replaced. The Elevator is in code according to NFPA.

Figure 11: Elevator Cabin

Figure 12: Elevator controls

Figure 13: Elevator electro-hydraulic power unit
4.4 Plumbing

Curry Hall plumbing is buildings original. The plumbing system assessment is strictly based on site observation and as-built drawing review and interviews with the staff.

4.4.1 Domestic Water Distribution

The domestic water is supplied to Curry Hall by the city of Denton with 6” connection located in between the west side of Curry Hall and Physic Building. The cold water main passes through a 2” meter with gate valve entering to the building with 2” cast iron piping. The existing piping system throughout the building should be inspected, as majority of it is buildings original and over 100 years.

Gate valve is present at the water service entry and should be inspected as well. No reduced pressure zone backflow preventer is found in the building. The domestic hot water supply to the building is provided by State Select Electric Storage Tank Water Heater. The water heater rated capacity is 38 US Gallons and maximum working pressure is 150 PSI.

The electric storage water heater serves all three floor with copper piping. Copper pipes are used for water supply distribution.
4.4.2 Plumbing Fixture

Curry Hall has six common restroom with combination of vitreous china tank and flush valve. As part of Historical MEP renovation in 1991, all urinals and lavatories were replaced. Lavatories are hung with hot and cold faucet lever handles. Restrooms are not ADA compliant and are found in poor condition. Drinking fountains are stainless steel electric cooler, which are wall hanged and are located in each floor. The drinking fountain appears to be in fair condition but should be replaced and labels according to the IPC 410.1. ADA standards for fixtures or clearances in all restrooms should be verified.
4.4.3 Sanitary & Storm Sewer

Curry Hall sanitary sewer piping is connected to the main sanitary sewer piping provided by the City of Denton. The main sanitary sewer piping is 6” Cast Iron Scheduled 40 and it is located on east side of the building on the West Mulberry Street. Sanitary sewer appears to be original to the construction. The building sanitary piping is CPVC schedule 40. The sanitary piping should be inspected due to the life expectancy of the piping system. Curry Hall has one sump pump on the east entrance of the building and it ties into the main storm line provided by the City of Denton located on West Mulberry Street.

Figure 18: Sump Pump – East Entrance

Figure 19: Sanitary sewer piping – CPVC Schedule 40
4.5 Heating, Ventilation & Air Conditioning

The Heating, Ventilation & Air Conditioning at Curry Hall was replaced and refurbished in 1991 by TRANE under Maloney & Associates. The air-handling units appears to be in poor shape and has exceeded its expected useful life by three years. Exhaust fans are located on the roof and appear to be in good condition. The Exhaust fans only serve the restroom. Hydronics piping appears to be in fair shape based on visual inspection of the exterior of the pipe.

4.5.1 Energy Supply

The energy supply to Curry Hall is provided with a four-pipe distribution system. The Hydronics system was installed in 1970 as Historical Building Renovation. The four-pipe distribution system appears to be in fair condition based on visual inspection of the exterior of the pipe. The piping is insulated with fiberglass pipe insulation and jackets. The valves, meter and actuators appear to be in fair condition, Curry Hall cooling and heating is provided by Central Plant chillers and boiler located on the west side of Curry Hall.
4.5.2 Heating and Cooling Generating System

Currently, the north central plant boiler system and chiller system provides both heating and cooling to Curry Hall. The hot water and chilled water from the central plant passes through a secondary hot water and two-chilled water pump located in the first floor electrical/mechanical room. The secondary hot water pump is rated at 3 HP with 1760 RPM. The hot water pump is manufactured by Goulds pump and its motor is manufactured by Baldor Reliance. The pump was manufactured in 1991. The pump is beyond its expected useful life 3 years, and appears to be in poor condition. The valve, meters and actuator at the pump has exceeded their expected useful life by several years. UNT should consider the hot water pump for replacement.

Figure 22: Secondary Hot Water Pump – Room 111

Figure 32: Heating Water Coil – Room 111
The secondary chilled water pump is rated at 15 HP with 1765 RPM. The chilled water pump is manufactured by Bell & Gossett and its motor is manufactured by Baldor Reliance. The back-up chilled water pump manufactured by Taco pumps is rated at 15 HP with 3450 RPM. The secondary chilled water pump appears to be in good condition and the back-up chilled water pump appears to be in poor condition and over its expected useful life. The valves, meters and controls at the unit appears to be in fair condition.
4.5.3 HVAC Distribution System

Curry Hall cooling and heating is provided by a combination of nine single-zone and multi-zone air-handling units. Air handling units at Curry Hall are a combination of Blow-thru and Draw-thru units with a horizontal discharge. These units are manufactured by TRANE. Curry Hall has two return air fan associated to two multi-zone air-handling units. Curry Hall’s historical building renovation took place in 1991 with the refurbishment of the nine Air handling units. Units appears to be in fair condition but exceeded their expected useful life by almost 4 years. Some rusted sheet metal are observed on the units.
4.5.4 Other HVAC Systems & Building Automation System

The building automation system at curry hall is a combination of Johnson Controls and Schneider Controls. Controls are outdated and beyond their expected useful life. A compressor is found in the basement that serves pneumatic controls for the HVAC units. All HVAC automated system are managed by Building Operation Workstation. Controls are not working properly and should be replaced the entire system immediately.

Figure 37: Air Compressor – Room 108

Figure 38: Refrigerated Air Dryer – Room 108

Figure 39: Pneumatics Controls on AHU#6
4.6 Life safety and Fire Protection System

Curry Hall has fire alarm system installed in the building and it is monitored by Honeywell panel. The fire alarm system was installed in 1991 and refurbished in 2003. It appears to be in good condition. Currently, the fire alarm control panel Notifier NSF2-3030 is designed with 4.5 Amp-Hr. The fire alarm system has its own battery backup of 24VDC.

Curry Hall does not have a sprinkler system. It is highly recommended that fire sprinkler systems be installed for the building. A new water service entrance will likely be required for the installation of the sprinkler system.

![Figure 40: Notifier NSF2-3030 – Honeywell Panel](image1)

![Figure 41: Battery Back-up 24 VDC for Honeywell Panel](image2)

<table>
<thead>
<tr>
<th>Floor</th>
<th>Fire Alarm Speaker/Strobe</th>
<th>Strobe Unit CLG</th>
<th>Smoke Detector</th>
<th>Speaker/Strobe</th>
<th>Manual Pull St.</th>
<th>Heat Det.</th>
<th>Smoke Duct D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>10</td>
<td>7</td>
<td>20</td>
<td>0</td>
<td>8</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2nd</td>
<td>6</td>
<td>8</td>
<td>22</td>
<td>5</td>
<td>7</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3rd</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 3: Fire Alarm Units installed at Curry Hall
4.7 Electrical Systems

The 27,411 SF Curry Hall main electrical power is provided from a pad-mounted transformer is located on the west side of the building. The transformer is energized from a 13.2kV underground medium voltage distribution system from the switch “P38-G” of 20 AMPS. The transformer is 225kVA, 208Y/120V, 3-phase and four wire with shared neutrals and common ground. The existing transformer is manufactured by Westinghouse with a cooling system of mineral oil. The transformer was replaced in 2005.

The service runs via EMT 4” conduit from the transformer to the safety switch located in the mechanical/electrical room on the first floor. The switch and the transformer are in good shape and provided with quarterly maintenance.
4.7.1 Distribution System & Back-up Generator

Curry hall electrical distribution system is served by a Main Distribution Panel board that is manufactured by SIEMENS with NEMA 1 enclosure. The panel board is rated at 1000 amp and 120/208Y volts with 3-phase 4 wire braced at 65 kAIC. The MDP has six breaker of 100amps, one breaker of 125 amp and four breaker of 200 amps each with three poles.

The main distribution panel is located on the first floor Mechanical/Electrical room. The distribution system and branch wiring were replaced in 1991 as a part of MEP renovation. Yaggi Engineering suggested upgrading the entire electrical distribution system and bringing up to code. There are nine panels associated to the building with several breakers of 20, 25 and 35 amps that were installed in 1991.
4.7.2 Emergency Power, Interior & Exterior Lighting and Equipment

Curry Hall has no emergency generator installed for emergency lighting on the building. The exit sign emergency light combo has its 24VDC battery backup. The interior lighting at Curry Hall consists of 120 volts T-8 fluorescent fixtures. The interior lighting fixtures is in poor condition on first and second floor. The lighting control are outdated and in poor condition. The first and second floor at curry hall needs to be brought up to code.

The third floor was remodeled in 2016 with LED lights that complies with IECC 2015; however, no lighting controls were installed.

Curry Hall has an air compressor installed in Mechanical/Electrical room on the first floor room 111. The compressor is manufactured by CURTIS and motors by Baldor Industries. The compressor is used for pneumatic proportional control for AHU system. It was installed in 1991 during the MEP renovation. It is found in fair condition. The refrigerated air dryer is connected to the compressor to cool the compressed air and remove moisture. The air dryer is manufactured by Hankinson International.
4.8 Indoor Air Quality

The Outdoor Air is a key measure of air quality because it dilutes indoor contaminants. The level of carbon dioxide (CO2) is a good measure of ventilation rate because it is a trace gas produced by occupants. The CO2 levels for the building below the threshold of 1000 parts per million (ppm) indicates good overall air quality.

While conducting on site interviews, the office staff have noted that thermal comfort is a major concern on third floor. Thermal comfort is an area of focus for future renovation due to outdated systems. The average temperature observed during the field visit were 70.3 °F, humidity is an issue at Curry Hall. It is observed around 60-70%, which might be a concern issue for asbestos containing materials.

4.8.1 Air Quality & Thermal Comfort

Air quality measurements were taken at select areas in the building. Values measured were levels of CO2, relative humidity and air temperature. The data was collected on May 9, 2019.

Table 4: Average Estimate of Relative Humidity & CO2 emission

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Average</th>
<th>Target</th>
<th>Common Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Dioxide CO2</td>
<td>488 CO2 PPM</td>
<td><1000 CO2 PPM</td>
<td>Occupants</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>67.15 %</td>
<td>30-50%</td>
<td>Outdoor Air, Plumbing Fixtures, Occupants</td>
</tr>
</tbody>
</table>

Data was collected at Curry Hall on different location. The following table shows the data collected:

Table 5: Indoor Air Quality Measurement Data

<table>
<thead>
<tr>
<th>Reading</th>
<th>CO2 (PPM)</th>
<th>T(°F)</th>
<th>RH %</th>
<th>Reading</th>
<th>CO2 (PPM)</th>
<th>T(°F)</th>
<th>RH %</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>458</td>
<td>69.5</td>
<td>70.9</td>
<td>R-7</td>
<td>505</td>
<td>71.3</td>
<td>65.3</td>
</tr>
<tr>
<td>R-2</td>
<td>575</td>
<td>69.6</td>
<td>69.8</td>
<td>R-8</td>
<td>519</td>
<td>70.6</td>
<td>66.6</td>
</tr>
<tr>
<td>R-3</td>
<td>450</td>
<td>69.5</td>
<td>69.3</td>
<td>R-9</td>
<td>436</td>
<td>69.2</td>
<td>65.6</td>
</tr>
<tr>
<td>R-4</td>
<td>524</td>
<td>70</td>
<td>73.2</td>
<td>R-10</td>
<td>467</td>
<td>70.4</td>
<td>64.8</td>
</tr>
<tr>
<td>R-5</td>
<td>477</td>
<td>71.1</td>
<td>64.5</td>
<td>R-11</td>
<td>436</td>
<td>70.2</td>
<td>64.2</td>
</tr>
<tr>
<td>R-6</td>
<td>459</td>
<td>70.6</td>
<td>66</td>
<td>R-12</td>
<td>560</td>
<td>71.7</td>
<td>65.7</td>
</tr>
</tbody>
</table>
Figure 49: CO₂ emission vs Readings taken at Curry Hall

Figure 50: Temperature vs Relative Humidity Trending at Curry Hall
Pre-Bid Meeting
RFQ752-21-244911-MM
Curry Hall MEP Upgrade
October 5, 2020 at 3:30 PM local time
Agenda

• Introductions
• Project Description
• Submission Requirements
• HUB Subcontracting Plan
• Selection Process/Schedule
• Requirements
• Questions
Project Description

• Curry Hall was originally constructed in 1912 and has a gross square footage of 27,894 square feet. The building has been renovated several times including full renovations in 1971 and 1991.

• MEP systems for all areas of the building are to be upgraded based on current assessments of these systems. All work will bring these systems up to meet current codes and life safety requirements, improve energy efficiency, improve indoor air quality, and allow for the system to last another 25+ years. Design services will be needed to renovate six (6 – Rooms: 103, 104, 203, 201, 210, and 211) existing classrooms to install new carpet, furniture, ceiling lights, and audio/visual equipment.

• The building does not currently have a fire protection system. This project will install a new fire protection system including fire pump and all accessories.

• The design phase is intended to be completed by summer 2021 with construction following in the fall of 2021. Projected construction to be completed by Fall of 2022.
Submission Requirements & Criteria

Submission Requirements (as listed in 002400-2 & 02400-3)

• Experience and capabilities will be evaluated through a review of both completed and ongoing projects. The key area of interest for which project data should be submitted is MEP renovations of similar scope, cost, and complexity.

• Provide detailed date for up to three (3) projects on which the firm and team members have been involved in providing services and which best illustrates current experience and capabilities relevant to this project.

• For all other projects relevant to the project scope and for each member of the engineering team (as appropriate), provide a list of project names, project sizes, project costs, project dates, owner contract information with further illustrates experience and capabilities relevant to this project. Include current availability.

• Your approach

• Description of the Team - Responses should include all key team members and sub-consultants for Design and Construction Administration services. Please designate in your response team members and sub-consultants' role and duration during the project.
Submission Requirements & Criteria

Evaluation Criteria (as listed in 002400-6)

Firms will be selected on the basis of experience and qualifications using the following criteria (many of the criteria are subjective):

1. Past relevant experience of team including size and type of relevant projects specifically chilled water and science/engineering lab exhaust applications, with client references.

2. Past relevant experience of Project Management Team including proposed major subcontractors.

3. Ability to complete project in allotted time frame in an occupied educational building (current workload and availability) of the individuals assigned to your team.

4. Recent university experience or other relevant experience.

5. The firm’s ability to monitor construction cost estimates during the design process to ensure UNTS’s construction budget is not exceeded.

6. Quality and responsiveness of the RFQ submittal.

7. Local representation will be evaluated on the ability to respond quickly to issues during the duration of the project especially throughout the construction phase.
HUB Agenda

• What is a Historically Underutilized Business (HUB)?
• The Subcontracting Plan (HSP) and why we do one
• How to create a HSP
What is a HUB?

A HUB

• is certified by the State of Texas

• is a for-profit entity that has not exceeded the size standards prescribed by 34 TAC §20.23

• has its principal place of business in Texas
Why we do an HSP

• Texas state law
 ➢ Government Code Chapter §2161.252
 ➢ Administrative Code §20.14

• Demonstrates a “good faith effort” to diversify business opportunities.

Note: Responses that do not include a complete HSP must be rejected.
HSP Quick Checklist

Use this tool to determine which pages and sections must be completed, based on the unique situation and plan of the submitting company.

HSP, Page 1

- Contains the HUB goals established by the State of Texas
- Ensure Section 1 is thoroughly completed and accurate

Note: UNTS’ HUB Dept. will verify the vendor ID and HUB status of the submitting company.
• Declare all subcontracting opportunities on this page.

• List by opportunity type, not by vendor name (that comes later).

• The choices at the bottom will determine which “method” the submitting company will use to demonstrate a good faith effort.

• There is an addendum page to use if the submitting company identifies more than 15 subcontracting opportunities.
• If the submitting company is not subcontracting any of the work, they must explain how the company will perform the entire contract with its own employees, materials, etc.

• By signing in the space provided, the designated representative of the submitting company affirms the contractual obligations within the HSP.

• This should be signed by a senior employee familiar with the project.
HSP, Attachment A

• Used if the submitting company intends to utilize only certified HUBs, or if they meet the State’s HUB goals.

• Complete one page per subcontracting opportunity.

• The sum of the percentages (%) must match the percentage listed on Page 2 for each opportunity.

• **Note:** UNTS’ HUB Dept. will verify the vendor ID and HUB status of the submitting company.
• Used if the submitting company intends to use any non-HUB businesses, or if they do not meet the State’s HUB goals.

• Complete one page per subcontracting opportunity.

• Minimum of 3 HUB vendors and 2 related trade organizations.

• **Note:** UNTS’ HUB Dept. will verify the vendor ID and HUB status of the submitting company.
• The submitting company will list the selected vendor.

• Complete justification as to why a HUB vendor was not selected must be included.

• The sum of these percentages must match the percentages listed on Page 2 for each opportunity.

• **Note:** UNTS’ HUB Dept. will verify the vendor ID and HUB status of the submitting company.
HUB Subcontracting Opportunity Notification

• Only one of many options to distribute information.

• All methods of distribution must provide complete information.

• Respondents must be given 7 working days to reply/respond.

• All contact information must be current and accurate.
How to Find HUB Vendors

• Visit the State of Texas Centralized Master Bidders List (CMBL) at: https://mycpa.cpa.state.tx.us/tpasscmblsearch/index.jsp

• Contact associated trade organizations, such as:
 ➢ DFW Minority Supplier Development Council
 http://dfwmsdc.com/
 ➢ Regional Hispanic Contractors Association
 http://regionalhca.org/
 ➢ US Pan Asian American Chapter-Southwest
 http://uspaacc-sw.org/
 ➢ Women’s Business Council-Southwest
 http://www.wbcsouthwest.org/
Possible Reasons for Rejection of an HSP

• Not signed
• Included in the same envelope as, or co-mingled with, the bid response.
• Company information is incorrect and/or incomplete.
• No justification for failing to meet State HUB usage goals.
• Not providing required information, if self-performing.
• Section 2 does not match Methods A or B.
• Respondents not allowed 7 working days.
• No documentation showing good faith effort.
• Missing information that the UNTS HUB Dept. is not allowed to fill in for the submitting company.
HSP Reminders

• The submitting company’s HSP is a binding document.

• Contract language requires the submitting company to abide by the terms of the original HSP.

• The HSP can be revised only with the consent of the UNTS HUB Dept. The same good faith effort requirements will apply.
HUB or HSP Assistance

• The UNTS HUB Dept. is available to help
 ➢ Aurika Weaver-White, HUB Specialist, phone 940-369-5580
 ➢ Greg Obar, Director of Operations, phone 940-369-5647
 ➢ Email: hub@untsystem.edu
 ➢ Web: http://www.untsystem.edu/hr-it-business-services/about-hub

• Fillable electronic form available at:
Requirements

• Qualifications and HSP are due October 29, 2020 at 2:00 PM local time
• Envelope/Container must be clearly marked with the proposal number and name.
• Qualifications & HSP must be in separate sealed and marked envelopes.
• Walk-thru(s) of the building will be on October 6th & 7th from 1:00 PM to 4:00 PM scheduled by appointment only with Carl Parsons at carl.parsons@unt.edu. Due to COVID-19 restrictions, tours will be limited to four (4) persons at a time. All contractors/vendors/UNT employees must wear face covering at all times while in the building and on UNT campus.
• Pages should be printed one-sided on 8 ½” X 11” paper
• Submit one (1) paper loose unbound original and one (1) flash drive. Note that information on the paper copy must match the electronic copy. Paper copy must have original/wet signature. QR codes will not be accepted as part of you response.
• Due to COVID-19 all responses must be delivered via UPS/FedEx ONLY with no hand deliveries to: Attention: Monica Madrid – Business Services Center, Woodhill Square, 1112 Dallas Drive, Suite 4000, Denton, TX 76205
Solicitation Questions

• All questions should be directed to Monica Madrid, Senior Buyer in Procurement. Please email questions to: monica.madrid@untsystem.edu

• Questions must be received by October 12th by 2:00 PM

• Questions & answers will be posted to UNT System & Texas State website by October 15, 2020 by 5:00 PM

• Questions & answers and any addendums will be posted to: http://www.untsystem.edu/hr-it-business-services/procurement/purchasing/bid-opportunities and http://www.txsmartbuy.com/sp
Pre-Bid Meeting

Questions and Answers
<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kristen Dobbins</td>
<td>Sunland Group, Inc.</td>
<td>kdobbins@sunlandgrp.com</td>
</tr>
<tr>
<td>Dennis Blackwood</td>
<td>Glumac Engineering</td>
<td>dblackwood@glumac.com</td>
</tr>
<tr>
<td>Lauren Brown</td>
<td>VLK Architects</td>
<td>lbrown@vlkarchitects.com</td>
</tr>
<tr>
<td>Jared Higgins</td>
<td>Parkhill</td>
<td>jhiggins@parkhill.com</td>
</tr>
<tr>
<td>Monica Huynh</td>
<td>B&H Engineers, Inc.</td>
<td>mhuynh@bandhengineers.com</td>
</tr>
<tr>
<td>Kate Evans</td>
<td>Sunland Group, Inc.</td>
<td>marketing@sunlandgrp.com</td>
</tr>
<tr>
<td>Leslie Ward</td>
<td>Half Associates , Inc</td>
<td>lward@halff</td>
</tr>
<tr>
<td>Robert Croysdale</td>
<td>GSR Andrade Architects</td>
<td>rcroysdale@gsr-andrade.com</td>
</tr>
<tr>
<td>Carlo Taddei</td>
<td>JQ Infrastructure</td>
<td>ctaddei@jqeng.com</td>
</tr>
<tr>
<td>Kyle Villarreal</td>
<td>K-Air Corporation</td>
<td>estimate@k-aircorporation.com</td>
</tr>
<tr>
<td>Darren Habetz</td>
<td>Ramirez-Simon Engineering, LLC</td>
<td>dkhabetz@ramirez-simon.com</td>
</tr>
<tr>
<td>Mike McKee</td>
<td>Campos Engineering</td>
<td>mmckee@camposengineering.com</td>
</tr>
<tr>
<td>Carly Orewiler</td>
<td>GSR Andrade Architects</td>
<td>corewiler@gsr-andrade.com</td>
</tr>
<tr>
<td>Mark Hayes</td>
<td>WJE (Fire Protection / Life Safety)</td>
<td>mhayes@wje.com</td>
</tr>
<tr>
<td>Ravi Maniktala</td>
<td>BranchPattern, Inc.</td>
<td>Ravi.m@branchpattern.com</td>
</tr>
<tr>
<td>Troy Skillern</td>
<td>DFW Consulting Group</td>
<td>tskillern@dfwci.com</td>
</tr>
<tr>
<td>Darren Harvey</td>
<td>Smith Seckman Reid</td>
<td>dharvey@ssr-inc.com</td>
</tr>
<tr>
<td>Lewis Arnold</td>
<td>DP-NXA Consultants, LLC</td>
<td>lewisarnold@dpnxa.com</td>
</tr>
<tr>
<td>Caitlyn Ziegler</td>
<td>BranchPattern</td>
<td>caitlyn.z@branchpattern.com</td>
</tr>
<tr>
<td>Paul Cook</td>
<td>Yaggi Engineering</td>
<td>pcook@yaggiengineering.com</td>
</tr>
<tr>
<td>Jessica McKone</td>
<td>Huitt-Zollars, Inc.</td>
<td>jmckone@huitt-zollars.com</td>
</tr>
<tr>
<td>Curtis Spraggins</td>
<td>DFW Consulting Group</td>
<td>cspraggins@dfwcgi.com</td>
</tr>
<tr>
<td>Kristopher McGraw</td>
<td>HarrisonKornberg Architects</td>
<td>kmcgraw@harrisonkornberg.com</td>
</tr>
<tr>
<td>Leslie Lam</td>
<td>BranchPattern, Inc</td>
<td>Leslie.L@branchpattern.com</td>
</tr>
<tr>
<td>Tim Konganda</td>
<td>PGAL</td>
<td>tkonganda@pgal.com</td>
</tr>
<tr>
<td>Emily Jaster Seed</td>
<td>JQ Infrastructure</td>
<td>ejaster@jqeng.com</td>
</tr>
<tr>
<td>John Kluber</td>
<td>Halff Associates</td>
<td></td>
</tr>
<tr>
<td>Ruth Hunter-Hill</td>
<td>Purdy-McGuire</td>
<td>rhunter-hill@purdy-mcguire.com</td>
</tr>
<tr>
<td>Jeanette Scarsdale</td>
<td>JonesDBR Engineering</td>
<td>jscarssdale@jonesdbr.com</td>
</tr>
<tr>
<td>Damian Dominguez</td>
<td>DFW Consulting Group</td>
<td>ddominguez@dfwcgi.com</td>
</tr>
<tr>
<td>John Kluber</td>
<td>Half Associates</td>
<td>jkluber@halff.com</td>
</tr>
<tr>
<td>Ngozi Agomo</td>
<td>Shah Smith & Associates, Inc.</td>
<td>nagomo@shahsmith.com</td>
</tr>
<tr>
<td>Emmie Roy</td>
<td>Corgan</td>
<td>emmie.roy@corgan.com</td>
</tr>
<tr>
<td>Camille Barton</td>
<td>Purdy-McGuire</td>
<td>cbarton@purdy-mcguire.com</td>
</tr>
<tr>
<td>Kip Hanzlick</td>
<td>Purdy-McGuire</td>
<td>khanzlick@purdy-mcguire.com</td>
</tr>
<tr>
<td>Gina Konganda</td>
<td>ReStl Engineers TX</td>
<td>Gkonganda@Restl.com</td>
</tr>
<tr>
<td>Michele Moffatt</td>
<td>Glumac</td>
<td>mmoffatt@glumac.com</td>
</tr>
<tr>
<td>Wendy Williams</td>
<td>Summit Consultants, Inc.</td>
<td></td>
</tr>
<tr>
<td>Ivan Bost</td>
<td>Baird, Hampton & Brown</td>
<td>ibost@bhbinc.com</td>
</tr>
<tr>
<td>Brian Richards</td>
<td>Summit Consultants, Inc.</td>
<td>bdr@summitmep.com</td>
</tr>
<tr>
<td>Emily Waldenmeyer</td>
<td>HP engineering</td>
<td>ewaldenmeyer@hpengineeringinc.com</td>
</tr>
<tr>
<td>Stephen Way</td>
<td>ReStl Engineers TX</td>
<td>sway@restl.com</td>
</tr>
</tbody>
</table>